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Abstract

Background: Diabetes mellitus characterized by hyperglycemia as a result of insufficient production of or reduced
sensitivity to insulin poses a growing threat to the health of people. It is a heterogeneous disorder with multiple
etiologies consisting of type 1 diabetes, type 2 diabetes, gestational diabetes and so on. Diabetes-associated
protein/gene prediction is a key step to understand the cellular mechanisms related to diabetes mellitus. Compared
with experimental methods, computational predictions of candidate proteins/genes are cheaper and more effortless.
Protein-protein interaction (PPI) data produced by the high-throughput technology have been used to prioritize
candidate disease genes/proteins. However, the false interactions in the PPl data seriously hurt computational
methods performance. In order to address that particular question, new methods are developed to identify candidate
disease genes/proteins via integrating biological data from other sources.

Results: In this study, a new framework called PDMG is proposed to predict candidate disease genes/proteins. First,
the weighted networks are building in terms of the combination of the subcellular localization information and PPI
data. To form the weighted networks, the importance of each compartment is evaluated based on the number of
interacted proteins in this compartment. This is because the very different roles played by different compartments in
cell activities. Besides, some compartments are more important than others. Based on the evaluated compartments,
the interactions between proteins are scored and the weighted PPl networks are constructed. Second, the known
disease genes are extracted from OMIM database as the seed genes to expand disease-specific networks based on the
weighted networks. Third, the weighted values between a protein and its neighbors in the disease-related networks
are added together and the sum is as the score of the protein. Last but not least, the proteins are ranked based on
descending order of their scores. The candidate proteins in the top are considered to be associated with the diseases
and are potential disease-related proteins. Various types of data, such as type 2 diabetes-associated genes, subcellular
localizations and protein interactions, are used to test PDMG method.
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Conclusions: The results show that the proteins/genes functionally exerting a direct influence over diabetes are
consistently placed at the head of the queue. PDMG expands and ranks 445 candidate proteins from the seed set
including original 27 type 2 diabetes proteins. Out of the top 27 proteins, 14 proteins are the real type 2 diabetes
proteins. The literature extracted from the PubMed database has proved that, out of 13 novel proteins, 8 proteins are

associated with diabetes.

Background

Diabetes mellitus (often also known as diabetes) is a set
of metabolic disorders. The latest data from World Health
Organization (WHO) (http://www.who.int/diabetes/en/)
shows that 9 % of adults worldwide are affected with dia-
betes. In 2012, 1.5 million people died of the disease.
WHO points out that diabetes will become the No. 7
pestilence of threatening the human survival in 2030. It
is estimated that America spent $245 billion treating dia-
betes in 2012 (http://www.diabetes.org/). Among these
costs, $176 billion is directly allocated for medical expen-
ditures, while the remaining funding is used for increas-
ing productivity. Therefore, Diabetes mellitus has evoked
great concern in the public health.

In diabetes mellitus, blood sugar levels cannot be rea-
sonably adjusted by the body [1]. For a person with
diabetes, the pancreas fails to make sufficient insulin,
improperly uses the insulin, or both. In the fast-flowing
blood, insulin and glucose work together. The former
helps the laster to come into cells of the body and pro-
duce energy. Sugar is unable to enter the cells if the insulin
does not function properly. This results in the amount of
glucose in the blood to go steadily up until generating the
high concentration of blood sugar, and causing the cells in
the lack of fuel.

Typically, diabetes can be classified into three cate-
gories: type 1 diabetes, type 2 diabetes (T2D) and ges-
tational diabetes. When beta cells in the pancreas are
destroyed and unable to produce, store, and release the
hormone insulin, type 1 diabetes(formerly known as
insulin-dependent) occurs [2]. In people with type 1 dia-
betes, the levels of the blood sugar have not been properly
controlled due to the deficient insulin production. The
patients with type 1 diabetes often have to regularly inject
insulin which help to control their blood sugar. In type 2
diabetes (referred to as non-insulin-dependent), beta cells
are able to secrete enough insulin but the body cannot
use the insulin effectively and attempts to compensate by
making a higher quantity of insulin [3], causing insulin
resistance. The production of hepatic glucose cannot be
suppressed because of hepatic insulin resistance, and the
ability to absorb peripheral glucose is impaired by periph-
eral insulin resistance. The two factors lead to fasting
and postprandial hyperglycemia. The report by World
Health Organization (WHO) reveals that 90 % of diabetics

worldwide have T2D. In the past three decades the num-
ber of persons with T2D has increased sharply in coun-
tries of all income levels (http://www.who.int/diabetes/
en/). Gestational diabetes mellitus is a condition where
women without prior history of diabetes develop glucose
intolerance and high concentration of blood sugar during
pregnancy (usually in the third trimester) [4]. Women who
had been attacked by gestational diabetes are more likely
to develop type 2 diabetes later in life. Diabetes is caused
by various factors. The inherited factors, i.e., genetically
determined abnormalities of insulin action play an impor-
tant role. The scope of metabolic abnormalities related to
variations of the insulin receptor may cover hyperinsuli-
naemia and mildly high blood sugar levels to symptomatic
diabetes [5-7]. For example, certain mutations of some
genes like HLA-DQA1, HLA-DQB1 and HLA-DRBI raise
the risk of causing type 1 diabetes. A few vital proteins
in the immune system are generated according to the
instructions from these genes [8—10]. Predicting diabetes-
associated proteins is very important to understand how
diabetes develops since most diabetes-associated varia-
tions have an impact on the function of proteins. Linkage
studies are often used to determine the genomic intervals
which are linked to the disease of interest [11]. Prioritizing
a mass of candidate genes via experimental technologies
is so expensive and time-consuming that it becomes often
impossible to detect the real disease genes by analyzing
the list of genes belonged to the interval. Consequently,
computational methods have been becoming a prominent
option to address such problems.

A lot of computational methods have been developed to
sequence and predict the most likely disease-related genes
by combining various types of data from different sources,
for instance, gene expressing profiles [12, 13], functional
annotation information [13-17] and sequence-based fea-
tures [18]. Meanwhile, huge amounts of protein-protein
interactions produced by high-throughput technologies
play an important role in the disease identification since
they offer functional information in a network environ-
ment [19]. Furthermore, the proteins coded by genes
which are linked to a specific or familiar disease pheno-
type tend to stay together and form clusters in the protein-
protein interaction network [20]. In 2006, it was reported
that exploiting protein-protein interactions brings predic-
tion of positional candidate disease genes much closer
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to the possibility. A large scale usage of PPIs can pre-
dict novel candidate proteins [21]. Many methods and
frameworks based on the protein-protein interaction net-
works have been proposed to rank or identify potential
disease candidate genes to understand genetic diseases.
For Alzheimer Disease, a list of candidate genes/proteins
are prioritized by a computational method in terms of
the public human protein-protein interaction networks
(PPINs) [22]. In the paper of Erten et al., the topological
similarity in the human PPINs is employed to priori-
tize candidate disease genes [23]. Nevertheless, using the
PPINs is a risky choice since false interactions made by
high-throughput experiments have a negative impact on
the disease gene prioritization [24—28]. In order to mit-
igate that particular risk, new methods are developed to
identify candidate disease genes or proteins via integrat-
ing biological data from other sources. In the work of
Wu et al.,, the gene expressing data are integrated with
the PPI data to identify cancer-related genes [29]. The
functional similarity of Gene Ontology is combined with
protein protein interactions (PPIs) to prioritize candi-
date cardiomyopathy genes [30]. However, these methods
neglect the fact that proteins are unable to conduct the
desired functions until they take up the correct subcellular
compartments. More specifically, a protein can interact
with another one only if they are localized at the same
subcellular compartments [31, 32].

In this article, we propose a method, i.e., Predicting Dia-
betes Mellitus Genes (PDMG), to rank candidate diabetes
mellitus genes by incorporating protein subcellular local-
ization information into the protein-protein interaction
networks. First, the protein subcellular localization data
are incorporate into the PPINs and the weighted networks
are built. Second, we collect the gene records of diabetes
from Online Mendelian Inheritance in Man (OMIM) and
extract seed genes from these records. Only the genes of
T2D are retained since the genes of other diabetes sub-
types in OMIM are rare. Then T2D-specific PPINs are
constructed by utilizing seed proteins and their inter-
acting neighbors (candidate proteins) from the weighted
PPINs. Subsequently, we compute the disease-associated
score for each protein in the T2D-specific networks and
sort them in descending order. Finally, we discuss the top
27 candidate proteins.

Methods

In this section, the PDMG method is introduced in
detail (see Fig. 1). We first give a general description of
sequencing problem of the disease genes. Subsequently,
the technology incorporating the subcellular localization
information into the PPINs is discussed. Furthermore,
we elaborate the method of building disease-specific net-
works starting from the known disease genes/proteins.
Finally, we describe the prioritizing approach of candidate
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diabetes genes/proteins based on the disease-specific
networks.

Disease gene prioritizing problem

In bioinformatics, the predicting problem of genes that
have a close relationship with complex diseases is actually
converted into node prioritization problem. The nodes
representing the candidate genes/proteins will be scored
in accordance with one or more strategies. Then the
scores are used to rank them. There is an interesting
phenomenon in the biological networks, i.e., the ‘guilt-
by-association’ principle. It depends on the assumption
that the genes/proteins leading to diseases tend to have
the similar or same properties [33]. In term of the prin-
ciple, people can extract a group of disease-causing genes
from the disease databases as the original seed proteins
and then quantify the associations between the candidate
genes and seed genes. Consequently, the candidate genes
are sorted according to the associations [13, 34].

Let D indicate a disease of interest. S is a seed gene set
in which the genes are associated with D. The candidate
protein/gene set, represented C, is mechanistically asso-
ciated with D. The sets S and C constitute the inputs of
the disease gene prioritizing algorithm. The known genes
in S related to D serve as a starting point for prioritizing
the proteins/genes in C. Next, capturing the relationships
between the genes in C and the genes in S becomes a crit-
ical step. This need to use the topological characteristics
of human PPINs. The PPINs, denoted G = (V, E, w), con-
sisting of a group of proteins V' and undirected interac-
tions E among the proteins. Meanwhile, uv € E indicates
the interaction between # € V and v € V. Due to the false
positive rate of the protein-protein interaction data, it is
necessary to assigned a weight value to each interaction
uv € E. The confidence scores represent the reliability of
the interactions between u and v.

In this article, protein subcellular localization data is
used to calculate the confidence scores between proteins.
The candidate gene products are sorted based on the
scores.

Scoring PPIs

The eukaryotic cells are elaborately organized into
functionally-distinct intracytoplasmic "inclusions" or
compartments enclosed within membranes, such as a
nucleus and other organelles. The compartments special-
ize in performing all types of biological functions. The
micro-environments have significant influence over pro-
tein functions since they control access to and availability
of various interacting proteins. In essence, the interac-
tions strongly converge among proteins which are located
in the same area of the cells(one-sided binomial test
with P < 0.001), but the degree of concentration widely
depends on the compartments [35]. For instance, the
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Fig. 1 The schematic of PDMG algorithm for sequencing candidate proteins of the disorders. Our method is mainly comprised of three steps,
building weighted PPINs, producing T2D-specific networks and prioritizing candidate proteins
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interactions between cytoplasmic proteins are 1.3-fold
converged above the threshold. Instead, the interactions
among microtubule proteins are 56-fold converged above
the threshold. This suggests that the compartment shared
by two interacting proteins in the microtubule cytoskele-
ton better explains the physical and functional interaction
than the area of the cytoplasm in which the proteins
interact [35]. The fact demonstrates that the significance
of different compartments is different in cell activities.
After investigating the associations between subcellular
localizations and PPIs, Peng et al. find that the farmer is
helpful for identifying essential proteins [36, 37]. They
give us the motivation of using subcellular localizations
to predicting candidate disease genes. Moreover, my
research suggests that over half of the T2D genes code
essential proteins. Thus, we reason that subcellular
localization information can improve the methods of
prioritizing candidate disease genes.

Peng et al. report that the significance of a compart-
ment is not out of proportion to the number of interacted
proteins in this compartment [36]. In order to score the
compartments, the number of the proteins in each com-
partment is counted. For every compartment, its score
is described as the number of interacted proteins in the
compartment, denoted by Cy, divided by the number of
proteins in the largest size compartment (consisting of the
largest number of interacted proteins), represented by Cy.
The score SC is calculated by using

Cx()
Cm

From the formulation, the value of SC ranges from 0 to
1,wherel €{1,2,...,11}.

According to the scores of compartments, the inter-
actions between proteins in the PPINs can be weighted.
The different scores of the compartments mean that some
compartment are more important than other ones. The

SC(I) = ) (1)

phenomenon leads to the importance of PPIs taken place
in different compartments should also be different.

Consider a set of compartments Loc(u) where protein u
is localized. For the two proteins of an interaction (u, v),
each protein might be annotated by multiple subcellular
localizations. It is reasonable that the interacted protein
pairs are localized at the same compartment. Therefore,
the interaction (#,v) can be annotated by the shared
compartments, i.e., SLoc(u,v) = Loc(u)()Loc(v). Fur-
thermore, the score of the interaction (u,v) is defined
as

max(SC(1)), if SLoc(u,v) # ®
SC(CN), otherwise

If SLoc(u,v) # @, the score of the interaction (u,v) is
assigned with the maximum value of score of the shared
compartments. Since the subcellular localization informa-
tion of some proteins may be missing, for the interactions
with SLoc(u,v) = @, the scores of these interactions are
assigned with the minimum value of SC(I) among com-
partments. In Eq. 2, Cy is the compartment with the
smallest size.

W(u, v) = { (2)

Disease-specific networks

The OMIM database (http://www.omim.org/) severs as
the starting point to extract an initial collection of disease-
associated genes, i.e., the seed set S. With the seed genes
and weighted PPIs, we derive a disease-specific networks
in terms of the nearest-neighbor expansion approach. In
other words, the disease-related networks consist of the
seed proteins and their direct neighbors.

Prioritizing candidate disease gene products

In this subsection, we score the proteins in the disease-
specific networks and rank them based on descending
order of their scores. In order to score every candidate
protein, we employ the weighted degree centrality (WDC)
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[38], relying on the scored disease-specific networks.
Specifically, The score of each candidate disease protein,
denoted by SPD, is computed in terms of the scored inter-
action between a protein and its direct neighbor. It can be
expressed as

Ny
SPD(u) = Z Wi, 3)

where N, refers to the set including total neighbors of
the protein # and W, , represents the weighted value of
edge between the protein  and its neighbor v. All proteins
in the disease-specific networks are ranked in descending
order of SPD.

Results and discussions

In this section, we evaluate the ability of PDMG to
rank candidate disease genes using the known T2D-
gene, subcellular localization and PPI information. The
datasets used in the experiments are first described.
Next, the diabetes-related networks are discussed. Finally,
we analyze the novel diabetes genes predicted by
PDMG.

Data sources

Known T2D genes. To form the interaction networks
linked to the disease and to detect gene-disease asso-
ciations from the networks characters, an original set
of seed genes known to be associated with the disease
is as starting point. We obtain the disease-associated
genes of T2D mellitus from OMIM. In OMIM, human
genes involved in inherited diseases are recorded in a
mini-review format. They are enclosed some information
like the gene functions, molecular pathways, and other
disease-associated information. To extract a group of
T2D-associated genes, we conduct a search of the OMIM
database and traverse each OMIM gene record where
the term “Diabetes mellitus” is consisted of the “descrip-
tion” field. As a result, 84 OMIM gene records were
retrieved. T2D-related entries are shown as Table 1. Based
on the HUGO Gene Nomenclature Committee (HGNC)
database (http://www.genenames.org/), we replace these
genes with their corresponding standard symbols and
obtain the seed proteins which correspond to these seed
genes. We get 27 proteins coded by the known T2D
genes, i.e, GPD2, NEURODI, IRS1, CAPN10, PPARG,
SLC2A2, IGF2BP2, WES1, CDKAL1, HMGALENPPI1,
GCK, TCF7L2, KCNJ11, ABCC8, MAPKSIP1, UCP3,
MTNRI1B, HNF1A, TBC1D4, IRS2, LIPC, HNFI1B,
GCGR, RETN, AKT2 and HNF4A.

Protein subcellular localizations. The protein subcellu-
lar localization data comes from the COMPARTMENTS
database [39]. The resource is obtained by integrated a
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Table 1 T2D-related gene records

Number  Gene/Locus Phenotype

1 Gpd2 Diabetes, type 2, susceptibility to

2 Neurod1 Diabetes mellitus, noninsulin-dependent

3 Irs1 Diabetes mellitus, noninsulin-dependent

4 Capn10 Diabetes mellitus, noninsulin-dependent 1

5 Pparg Diabetes, type 2

6 Slc2a2 Diabetes mellitus, noninsulin-dependent

7 Igf2bp2 Diabetes mellitus, noninsulin-dependent,
susceptibility to

8 Wfs1 Diabetes mellitus, noninsulin-dependent,
association with

9 Cdkall Diabetes mellitus, noninsulin-dependent,
susceptibility to

10 Hmgal-rs1, Diabetes mellitus, noninsulin-dependent,

Hmgal susceptibility to

11 Enpp1 Diabetes mellitus, non-insulin-dependent,
susceptibility to

12 Gek Diabetes mellitus, noninsulin-dependent,
late onset

13 Pax4 Diabetes mellitus, type 2

14 Slc30a8 Diabetes mellitus, noninsulin-dependent,
susceptibility to

15 Tcf712 Diabetes mellitus, type 2, susceptibility to

16 Kenj11 Diabetes mellitus, type 2, susceptibility to

17 Abcc8 Diabetes mellitus, noninsulin-dependent

18 Mapk8ip1 Diabetes mellitus, noninsulin-dependent

19 Ucp3 Obesity, severe, and type Il diabetes

20 Mtnrib Diabetes mellitus, type 2, susceptibility to

21 Hnfla Diabetes mellitus, noninsulin-dependent, 2

22 Pdx1 Diabetes mellitus, type Il, susceptibility to

23 Tbc1d4 Diabetes mellitus, noninsulin-dependent, 5

24 Irs2 Diabetes mellitus, noninsulin-dependent

25 Lipc Diabetes mellitus, noninsulin-dependent

26 Hnflb Diabetes mellitus, noninsulin-dependent

27 Gegr Diabetes mellitus, noninsulin-dependent

28 Retn Diabetes mellitus, noninsulin-dependent,
susceptibility to

29 Akt2 Diabetes mellitus, type Il

30 Hnf4da Diabetes mellitus, noninsulin-dependent

variety of subcellular localization evidences in terms of
high-throughput screens, manually curated annotations
and sequence-based identification with automatic text
mining for all major model organisms. In the COMPART-
MENTS database, the different compartments are labeled
as: Nucleus, Golgi apparatus, Cytosol, Cytoskeleton,
Peroxisome, Lysosome, Endoplasmic reticulum, Mito-
chondrion, Endosome, Extracellular space and Plasma
membrane.
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Protein-protein interactions. In the experiments, the
human protein-protein interactions are downloaded from
BioGrid database(Release version BIOGRID-3.2.111) [40].
The human PPINs include 16, 275 proteins and 143, 611
interactions.

T2D-specific networks

The nearest-neighbor expansion technology is used to
construct the T2D-specific protein interaction subnet-
works based on the T2D-associated proteins mentioned
above and the global PPINs weighted by subcellular local-
ization information. Here, we employ 27 known proteins
associated with T2D as the seed diabetes set. The proteins
in the weighted PPINs, interacting with the proteins in the
seed diabetes set, are pulled out and constitute the candi-
date T2D protein set. Each interaction between the seed
protein and candidate protein composes the diabetes-
interaction-set. The two types of proteins (we call them
as diabetes-protein-set) and interactions in the diabetes-
interaction-set form T2D-specific networks. In the
work, the diabetes-protein-set and diabetes-interaction-
set contains 445 human proteins and 543 interactions,
respectively.

Novel proteins predicted by PDMG

PDMG is used to calculate the relevance score for
each protein in the T2D-specific PPINs. We rank them
based on descending order of their scores. Table 2 list
top 27 T2D candidate proteins containing 14 known
T2D-associated proteins and 13 novel proteins. The 13
novel proteins are not initially retrieved from OMIM
database based on the term "diabetes mellitus". The
results show that our prioritizing technology demon-
strates very high specificity: out of 27 top-ranking pro-
teins, 14 proteins are known T2D-related proteins in
terms of OMIM annotation. Meanwhile, it can be found
that the scores of all known proteins but two ones (HNF1B
and GCK) are larger than those of other candidate pro-
teins. Furthermore, to examine PDMG?s ability to predict
novel diabetes-associated proteins, we use literature study
method to determine if the predicted proteins are asso-
ciated with diabetes. The retrieve results display that out
of 13 novel proteins, 8 proteins have been proved to
be diabetes-related proteins by literature in the PubMed
database (http://www.ncbi.nlm.nih.gov/pubmed). The 8
novel proteins are presented as follows.

CREBBP #15

Rende et al. find that CREB binding protein (CREBBP)
plays suggestive roles in linking Type 2 diabetes [41]. Their
study reveals that heterozygous CREBBP defect leads to
raised effects of hormones like leptin and adiponectin,
insulin resistance and preventing obesity. Manabe et al.
observe that the mRNA expression of CREBBP is reduced
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in the uteri of ovariectomized STZ-treated diabetic mice
[42]. A recent literature report [43] shows that, compared
with healthy conditions, the expressing of histone acetyl-
transferases CREBBP in latent autoimmune diabetes in
adults patients is downregulated.

ESR1 #16

Linner et al. conclude that the rs2207396 mutation in
ESR1 suggests the risk of type 2 diabetes in hypogonadal
men [44]. By investigating the relationship between sin-
gle nucleotide polymorphisms (SNPs) of the candidate
gene and the quantitative traits related to metabolic syn-
drome in Han Chinese type 2 diabetes, Wei et al. [45] find
that Rs722208 of ESR1 is associated with fasting plasma
glucose (FPG)(P = 0.045).

AKT1 #17

Devaney et al. [46] report that AKT1 is a risk factor
for metabolic syndrome and insulin resistance which is
one of the five essential endophenotypes linked to T2D.
Hami et al. find a significant bilateral downregulation of
AKT1 gene expression in the hippocampus of pups born
to diabetic mothers [47].

NRF1 #18

By researching defect of Nuclear factor-erythroid 2-
related Factor 1 (NRF1) in beta-cells, Zheng et al. discover
that Nrfl acts as an essential regulator of mitochon-
drial function, glucose metabolism and insulin secretion
[48]. Specifically, Nrfl inactivation in beta-cells results in
a pre-T2D phenotype because of impairment of insulin
secretion and disruption of glucose metabolism [48]. In
the study from Hirotsu et al., Nrfl over-expression has a
negative impact on both glucose utilization and produc-
tion in the liver by suppressing the genes related to both
glycolysis and gluconeogenesis [49].

PCBD1 #19

The findings from Ferre et al. suggest that a PCBD1 defi-
ciency may cause hypomagnesemia and diabetes [50].
Simaite et al. observe an abundant expression of Pcbdl
in the developing pancreas of both mouse and Xenopus
embryos [51]. The genetic evidence obtained by them
displays that PCBD1 variations can lead to early-onset
nonautoimmune diabetes with characteristics like domi-
nantly inherited HNF1A-diabetes.

YWHAB #22

YWHAB interacts with GCGR, a type 2 diabetes-
related protein. To examine the effect of YWHAB on
GCGR function, Han et al. investigate glucose produc-
tion in primary mouse hepatocytes. They discover that
YWHARB is overexpressed in mouse hepatocytes. In other
words, YWHAB inhibits glucose production [52]. Stud-
ies show that YWHAB may plays a critical role in glucose
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Table 2 Top 27 rank-ordered T2D relevant proteins
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Rank Protein Score Description Diabetes relevance

1 PPARG 85.83 peroxisome proliferator activated Known
receptor gamma, 12D, susceptibility to

2 HMGA1 63.99 high mobility group AT-hook 1, Diabetes, Known
noninsulin-dependent, susceptibility to

3 HNF4A 60.08 hepatocyte nuclear factor 4 alpha, Known
Diabetes mellitus, noninsulin-dependent

4 IRS1 4512 insulin receptor substrate 1, Diabetes, Known
noninsulin-dependent

5 HNFTA 2421 HNF1 homeobox A, Diabetes, Known
noninsulin-dependent, 2

6 AKT2 23.28 v-akt murine thymoma viral Known
oncogene homolog 2, Diabetes, type II

7 TCF7L2 20.03 transcription factor 7 like 2, Known
Diabetes, type 2, susceptibility to

8 IGF2BP2 17.77 insulin like growth factor 2 Known
mRNA binding protein 2, Diabetes,
noninsulin-dependent, susceptibility to

9 MAPK8IP1 14.52 mitogen-activated protein kinase 8 Known
interacting protein 1, Diabetes,
noninsulin-dependent

10 IRS2 12.78 insulin receptor substrate 2, Known
Diabetes, noninsulin-dependent

11 NEUROD!1 7.03 neurogenic differentiation 1, Known
Diabetes, noninsulin-dependent

12 UBC 6.52 ubiquitin C Novel

13 HNF1B 6 HNF1 homeobox B, Diabetes, Known
noninsulin-dependent

14 EP300 4 E1A binding protein p300 Novel

15 CREBBP 4 CREB binding protein Novel

16 ESR1 347 estrogen receptor 1 Novel

17 AKT1 3.02 v-akt murine thymoma Novel
viral oncogene homolog 1

18 NRF1 3.02 NFKB repressing factor Novel

19 PCBD1 3 pterin-4 alpha-carbinolamine dehydratase 1 Novel

20 SP1 3 Sp1 transcription factor Novel

21 HDAC4 3 histone deacetylase 4 Novel

22 YWHAB 249 tyrosine 3-monooxygenase/tryptophan Novel
5-monooxygenase activation protein beta

23 EGFR 247 epidermal growth factor receptor Novel

24 GCK 245 glucokinase, Diabetes, noninsulin-dependent, Known
late onset

25 ELAVL1 245 ELAV like RNA binding protein 1 Novel

26 APP 2.29 amyloid beta precursor protein Novel

27 SUMO2 2.01 small ubiquitin-like modifier 2 Novel
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metabolism. YWHAB actually regulates the activity of
ChREBP (glucose responsive transcription factor), car-
bohydrate response element-binding protein, which has
important influence on the glucose-mediated induction of
proteins associated with hepatic glycolysis and lipogenesis
[53]. Besides, YWHAB also controls the activity of AKT,
which mediates insulin signaling [54].

EGFR #23

Chen et al. suggest that EGFR (epidermal growth fac-
tor receptor) mediates TGF-b-induced renal fibrosis and
is inhibited by the EGFR inhibitor, erlotinib, in STZ-
induced diabetic mice [55]. More recently, they also
report the resistance of podocyte-specific EGFR knockout
mice to the development of diabetes-associated podocyte
damage [56].

SUMO2 #27

The transcriptional activity of T and B cells is negatively
regulated by the mouse SUMO2 [57, 58]. The mouse
SUMO?2 in T cells is overexpressed, which inhibits the
production of both Thl and Th2 cytokines [57, 58]. This
means that the mouse SUMO2 plays a more complex role
in the progression of autoimmune diabetes. The early lit-
erature [59] also shows that SUMO is related to NF-kB
activation and may thus be linked to type 1 diabetes with
apoptosis in pancreatic beta cells.

Conclusions

With the available PPI data increasing rapidly, a unprece-
dented opportunity for predicting disease-associated
genes/proteins at the network level is appear. The PPINs
have been widely adopted by many state of the art algo-
rithms to address the gene prioritization problem. They
are based on the principle that the genes/proteins caus-
ing similar diseases tend to cluster together in the net-
work. However, the high false positive rates and false
negative rates of the available PPI data have a negative
influence on the accuracy of methods identifying dis-
ease genes/proteins only by the topological properties
of the networks. To improve the prediction, researchers
develop all kinds of new approaches to predict candi-
date disease genes via combining other data from dif-
ferent sources with PPINs. But these methods neglect
an obvious fact proteins don’t perform their desired
functions unless they are localized at the appropriate sub-
cellular compartments. In this work, subcellular localiza-
tion data are integrated with PPINs. The combination is
achieved by building disease-specific PPINs and employ-
ing them in the prioritization. Specifically, OMIM is used
to obtain seed genes/proteins of type 2 diabetes. With
these seed proteins, we produce T2D-specific PPINs from
the weighted PPINs based on the nearest-neighbor expan-
sion approach. And then the scores of candidate T2D
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proteins are calculated by WDC method. Finally, we rank
the proteins based on descending order of their scores.

In order to prove PDMG’s ability to predict potential
disease-related proteins, we employ the literature review
method to analyze the novel proteins/genes predicted
by PDMG. The results show that PDMG has predicted
13 novel proteins in top 27 candidate proteins. Out of
the 13 novel proteins, 8 proteins CREBBP, ESR1, AKT1,
NRF1, PCBD1, YWHAB, EGFR, SUMO2 are associated
with diabetes in literature. The evidences display that the
8 novel proteins are recovered from the interaction data
and subcellular localization information analysis although
they are not retrieved from OMIM database. Therefore,
PDMG method can make up for the false negatives (to
an extent) of PPINs. Besides, according to the ranked
candidate proteins, one may gain many new biological
suppositions about the new protein functions in the con-
text of protein interaction networks out of scope of this
work.
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