
The Author(s). BMCGenomics 2016, 17(Suppl 4):465
DOI 10.1186/s12864-016-2789-9

RESEARCH Open Access

Efficient sequential and parallel
algorithms for finding edit distance based
motifs
Soumitra Pal1, Peng Xiao1 and Sanguthevar Rajasekaran2*

From IEEE International Conference on Bioinformatics and Biomedicine 2015
Washington, DC, USA.9-12 November 2015

Abstract

Background: Motif search is an important step in extracting meaningful patterns from biological data. The general
problem of motif search is intractable and there is a pressing need to develop efficient, exact and approximation
algorithms to solve this problem. In this paper, we present several novel, exact, sequential and parallel algorithms for
solving the (l, d) Edit-distance-basedMotif Search (EMS) problem: given two integers l, d and n biological strings, find all
strings of length l that appear in each input string with atmost d errors of types substitution, insertion and deletion.

Methods: One popular technique to solve the problem is to explore for each input string the set of all possible
l-mers that belong to the d-neighborhood of any substring of the input string and output those which are common
for all input strings. We introduce a novel and provably efficient neighborhood exploration technique. We show that it
is enough to consider the candidates in neighborhood which are at a distance exactly d. We compactly represent
these candidate motifs using wildcard characters and efficiently explore them with very few repetitions. Our
sequential algorithm uses a trie based data structure to efficiently store and sort the candidate motifs. Our parallel
algorithm in a multi-core shared memory setting uses arrays for storing and a novel modification of radix-sort for
sorting the candidate motifs.

Results: The algorithms for EMS are customarily evaluated on several challenging instances such as (8,1), (12,2), (16,3),
(20,4), and so on. The best previously known algorithm, EMS1, is sequential and in estimated 3 days solves up to
instance (16,3). Our sequential algorithms are more than 20 times faster on (16,3). On other hard instances such as
(9,2), (11,3), (13,4), our algorithms are much faster. Our parallel algorithm has more than 600 % scaling performance
while using 16 threads.

Conclusions: Our algorithms have pushed up the state-of-the-art of EMS solvers and we believe that the techniques
introduced in this paper are also applicable to other motif search problems such as Planted Motif Search (PMS) and
Simple Motif Search (SMS).

Keywords: Motif, Edit distance, Trie, Radix sort

*Correspondence: rajasek@engr.uconn.edu
2Department of Computer Science and Engineering, University of
Connecticut, 371 Fairfield Road, 06269 Storrs, CT, USA
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-2789-9-x&domain=pdf
mailto: rajasek@engr.uconn.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 316 of 456

Background
Motif search has applications in solving such crucial
problems as identification of alternative splicing sites,
determination of open reading frames, identification of
promoter elements of genes, identification of transcrip-
tion factors and their binding sites, etc. (see e.g., Nicolae
and Rajasekaran [1]). There are many formulations of
the motif search problem. A widely studied formulation
is known as (l, d)-motif search or Planted Motif Search
(PMS) [2]. Given two integers l, d and n biological strings
the problem is to find all strings of length l that appear
in each of the n input strings with atmost d mismatches.
There is a significant amount of work in the literature on
PMS (see e.g., [1, 3–5], and so on).
PMS considers only point mutations as events of diver-

gence in biological sequences. However, insertions and
deletions also play important roles in divergence [2, 6].
Therefore, researchers have also considered a formula-
tion in which the Levenshtein distance (or edit distance),
instead of mismatches, is used for measuring the degree of
divergence [7, 8]. Given n strings S(1), S(2), . . . , S(n), each
of length m from a fixed alphabet �, and integers l, d,
the Edit-distance-based Motif Search (EMS) problem is to
find all patterns M of length l that occur in atleast one
position in each S(i) with an edit distance of atmost d.
More formally, M is a motif if and only if ∀i, there exist
k ∈ [l − d, l + d] , j ∈ [1,m − k + 1] such that for the sub-
string S(i)

j,k of length k at position j of S(i), ED
(
S(i)
j,k ,M

)
≤ d.

Here ED(X,Y) stands for the edit distance between two
strings X and Y .
EMS is also NP-hard since PMS is a special case of

EMS and PMS is known to be NP-hard [9]. As a result,
any exact algorithm for EMS that finds all the motifs
for a given input can be expected to have an expo-
nential (in some of the parameters) worst case runtime.
One of the earliest EMS algorithms is due to Rocke and
Tompa [7] and is based on Gibbs Sampling which requires
repeated searching of the motifs in a constantly evolv-
ing collection of aligned strings, and each search pass
requires O(nl) time. This is an approximate algorithm.
Sagot [8] gave a suffix tree based exact algorithm that
takes O

(
n2mld|�|d) time and O

(
n2m/w

)
space where w

is the word length of the computer. Adebiyi and Kauf-
mann [10] proposed an exact algorithm with an expected
runtime of O

(
nm + d(nm)(1+pow(ε)) log nm

)
where ε =

d/l and pow(ε) is an increasing concave function. The
value of pow(ε) is roughly 0.9 for protein and DNA
sequences. Wang and Miao [11] gave an expectation min-
imization based heuristic genetic algorithm.
Rajasekaran et al. [12] proposed a simpler Determinis-

tic Motif Search (DMS) that has the same worst case time
complexity as the algorithm by Sagot [8]. The algorithm
generates and stores the neighborhood of every substring

of length in the range [l − d, l + d] of every input string
and using a radix sort based method, outputs the neigh-
bors that are common to atleast one substring of each
input string. This algorithm was implemented by Pathak
et al. [13].
Following a useful practice for PMS algorithms, Pathak

et al. [13] evaluated their algorithm on certain instances
that are considered challenging for PMS: (9,2), (11,3),
(13,4) and so on [1], and are generated as follows: n = 20
random DNA/protein strings of length m = 600, and a
short random string M of length l are generated accord-
ing to the independent identically distributed (i.i.d) model.
A separate random d-hamming distance neighbor of M
is “planted” in each of the n input strings. Such an (l, d)

instance is defined to be a challenging instance if l is the
largest integer for which the expected number of spurious
motifs, i.e., the motifs that would occur in the input by
random chance, is atleast 1.
The expected number of spurious motifs in EMS are

different from those in PMS. Table 1 shows the expected
number of spurious motifs for l ∈ [5, 21] and d upto
max{l−2, 13}, n = 20,m = 600 and � = {A,C,G,T} [see
Additional file 1]. The challenging instances for EMS turn
out to be (8,1), (12,2), (16,3), (20,4) and so on. To compare
with [13], we consider both types of instances, specifically,
(8,1), (9,2), (11,3), (12,2), (13,4) and (16,3).
The sequential algorithm by Pathak et al. [13] solves the

moderately hard instance (11,3) in a few hours and does
not solve the next difficult instance (13,4) even after 3
days. A key time-consuming part of the algorithm is in
the generation of the edit distance neighborhood of all
substrings as there are many common neighbors.

Contributions
In this paper we present several improved algorithms
for EMS that solve instance (11,3) in less than a cou-
ple of minutes and instance (13,4) in less than a cou-
ple of hours. On (16,3) our algorithm is more than 20
times faster than EMS1. Our algorithm uses an effi-
cient technique (introduced in this paper) to generate
the edit distance neighborhood of length l with dis-
tance atmost d of all substrings of an input string.
Our parallel algorithm in the multi-core shared mem-
ory setting has more than 600 % scaling performance
on 16 threads. Our approach uses following five ideas
which can be applied to other motif search problems as
well:

Efficient neighborhood generation: We show that it is
enough to consider the neighbors which are at a dis-
tance exactly d from all possible substrings of the input
strings. This works because the neighbors at a lesser dis-
tance are also included in the neighborhood of some other
substrings.

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 317 of 456

Table 1 Expected number of spurious motifs in random instances for n=20,m=600. Here, ∞ represents value ≥1.0e+7

l d=0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 0.0 1024.0 1024.0 ∞
6 0.0 4096.0 4096.0 ∞ ∞
7 0.0 14141.8 16384.0 ∞ ∞ ∞
8 0.0 225.8 65536.0 65536.0 ∞ ∞ ∞
9 0.0 0.0 262144.0 262144.0 ∞ ∞ ∞ ∞
10 0.0 0.0 1047003.6 1048576.0 ∞ ∞ ∞ ∞ ∞
11 0.0 0.0 1332519.5 4194304.0 ∞ ∞ ∞ ∞ ∞ ∞
12 0.0 0.0 294.7 1.678e+07 1.678e+07 ∞ ∞ ∞ ∞ ∞ ∞
13 0.0 0.0 0.0 6.711e+07 6.711e+07 ∞ ∞ ∞ ∞ ∞ ∞ ∞
14 0.0 0.0 0.0 2.517e+08 2.684e+08 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
15 0.0 0.0 0.0 2.749e+07 1.074e+09 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
16 0.0 0.0 0.0 139.1 4.295e+09 4.295e+09 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
17 0.0 0.0 0.0 0.0 1.718e+10 1.718e+10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
18 0.0 0.0 0.0 0.0 3.965e+10 6.872e+10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
19 0.0 0.0 0.0 0.0 1.226e+08 2.749e+11 2.749e+11 ∞ ∞ ∞ ∞ ∞ ∞ ∞
20 0.0 0.0 0.0 0.0 35.8 1.100e+12 1.100e+12 ∞ ∞ ∞ ∞ ∞ ∞ ∞
21 0.0 0.0 0.0 0.0 0.0 4.333e+12 4.398e+12 ∞ ∞ ∞ ∞ ∞ ∞ ∞
The instances in bold represents challenging instances

Compact representation using wildcard characters:
We represent all possible neighbors which are due to an
insertion or a substitution at a position by a single neigh-
bor using a wildcard character at the same position. This
compact representation of the candidate motifs in the
neighborhood requires less space.

Avoiding duplication of candidate motifs: Our algo-
rithm uses several rules to avoid duplication in candidate
motifs and we prove that our technique generates neigh-
borhood that is nearly duplication free. In other words,
our neighborhood generation technique does not spend
a lot of time generating neighbors that have already been
generated.

Trie based data structure for storing compact motifs:
We use a trie based data structure to efficiently store the
neighborhood. This not only simplifies the removal of
duplicate neighbors but also helps in outputting the final
motifs in sorted order using a depth first search traversal
of the trie.

Modified radix-sort for compact motifs: Our parallel
algorithm stores the compact motifs in an array and uses a
modified radix-sort algorithm to sort them. Use of arrays
instead of tries simplifies updating the set of candidate
motifs by multiple threads.

Methods
In this section we introduce some notations and
observations.

An (l, d)-friend of a k-mer L is an l-mer at an exact
distance of d from L. Let Fl,d(L) denote the set of all (l, d)-
friends of L. An (l, d)-neighbor of a k-mer L is an l-mer at
a distance of atmost d from L. Let Nl,d(L) denote the set
of all (l, d)-neighbors of L. Then

Nl,d(L) = ∪d
t=0Fl,t(L). (1)

For a string S of length m, an (l, d)-motif of S is an l-
mer at a distance atmost d from some substring of S. Thus
an (l, d)-motif of S is an (l, d)-neighbor of atleast one sub-
string Sj,k = SjSj+1 . . . Sj+k−1 where k ∈[l − d, l + d].
Therefore, the set of (l, d)-motifs of S, denoted byMl,d(S),
is given by

Ml,d(S) = ∪l+d
k=l−d ∪m−k+1

j=1 Nl,d(Sj,k). (2)

For a collection of strings S = {S(1), S(2), . . . , S(m)}, a
(common) (l, d)-motif is an l-mer at a distance atmost d
from atleast one substring of each S(i). Thus the set of
(common) (l, d)-motifs of S , denoted by Ml,d(S), is given
by

Ml,d(S) = ∩n
i=1Ml,d(S(i)). (3)

One simple way of computing Fl,d(L) is to grow the
friendhood of L by one distance at a time for d times and
to select only the friends having length l. Let G(L) denote
the set of strings obtained by one edit operation on L and
G({L1, L2, . . . , Lr}) = ∪r

t=1G(Lt). If G1(L) = G(L), and for
t > 1, Gt(L) = G(Gt−1(L)) then

Fl,d(L) = {x ∈ Gd(L) : |x| = l}. (4)

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 318 of 456

Using Eqs. (1), (2), (3) and (4), Pathak et al. [13] gave
an algorithm that stores all possible candidate motifs in
an array of size |�|l. However the algorithm is inefficient
in generating the neighborhood as the same candidate
motif is generated by several combinations of the basic
edit operations. Also, the O(|�|l) memory requirement
makes the algorithm inapplicable for larger instances. In
this paper we mitigate these two limitations.

Efficient neighborhood generation
We now give a more efficient algorithm to generate the
(l, d)-neighborhood of all possible k-mers of a string.
Instead of computing (l, t)-friendhood for all 0 ≤ t ≤ d,
we compute only the exact (l, d)-friendhood.

Lemma 1. Ml,d(S) = ∪l+d
k=l−d ∪m−k+1

j=1 Fl,d(Sj,k).

Proof. Consider the k-mer L = Sj,k . If k = l + d then we
need d deletions to make L an l-mer. There cannot be any
(l, t)-neighbor of L for t < d. Thus

∪d
t=0Fl,t(Sj,l+d) = Fl,d(Sj,l+d). (5)

Suppose k < l+d. Any (l, d − 1)-neighbor B of L is
also an (l, d)-neighbor of L′ = Sj,k+1 because ED(B, L′) ≤
ED(B, L) + ED(L, L′) ≤ (d − 1) + 1 = d. Thus

∪d
t=0Fl,t(Sj,k) ⊆ Fl,d(Sj,k)

⋃
∪d
t=0Fl,t(Sj,k+1)

which implies that

∪k+1
r=k ∪d

t=0 Fl,t(Sj,r) = Fl,d(Sj,k)
⋃

∪d
t=0Fl,t(Sj,k+1). (6)

Applying (6) repeatedly for k = l − d, l − d + 1, . . . , l +
d − 1, along with (5) in (1) and (2) gives the result of the
lemma.

We generate Fl,d(Sj,k) in three phases: we apply δ dele-
tions in the first phase, β substitutions in the second
phase, and α insertions in the final phase, where d =
δ + α + β and l = k − δ + α. Solving for α,β , δ gives
max{0, q} ≤ δ ≤ (d + q)/2, α = δ − q and β = d − 2δ + q
where q = k − l. In each of the phases, the neighborhood
is grown by one edit operation at a time.

Compact motifs
The candidate motifs in Fl,d(Sj,k) are generated in a com-
pact way. Instead of inserting each character in � sep-
arately at a required position in Sj,k , we insert a new
character ∗ /∈ � at that position. Similarly, instead of
substituting a character σ ∈ Sj,k by each σ ′ ∈ � \ {σ }
separately, we substitute σ by ∗. The motifs common to
all strings in S is determined by using the usual definition

of union and the following definition of intersection on
compact strings A,B ∈ (� ∪ {∗})l in (3):

A∩B =
⎧⎨
⎩

∅ if ∃j s.t. Aj,Bj ∈ �,Aj �= Bj

σ1σ2 . . . σl else, where σj =
{
bj if aj=∗
aj if bj= ∗ .

(7)

Trie for storing compact motifs
We store the compact motifs in a trie based data struc-
ture which we call a motif trie. This helps implement the
intersection defined in (7). Each node in the motif trie
has atmost |�| children. The edges from a node u to
its children v are labeled with mutually exclusive subsets
label(u, v) ⊆ �. An empty set of compact motifs is repre-
sented by a single root node. A non-empty trie has l + 1
levels of nodes, the root being at level 0. The trie stores
the l-mer σ1σ2 . . . σl, all σj ∈ �, if there is a path from the
root to a leaf where σj appears in the label of the edge from
level j − 1 to level j.
For each string S = S(i) we keep a separate motif trie

M(i). Each compact neighbor A ∈ Fl,d(Sj,k) is inserted
into the motif trie recursively as follows. We start with
the root node where we insert A1A2 . . .Al. At a node u at
level j where the prefix A1A2 . . .Aj−1 is already inserted,
we insert the suffix AjAj+1 . . .Al as follows. If Aj ∈ � we
insert A′ = Aj+1Aj+2 . . .Al to the children v of u such
that Aj ∈ label(u, v). If label(u, v) �= {Aj}, before insert-
ing we make a copy of subtrie rooted at v. Let v′ be the
root of the new copy. We make v′ a new child of u, set
label(u, v′) = {Aj}, remove Aj from label(u, v), and insert
A′ to v′. On the other hand if Aj = ∗ we insert A′ to each
children of u. Let T = � if Aj = ∗ and T = {Aj} other-
wise. Let R = T \ ∪vlabel(u, v). If T �= ∅ we create a new
child v′ of u, set label(u, v′) = R and recursively insert A′
to v′. Figure 1 shows examples of inserting into the motif
trie.
We also maintain a motif trie M for the common com-

pact motifs found so far, starting with M = M(1). After
processing string S(i) we intersect the root ofM(i) with the

Fig. 1 Inserting into motif trie for � = {A, C,G, T} and l = 3. a After
inserting ∗GT into empty trie. b After inserting another string A∗C

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 319 of 456

root of M. In general a node u2 ∈ M(i) at level j is inter-
sected with a node u1 ∈ M at level j using the procedure
shown in Algorithm 1. Figure 2 shows an example of the
intersection of two motif tries.

Algorithm 1: Intersect subtries rooted at u1,u2
input : subtrie(u1), subtrie(u2)
output: subtrie(u1) ← subtrie(u1) ∩ subtrie(u2)
V ← all children of u1;
foreach v1 ∈ V do

foreach child v2 of u2 do
newLabel ← label(u1, v1) ∩ label(u2, v2);
if newLabel �= ∅ then

if newLabel �= label(u1, v1) then
let v′

1 be a new child of u1;
copy at v′

1 the subtrie rooted at v1;
label(u1, v′

1)←newLabel;
label(u1, v1)← label(u1, v1)\newLabel;
intersect subtries rooted at v′

1, v2;
else

intersect subtries rooted at v1, v2;
if label(u1, v1)=∅ then delete subtrie rooted at v1

if u1 has no child then delete subtrie rooted at u1

The final set of common motifs is obtained by a depth-
first traversal of M outputting the label of the path from
the root whenever a leaf is traversed. An edge (u, v) is
traversed separately for each σ ∈ label(u, v).

Efficient compact neighborhood generation
A significant part of the time taken by our algorithm is in
inserting compact neighbors into themotif trie as it is exe-
cuted for each neighbor in the friendhood. Our efficient
neighborhood generation technique and the use of com-
pact neighbors reduce duplication in neighborhood but
do not guarantee completely duplication free neighbor-
hood. In this section, we design few simple rules to reduce
duplication further. Later we will see that these rules are

Fig. 2 Intersection of motif tries. a Trie for AG∗ ∪ C∗T . b Intersection
of trie in Fig. 1b and trie in Fig. 2 a

quite close to the ideal as we will prove that the compact
motif generated after skipping using the rules, are distinct
if all the characters in the input string are distinct.
To differentiate multiple copies of the same compact

neighbor, we augment it with the information about how
it is generated. This information is required only in the
proof and is not used in the actual algorithm. Formally,
each compact neighbor L of a k-mer Sj,k is represented as
an ordered tuple 〈Sj,k ,T〉 where T denotes the sequence
of edit operations applied to Sj,k . Each edit operation in T
is represented as a tuple 〈p, o〉 where p denotes the posi-
tion (as in S) where the edit operation is applied and o ∈
{D,R, I} denotes the type of the operation – deletion, sub-
stitution and insertion, respectively. At each position there
can be one deletion or one substitution but one or more
insertions. The tuples in T are sorted lexicographically
with the natural order for p and for o, D < R < I.
The rules for skipping compact neighbors are given in

Table 2. Rule 1 applies when Sj,k is not the rightmost k-mer
and the current edit operation deletes the leftmost base of
Sj,k , i.e., Sj. Rule 2 applies when the current edit operation
substitutes a base just after a base that was already deleted.
Rule 3 skips the neighbor which is generated from a k-mer
except the rightmost by deleting a base and substituting
all bases before it. Rules 4–9 apply when the current oper-
ation is an insertion. Rule 4,6 apply when the insertion
is just before a deletion and a substitution, respectively.
Rule 5 applies when the insertion is just after a deletion.
Rule 7,8 apply when the k-mer is not the leftmost. Rule 7
applies when the insertion is at the leftmost position and
Rule 8 applies when all bases before the position of inser-
tion are already substituted. Rule 9 applies when the k-mer
is not the rightmost and the insertion is at the right end.
The first in each pair of the figures in Fig. 3 illustrates the
situation where the corresponding rule applies.
Let M̄l, d(S) denote the multi-set of tuples for the com-

pact motifs of S that were not skipped by our algorithm

Table 2 Conditions for skipping motif L = 〈M, Sj,k , T〉
Rule Conditions (in all rules t ≥ 0)

1 (j + k ≤ m) ∧ 〈j,D〉 ∈ T

2 {〈j + t,D〉, 〈j + t + 1, R〉} ⊆ T

3 (j+k≤m) ∧ {〈j, R〉,〈j+1, R〉, . . . ,〈j+t, R〉,〈j+t+1,D〉}⊆T

4 {〈j + t,D〉, 〈j + t, I〉} ⊆ T

5 {〈j + t,D〉, 〈j + t + 1, I〉} ⊆ T

6 {〈j + t, R〉, 〈j + t, I〉} ⊆ T

7 (j > 1) ∧ 〈j, I〉 ∈ T

8 (j > 1) ∧ {〈j, R〉, 〈j+1, R〉, . . . , 〈j+t, R〉, 〈j+t+1, I〉}⊆T

9 (j + k ≤ m) ∧ 〈j+k, I〉∈T

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 320 of 456

Fig. 3 Construction of L′ under different rules in the proof of Lemma 2. Insertions are shown using arrows, deletions using − and substitutions
using ∗. Rule 5 case (i) is similar to Rule 4 case (i)

using the rules in Table 2 and Ml, d(S) be the set of
compact motifs generated by (3). Let �(〈Sj, k ,T〉) be the
resulting string when the operations in T are applied to
Sj, k and �(Z) = ∪L∈Z�(L).

Lemma 2. �(M̄l,d(S)) = Ml,d(S).

Proof. By construction, �(M̄l,d(S)) ⊆ Ml,d(S). We show
Ml,d(S) ⊆ �(M̄l,d(S)) by giving a contradiction when
Ml,d(S) \ �(M̄l,d(S)) �= ∅.
We define an order on the compact neighbors L1 =

〈Sj1,k1 ,T1〉 and L2 = 〈Sj2,k2 ,T2〉 as follows: L1 < L2 if
�(L1) < �(L2) and L2 < L1 if �(L2) < �(L1). When
�(L1) = �(L2) we have L1 < L2 if and only if (k1 <

k2) ∨ ((k1 = k2) ∧ (p1 < p2)) ∨ ((k1 = k2) ∧ (p1 =
p2) ∧ (o1 < o2)) where 〈p1, o1〉 ∈ T1, 〈p2, o2〉 ∈ T2 are the
leftmost edit operations where T1,T2 differ.
Suppose M ∈ Ml,d(S) \ �(M̄l,d(S)). Let L = 〈Sj, k ,T〉 be

the largest (in the order defined above) tuple skipped by
our algorithm such that �(L) = M. For each r = 1, . . . , 9
we show a contradiction that if L is skipped by Rule r then
there is another L′ = 〈Sj′, k′ ,T ′〉 with the same number
of edit operations and �(L′) = M but L < L′. Figure 3
illustrates the choice of L′ under different rules.

Rule 1. Here j + k ≤ m and 〈j,D〉 ∈ T . Consider T ′ =(
T \ {〈j,D〉}) ∪ {

j + k,D
}
, and j′ = j + 1, k′ = k.

Rule 2. Consider T ′ = T \ {〈j + t,D〉, 〈j + t + 1,R〉} ∪
{〈j + t,R〉, 〈j + t + 1,D〉}, and j′ = j, k′ = k.
Rule 3. T ′ = T \ {〈j,R〉, 〈j + t + 1,D〉} ∪

{〈j + t + 1,R〉, 〈j + k,D〉}, j′ = j + 1, k′ = k.
Rule 4. For this and subsequent rules k < l+d as there is

atleast one insertion and hence k′ could possibly be equal
to k+1.We consider two cases. Case (i) j+k ≤ m:T ′ = T\
{〈j + t,D〉, 〈j + t, I〉} ∪ {〈j+t,R〉, 〈j + k,D〉}, j′ = j, k′ = k +
1. Case (ii) j+ k = m+ 1: Here deletion of Sj is allowed by
Rule 1. T ′ = T\{〈j + t,D〉, 〈j + t, I〉}∪{〈j − 1,D〉, 〈j+t,R〉},
j′ = j − 1, k′ = k + 1.
Rule 5. The same argument for Rule 4 applies consider-

ing 〈j+t+1, I〉 instead of 〈j+t, I〉.
Rule 6. T ′=T\{〈j + t, I〉}∪{〈j + t + 1, I〉}, and j′=j, k′=k.
Rule 7. T ′=T\{〈j, I〉} ∪ {〈j−1,R〉}, j′ = j − 1, k′ = k+1.
Rule 8. T ′=T\{〈j+t, I〉}∪{〈j−1,R〉}, j′=j−1, k′ = k+1.
Rule 9. T ′=T\{〈j+k, I〉} ∪ {〈j + k,R〉}, j′ = j, k′ = k+1.

Consider two compact motifs M1 = 〈Sj1,k1 ,T1〉 and
M2 = 〈Sj2,k2 ,T2〉 in M̄l,d(S). For q ∈ {1, 2}, let

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 321 of 456

〈
p(1)
q , o(1)

q
〉
,
〈
p(2)
q , o(2)

q
〉
, . . . ,

〈
p(d)
q , o(d)

q
〉
be the sequence of

edit operations in Tq arranged in the order as the
neighbors are generated by our algorithm, and
the intermediate neighbors be L(h)

q =
〈
Sjq ,kq ,

{〈
p(1)
q , o(1)

q
〉
,〈

p(2)
q , o(2)

q
〉
, . . . ,

〈
p(h)
q , o(h)

q
〉}〉

for all h = 1, 2, . . . , d.We also

denote the initial k-mer as a neighbor L(0)
q = 〈Sjq ,kq ,∅〉.

Lemma 3. If Sjs are all distinct and �
(
L(h)
1

)
= �

(
L(h)
2

)

for 1 ≤ h ≤ d then
〈
p(h)
1 , o(h)

1

〉
=

〈
p(h)
2 , o(h)

2

〉
and

�
(
L(h−1)
1

)
= �

(
L(h−1)
2

)
.

Proof. To simplify the proof, we use pq, oq, Lq to denote
p(h)
q , o(h)

q , L(h)
q , respectively, for all q ∈ {1, 2}. Without loss

of generality we assume p1 ≤ p2.
As p1, p2 are positions in S, it would be enough to prove

〈p1, o1〉 = 〈p2, o2〉 because that would imply �
(
L(h−1)
1

)
=

�
(
L(h−1)
2

)
.

If 〈p1, o1〉 �= 〈p2, o2〉 then either (a) o1 = o2 and p1 < p2
or (b) o1 �= o2 and p1 ≤ p2, giving us the following 9
possible cases. We complete the proof by giving a contra-
diction in each of these 9 cases:

Case o1 o2 cond. Case o1 o2 cond. Case o1 o2 cond.
1 D D p1<p2 4 R D p1≤p2 7 I D p1≤p2
2 D R p1≤p2 5 R R p1<p2 8 I R p1≤p2
3 D I p1≤p2 6 R I p1≤p2 9 I I p1<p2

Cases 2, 3, 4, 7
Our algorithm applies edit operations in phases: first dele-
tions, followed by substitutions and finally insertions. In
all these cases, one of �(L1),�(L2) does not have any ∗
because only deletions have been applied so far and the
other has at least one ∗ because a substitution or an inser-
tion has been applied. This implies �(L1) �= �(L2), a
contradiction.

Case 1
L2 has Sp2 deleted. As �(L1) = �(L2), Sp2 must have been
deleted in some operation prior to reaching L1. As the
deletions are applied in order, left to right, we must have
p1 = p2 which is a contradiction.

Case 5
This case has been illustrated in Fig. 4a. L1 has no substi-
tution at a position > p1 and no insertion at all. The ∗ at
p2 in L2 must be matched with the ∗ at p1 in L1 and as
the characters in S are distinct, all of Sp1+1, . . . , Sp2 cannot
appear in L1 and hence must be deleted in L1.
Now for each t < p1, right to left, and y = t + p2 − p1,

we have the following: Sy is either deleted or substituted

in L1, which implies that Sy must be substituted in L2 as
the deletion of Sy in L2 is prohibited by Rule 2, and finally
to match this ∗ in L2, St must be substituted in L1 as St
cannot be deleted in L1, again by Rule 2.
But this makes Rule 3 applicable to L1 and L1 must have

been skipped. This is a contradiction.

Case 6
By Rule 9 the insertion in L2 cannot be at the rightmost
position and hence L2 must have at least one character
after the insertion. By Rules 4 and 6, Sp2 must not be
deleted or substituted in L2 and hence it must not be
deleted or substituted in L1 either. Thus p1 < p2. There
cannot be any insertion or substitution at a position > p1
in L1. Thus the ∗ due to the insertion at p2 in L2 must be
matched by the ∗ due to the substitution at p1 in L1 and all
of Sp1+1, . . . , Sp2−1 must be deleted in L1.
By Rule 7, Sp2 cannot be the leftmost in Sj2,k2 . So we

consider Sp2−1 in L1, L2. It is either deleted or substituted
in L1 and hence by Rule 5, it must be substituted in Sp2
(there can be multiple insertions at p2 in L2 but that does
not affect this argument). To match this ∗, Sp1−1 must be
substituted in L1.
Using a similar argument as in Case 5, St must be substi-

tuted in L1 for each t < p1−1. But this again makes Rule 3
applicable to L1 and L1 must have been skipped, which is
not possible. This case has been illustrated in Fig. 4b.

Case 8
Due to Rules 4, 6 and 9, Sp1 must not be deleted or substi-
tuted in L1 and hence it must not be deleted or substituted
in L2 either. Thus p1 < p2. The ∗ due to the insertion in
L1 must be matched by a substitution at p3 < p1 such that
all of Sp3+1, . . . , Sp1−1 are deleted in L2.
By Rule 7, p1 cannot be the leftmost in L1. For each t <

p1, right to left, and y = t+p3−p1, we have the following:
Sy is substituted in L1 because as the deletion of Sy in L1 is
prohibited by Rules 2 and 5, Sy must be substituted in L2
again by Rule 2, and tomatch this ∗, St must be substituted
in L1.
But this makes Rule 8 applicable to L1 and L1 must have

been skipped which is not possible. This case has been
illustrated in Fig. 4c.

Case 9
This case has been illustrated in Fig. 4d. Due to Rules 4, 6
and 9, Sp1 , Sp2 must not be deleted or substituted in L1, L2.
The insertion at p2 in L2 must be matched by a substitu-
tion at a position p3 in L1 such that p1 < p3 < p2 and all
of Sp3+1, . . . , Sp2−1 must be deleted in L1.
Now for each position y, from right to left, where p1 <

y < p2, Sy is either deleted or substituted in S1, Sy cannot
be deleted in L2 by Rules 2 and 5 and hencemust be substi-
tuted in L2, which againmust bematched by a substitution

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 322 of 456

Fig. 4 Proof of uniqueness (Lemma 2). Subfigures a,b,c,d illustrates the cases 5,6,7,8,9 respectively

at a position t in L1 such that p1 < t < p3. However this is
impossible as the number of possible ys is larger than the
number of possible ts.

If all Sjs are distinct and �(M1) = �(M2) then applying
Lemma 3 repeatedly for h = d, d−1, . . . , 0 gives us the fact
that starting k-mers Sj1,k1 , Sj2,k2 as well as the correspond-
ing edit operations in T1,T2 forM1,M2 must be the same.
This is another way of stating the following theorem.

Theorem 1. If Sjs are all distinct then M̄l,d(S) is dupli-
cation free.

In general Sjs are not distinct. However, as the input
strings are random, the duplication due to repeated char-
acters are limited. On instance (11, 3) our algorithm gen-
erates each compact motif, on an average, 1.55 times using
the rules compared to 3.63 times without the rules (see
Fig. 5).

Implementation To track the deleted characters, instead
of actually deleting we substitute them by a new symbol
− not in �′. We populate the motif trie M(i) by calling
genAll(S(i)) given in Algorithm 2. Rules 1–8 are incor-
porated in G(L, j, δ,β ,α), H(L, j,β ,α) and I(L, j,α) which
are shown in Algorithms 3, 4, and 5, respectively where
sub(L, j, σ) substitutes Lj by σ and ins(L, j, σ) inserts σ just
before Lj.

Modified radix-sort for compact motifs
A simpler data structure alternative to tries for storing
compact motifs could be an array. However, it becomes
difficult to compute the intersection in (3) as defined

Algorithm 2: genAll(S)
foreach q ← −d to + d do

k ← l + q; start ← 2 ; // Rule 1
leftMost ← rightMost ← false;
for j ← 1 to |S| − k + 1 do

if j = 1 then leftMost ← true;
if j+k−1=m then

rightMost←true; start←1
foreach δ ← max{0, q} to (d + q)/2 do

G(Sj,k , start, δ, d − 2δ + q, δ − q);

in (7) when the compact motifs are stored in arrays. One
straight-forward solution is to first expand the ∗s in the
compact motifs, then sort the expanded motifs and finally
compute the intersection by scanning through the two
sorted arrays. This, to a great extent, wipes out the advan-
tage using the ∗s in the compact motifs. However, we
salvage execution time by executing a modified radix-
sort that simultaneously expands and sorts the array of
compact motifs: Compact-Radix-Sort(A, l) where the first
parameter A represents the array of compact motifs and
the second parameter represents the number of digits of
the elements in A which is equal to the number of base
positions l in a motif.

Algorithm 3: G(L, j, δ,β ,α)

if δ = 0 then H(L, j,β ,α); return;
foreach j′ ← j to |L| do

G(sub(L, j′,−), j′ + 1, δ − 1,β ,α);

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 323 of 456

Fig. 5 Histogram of number of times a motif is repeated with and without using the skipping rules 1–9

Algorithm 4: H(L, j,β ,α)

if β = 0 then

t ←
{
largest t′ s.t. Lj′= ∗ for allj′≤t′
0 if no such j′ exists;

start ←
{
1 if leftMost
t + 2 otherwise; // Rules 7,8

I(L, start,α); return;
foreach j′ ← j to |L| do

if Lj = − then continue; // deleted
if (j > 1) ∧ Lj−1 = − then continue; // Rule 2
if ¬rightMost ∧j′′<j′ (Lj′′=∗) ∧ (Lj′+1=−) then

continue ; // Rule 3
H(sub(L, j′, ∗), j′+1,β−1,α);

As in the standard radix-sort, our algorithm uses l
phases, one for each base position in the motif. In the
ith phase it sorts the motifs using bucket sort on the ith
base of the motifs. However, in case of compact motifs,
for each ∗ at a base position, the bucket counters for all
σ ∈ � are incremented. While reordering the motifs as
per the bucket counts, if there is a ∗ at ith base posi-
tion of a motif, |�| copies of the motif are created and
they are placed at appropriate locations in the array after
finalizing the correct σ for the ∗. The details are given
in Algorithm 6. In each phase a bucket counter B and
a cumulative counter C are used. The temporary array
T stores the partially expanded motifs from the current
phase.

Discussion We did an experiment to compare the time
taken by the two approaches – (i) using the expanded
motifs, i.e., without using the wildcard character, and (ii)
using compact motifs and sorting them using Compact-
Radix-Sort. For a single input string of instance (16,3), the
first approach generated in 24.4 s 198,991,822 expanded
motifs in which 53,965,581 are unique. The second
approach generated in 13.7 s 11,474,938 compact motifs
with the same number of unique expanded motifs. This
shows the effectiveness of the second approach.

Parallel algorithm
We now give our parallel algorithm in the multi-core
shared memory setting. To process each input sequence
S(i) the algorithm uses p + 1 threads. The main thread
first prepares the workload for other p threads. A work-
load involves the generation of the neighborhood for a
k-mer of S(i), where l − d ≤ k ≤ l + d. There are total∑l+d

k=l−d(m − k + 1) = (2d + 1)(m − l + 1) workloads.

Algorithm 5: I(L, j,α)

if α = 0 then
insert L toM(i) after deleting all − in L; return

foreach j′ ← j to |L| do
if Lj ∈ {−, ∗} then continue; // Rules 4,6
if (j > 1) ∧ (Lj−1 = −) then; // Rule 5
continue I(ins(L, j′, ∗), j′+1,α−1);

if rightMost ∧ (L|L| �= −) then
I(ins(L, |L| + 1, ∗), |L| + 2,α−1); // Rule 9

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 324 of 456

Algorithm 6: Compact-Radix-Sort(A, l)
for i ← 1 to l do

foreach σ ∈ � do B[σ]← 0;
for j ← 1 to |A| do

σ ← digit i of A[j];
if σ = ∗ then

foreach σ ′ ∈ � do B[σ ′]← B[σ ′]+1;
else C[σ]← B[σ]+1;

foreach σ ∈ � do C[σ]← ∑
σ ′≤σ B[σ ′] ;

T ← empty array of size maxσ C[σ];
for j ← 1 to |A| do

σ ← digit i of A[j];
if σ = ∗ then

foreach σ ′ ∈ � do
T[C[σ ′]]← A[j] with σ ′ at digit i;
C[σ ′]← C[σ ′]−1;

else
T[C[σ]]← A[j];
C[σ]← C[σ]−1;

A ← T ;

The number of neighbors generated in the workloads are
not the same due to the skipping of some neighbors using
rules 1–9. For load balancing, we randomly and evenly dis-
tribute workloads to threads. Each thread first generates
all the compact motifs in its workloads and then sort them
using Compact-Radix-Sort. If i > 2 then it removes all
neighbors not present in M(i−1) which is the set of com-
monmotifs of S(1), S(2), . . . , S(i−1). Themaster thread then
merges the residue candidate motifs from all the p threads

to computeM(i). The merging takes place in log2 p phases
in a binary tree fashion where the jth phase uses 2log2 p−j

threads each merging two sorted arrays of motifs.

Results and discussion
We implemented our algorithms in C++ and evaluated on
a Dell Precisions Workstation T7910 running RHEL 7.0
on two sockets each containing 8 Dual Intel Xeon Proces-
sors E5-2667 (8C HT, 20 MB Cache, 3.2 GHz) and 256 GB
RAM. For our experiments we used only one of the two
sockets. We generated random (l, d) instances according
to Pevzner and Sze [2] and as described in the background
section. For every (l, d) combination we report the aver-
age time taken by 4 runs. We compare the following four
implementations:

• EMS1: A modified implementation of the algorithm
in [13] which considered the neighborhood of only
l-mers whereas the modified version considers the
neighborhood of all k-mers where l − d ≤ k ≤ l + d.

• EMS2: A faster implementation of our sequential
algorithm which uses tries for storing candidate
motifs where each node of the trie stores an array of
pointers to each children of the node. However, this
makes the space required to store a tree node
dependent on the size of the alphabet �.

• EMS2M: A slightly slower but memory efficient
implementation of our sequential algorithm where
each node of the trie keeps two pointers: one to the
leftmost child and the other to the immediate right
sibling. Access to the other children are simulated
using the sibling pointers.

Table 3 Comparison between EMS1 and three implementations of EMS2

Instance Metric EMS1 EMS2 EMS2M
EMS2P threads

1 2 4 8 16

(8,1) time 0.11 s 0.13 s 0.12 s 0.09 s 0.08 s 0.06 s 0.05 s 0.06 s

memory 2.69 MB 4.25 MB 3.17 MB 2.67 MB 3.20 MB 3.55 MB 6.02 MB 7.99 MB

(12,2) time 19.87 s 15.60 s 16.62 s 2.71 s 1.94 s 1.44 s 0.89 s 0.55 s

memory 34.28 MB 210.47 MB 126.91 MB 84.98 MB 104.60 MB 125.18 MB 142.82 MB 150.23 MB

(16,3) time 1.74 h 23.73 m 26.79 m 3.73 m 2.32 m 1.38 m 48.58 s 36.93 s

memory 8.39 GB 11.62 GB 6.97 GB 8.55 GB 10.21 GB 10.53 GB 9.84 GB 9.91 GB

(9,2) time 10.84 s 1.72 s 3.02 s 1.12 s 0.96 s 0.78 s 0.49 s 0.35 s

memory 3.44 MB 26.67 MB 17.04 MB 42.86 MB 57.76 MB 54.77 MB 59.85 MB 66.53 MB

(11,3) time 33.48 m 1.91 m 3.57 m 45.85 s 30.78 s 19.68 s 13.49 s 9.78 s

memory 92.86 MB 477.12 MB 313.33 MB 2.27 GB 2.63 GB 2.65 GB 2.55 GB 2.60 GB

(13,4) time - 1.08 h 1.76 h 44.03 m 26.16 m 14.51 m 8.62 m 6.82 m

memory - 8.26 GB 5.58 GB 149.60 GB 179.66 GB 180.13 GB 168.80 GB 172.74 GB

Time is in seconds (s), minutes (m) or hours (h). An empty cell implies the algorithm did not complete in the stipulated 72 h

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 325 of 456

Fig. 6 Scaling performance of our parallel algorithm

• EMS2P: Our parallel algorithm which uses arrays for
storing motifs. We experimented with
p = 1, 2, 4, 8, 16 threads.

We run the four algorithms on the challenging instances
(8,1), (12,2), (16,3) and on the instances (9,2), (11,3), (13,4)
which are challenging for PMS and have been used for
experimentation in [13]. We report the runtime and the
memory usage of the four algorithms in Table 3.
Our efficient neighborhood generation enables our

algorithm to solve instance (13, 4) in less than two hours
which EMS1 could not solve even in 3 days. The factor
by which EMS2 takes more memory compared to EMS1
gradually decreases as instances become harder. As EMS2
stores 4 child pointers for A,C,G,T in each node of the
motif trie whereas EMS2M simulates access to children
using only 2 pointers, EMS2 is faster. Memory reduction
in EMS2M is not exactly by a factor 2(=4/2) because we
also keep a bit vector in each node to represent the sub-
set of {A,C,G,T} a child corresponds to. The memory
reduction would be significant for protein strings.
Our parallel algorithm EMS2P using one thread is sig-

nificantly faster than the sequential algorithms EMS2 and
EMS2M but uses more memory. This space-time trade off
is due to the fact that the arrays are faster to access but
the tries use lessermemory.Moreover, the repeatedmotifs
are uniquely stored in a single leaf node in the trie but
stored separately in the array. The scaling performance
using multiple threads are shown in Fig. 6 where we plot
the ratio of time taken by p threads to the time taken by a
single thread on the Y-axis. The time required for handling
16 threads turns out to be costlier than actually processing

the motifs in the smallest instance (8,1).We observe speed
up consistent across other bigger instances. For exam-
ple, instance (16,3) takes about 224 s using 1 thread and
37 s using 16 threads. This gives more than 600 % scaling
performance using 16 threads.

Conclusions
We presented several efficient sequential and parallel
algorithms for the EMS problem. Our algorithms use
some novel and elegant rules to explore the candidate
motifs in such a way that only a small fraction of the can-
didate motifs are explored twice or more. In fact, we also
proved that these rules are close to ideal in the sense that
no candidate motif is explored twice if the characters in
the input string are all distinct. This condition may not
be practical and ideas from [14] can be used when the
characters in the input string are repeated. Nevertheless,
the rules help because the instances are randomly gen-
erated and the k-mers in the input string are not much
frequent. The second reason for the efficiency of our
sequential algorithms is the use of a trie based data struc-
ture to compactly store the motifs. Our parallel algorithm
stores candidate motifs in an array and uses a modified
radix-sort basedmethod for filtering out invalid candidate
motifs.
Our algorithms pushed up the state-of-the-art of

EMS solvers to a state where the challenging instance
(16,3) is solved in slightly more than half a minute
using 16 threads. Future work could be to solve
harder instances, including those involving protein
strings, and possibly using many-core distributed
algorithms.

The Author(s). BMCGenomics 2016, 17(Suppl 4):465 Page 326 of 456

Additional file

Additional file 1: Expected number of spurious motifs. This file gives the
expression for the expected number of spurious (l, d)-motifs in n random
strings of lengthm from the alphabet �. (PDF 143 kb)

Acknowledgments
This work has been supported in part by the NIH grant R01-LM010101 and
NSF grant 1447711.

Declarations
Publication of this article was funded by the NIH grant R01-LM010101 and NSF
grant 1447711. This article has been published as part of BMC Genomics Vol
17 Suppl 4 2016: Selected articles from the IEEE International Conference on
Bioinformatics and Biomedicine 2015: genomics. The full contents of the
supplement are available online at https://github.com/soumitrakp/ems2.git.

Availability
A C++ based implementation of our algorithm can be found at the following
github public repository:
https://github.com/soumitrakp/ems2.git.

Authors’ contributions
SP and SR conceived the study. SP implemented the algorithms and PX carried
out the experiments. SP and SR analyzed the results and wrote the paper. All
authors reviewed the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computer Science and Engineering, University of
Connecticut, 371 Fairfield Road, 06269 Storrs, CT, USA. 2Department of
Computer Science and Engineering, University of Connecticut, 371 Fairfield
Road, 06269 Storrs, CT, USA .

Published: 18 August 2016

References
1. Nicolae M, Rajasekaran S. qPMS9: An Efficient Algorithm for Quorum

Planted Motif Search. Nat Sci Rep. 2015;5. doi:10.1038/srep07813.
2. Floratou A, Tata S, Patel JM. Efficient and Accurate Discovery of Patterns

in Sequence Data Sets. IEEE Trans Knowl Data Eng. 2011;23(8):1154–68.
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.69.

3. Nicolae M, Rajasekaran S. Efficient Sequential and Parallel Algorithms for
Planted Motif Search. BMC Bioinformatics. 2014;15(1):34.

4. Tanaka S. Improved Exact Enumerative Algorithms for the Planted
(l, d)-motif Search Problem. IEEE/ACM Trans Comput Biol Bioinformatics
(TCBB). 2014;11(2):361–74.

5. Yu Q, Huo H, Zhang Y, Guo H. PairMotif: A new pattern-driven algorithm
for planted (l, d) DNA motif search. PloS One. 2012;7(10):48442.

6. Karlin S, Ost F, Blaisdell BE. Patterns in DNA and Amino Acid Sequences
and Their Statistical Significance. In: Waterman MS, editor. Mathematical
Methods for DNA Sequences. Boca Raton, FL, USA: CRC Press Inc; 1989.

7. Rocke E, Tompa M. An Algorithm for Finding Novel Gapped Motifs in
DNA Sequences. In: Proceedings of the Second Annual International
Conference on Computational Molecular Biology. New York, NY, USA:
ACM; 1998. p. 228–33.

8. Sagot MF. Spelling Approximate Repeated or Common Motifs using a
Suffix Tree. In: LATIN’98: Theoretical Informatics. Brazil: Springer; 1998.
p. 374–90.

9. Lanctot JK, Li M, Ma B, Wang S, Zhang L. Distinguishing string selection
problems. Inform Comput. 2003;185(1):41–55.

10. Adebiyi EF, Kaufmann M. Extracting Common Motifs under the
Levenshtein Measure: Theory and Experimentation. In: Guigó R, Gusfield
D, editors. Algorithms in Bioinformatics: Second International Workshop,
WABI 2002 Rome, Italy, September 17–21, 2002 Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2002. p. 140–56.

11. Wang X, Miao Y. GAEM: A Hybrid Algorithm Incorporating GA with EM for
Planted Edited Motif Finding Problem. Curr Bioinformatics. 2014;9(5):
463–9.

12. Rajasekaran S, Balla S, Huang CH, Thapar V, Gryk M, Maciejewski M,
Schiller M. High-performance Exact Algorithms for Motif Search. J Clin
Monitoring Comput. 2005;19(4–5):319–28.

13. Pathak S, Rajasekaran S, Nicolae M. EMS1: An Elegant Algorithm for Edit
Distance Based Motif Search. Int J Foundations Comput Sci. 2013;24(04):
473–86.

14. Knuth DE. The Art of Computer Programming, Volume 4, Generating All
Tuples and Permutations, Fascicle 2. New Jersey, USA: Addison Wesley;
2005.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1186/s12864-016-2789-9
https://github.com/soumitrakp/ems2.git
https://github.com/soumitrakp/ems2.git
http://dx.doi.org/10.1038/srep07813
http://doi.ieeecomputersociety.org/10.1109/TKDE.2011.69

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Contributions
	Efficient neighborhood generation:
	Compact representation using wildcard characters:
	Avoiding duplication of candidate motifs:
	Trie based data structure for storing compact motifs:
	Modified radix-sort for compact motifs:

	Methods
	Efficient neighborhood generation
	Compact motifs
	Trie for storing compact motifs
	Efficient compact neighborhood generation
	Cases 2, 3, 4, 7
	Case 1
	Case 5
	Case 6
	Case 8
	Case 9

	Modified radix-sort for compact motifs
	Discussion

	Parallel algorithm

	Results and discussion
	Conclusions
	Additional file
	Additional file 1

	Acknowledgments
	Declarations
	Availability
	Authors' contributions
	Competing interests
	Author details
	References

