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Abstract

Background: Comparative genomics methods enable the reconstruction of bacterial regulatory networks using
available experimental data. In spite of their potential for accelerating research into the composition and evolution
of bacterial regulons, few comparative genomics suites have been developed for the automated analysis of these
regulatory systems. Available solutions typically rely on precomputed databases for operon and ortholog
predictions, limiting the scope of analyses to processed complete genomes, and several key issues such as the
transfer of experimental information or the integration of regulatory information in a probabilistic setting remain
largely unaddressed.

Results: Here we introduce CGB, a flexible platform for comparative genomics of prokaryotic regulons. CGB has few
external dependencies and enables fully customized analyses of newly available genome data. The platform
automates the merging of experimental information and uses a gene-centered, Bayesian framework to generate
and integrate easily interpretable results. We demonstrate its flexibility and power by analyzing the evolution of
type lll secretion system regulation in pathogenic Proteobacteria and by characterizing the SOS regulon of a new
bacterial phylum, the Balneolaeota.

Conclusions: Our results demonstrate the applicability of the CGB pipeline in multiple settings. CGB's ability to
automatically integrate experimental information from multiple sources and use complete and draft genomic data,
coupled with its non-reliance on precomputed databases and its easily interpretable display of gene-centered
posterior probabilities of regulation provide users with an unprecedented level of flexibility in launching
comparative genomics analyses of prokaryotic transcriptional regulatory networks. The analyses of type Il secretion
and SOS response regulatory networks illustrate instances of convergent and divergent evolution of these
regulatory systems, showcasing the power of formal ancestral state reconstruction at inferring the evolutionary
history of regulatory networks.
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Background
Transcriptional regulation is the dominant mechanism
for regulation of gene expression in bacteria [1, 2]. Tran-
scription factors (TFs) bind promoter regions in
sequence-specific manner and can either hinder or pro-
mote transcription of target operons containing genes
expressed from a shared promoter [2, 3]. Given prior
knowledge on the binding specificity of a transcription
factor, genomic sequence data can be leveraged to iden-
tify putative target sites and reconstruct the transcrip-
tional network, or regulon, under control of a given
transcription factor [4, 5]. In theory, this provides the
means to elucidate the transcriptional regulatory net-
works they encode, yielding insights into the molecular
mechanisms used by bacteria to orchestrate and coord-
inate diverse physiological processes. In practice, how-
ever, the short and degenerate nature of TF-binding
patterns, or motifs, leads to high false positive rates in
genome-wide searches, limiting their applicability [6].
Comparative genomics methods for bacterial regulon
reconstruction exploit the notion that only functional
TF-binding sites should be preserved across substantial
evolutionary spans. Hence, the identification of a con-
served TF-binding site in the promoter region of two or
more orthologous operons should intuitively bolster our
confidence in its prediction as a functional element
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[7-9]. In spite of its applicability and potential, few inte-
grated frameworks have been developed to automate
comparative genomics analyses of bacterial regulatory
networks using available motif information [10, 11]. Fur-
thermore, several formal and practical aspects of the
comparative genomics pipeline remain largely unad-
dressed. For instance, currently available solutions rely
on precompiled databases to predict orthologous op-
erons [12], precluding their use on the vast amount of
genomic sequence data representing newly discovered
bacterial clades [13-16]. Similarly, formal methods to
define what constitutes a functional TF-binding site pre-
diction, and the integration of such predictions across
multiple genomes to define what constitutes a conserved
binding site, have not been implemented in available
tools [17, 18]. Other issues concern the automated inte-
gration of multiple sources of experimental information
and the generation of interpretable probabilistic results
for gene regulation in the light of operon reorganization
[19]. Here we present CGB, an integrated pipeline for
comparative genomics of bacterial regulatory networks
with minimal external dependencies that provides a flex-
ible environment for comparative genomics analyses
while introducing a formal probabilistic framework for
the integration and interpretation of analysis results. We
showcase essential features of CGB through the analysis
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of HrpB-mediated type III secretion system regulation
and in the discovery and validation of a novel TEF-
binding motif in the Balneolaeota SOS response.

Results and discussion

A flexible platform for comparative reconstruction of
bacterial regulons

CGB implements a complete computational workflow
for the comparative reconstruction of bacterial regulons
using available knowledge of TF-binding specificity
(Fig. 1). Execution starts with the read-in of a JSON-
formatted input file. This file contains the NCBI protein
accession number and list of aligned binding sites for at
least one transcription factor instance, accession num-
bers for chromids [20] or contigs mapping to one or
more target species, and several configuration parame-
ters. Reference TF-instances are used to detect orthologs
in each target genome and a phylogenetic tree of TF in-
stances is generated. The tree is used to combine avail-
able TF-binding site information into a position-specific
weight matrix (PSWM) for each target species. Operons
are predicted in each target species and promoter re-
gions are scanned to identify putative TF-binding sites
and estimate their posterior probability of regulation.
Groups of orthologous genes are predicted across target
species and their aggregate regulation probability is esti-
mated using ancestral state reconstruction methods.
CGB outputs multiple CSV files reporting identified
sites, ortholog groups, derived PSWMs and posterior
probabilities of regulation, as well as plots depicting
hierarchical heatmap and tree-based ancestral probabil-
ities of regulation. The following sections describe the
novel strategies used to implement the different compo-
nents of this computational workflow in order to gener-
ate an efficient and highly customizable comparative
genomics platform.

Gene-centered, species-specific regulon reconstruction
Previous approaches to regulon reconstruction have fo-
cused on the operon as the fundamental unit of regula-
tion [10, 11]. This poses problems for both analysis and
reporting due to the frequent reorganization of operons.
It is well known, for instance, that after an operon split,
genes in the original operon may be regulated by the
same transcription factor through independent pro-
moters [2, 3, 21]. CGB uses instead a gene-centered
framework, wherein operons become logical units of
regulation, but the comparative analysis and reporting of
regulons is based on the gene as the fundamental unit of
regulation. This enables a rapid assessment of the regu-
latory state of each gene, while providing the user with
detailed information on the operon setup in each
organism.
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Experimental information on TF-binding specificity is
often available in different reference bacterial species,
yet the problem of how to transfer and combine this in-
formation to target species in a comparative genomics
analysis remains largely unaddressed. TF-binding motif
information can be transferred across species, but the ef-
ficacy of this process decays with evolutionary distance
[19]. CGB takes in prior knowledge in the form of a list
of TF instances (NCBI protein accessions) in different
bacterial strains, together with reported (or inferred) TF-
binding sites for each of these TF instances. The collec-
tions of TF-binding sites for each TF instance must be
aligned, so that the resulting motifs have the same di-
mensions (i.e. compatible PSWMs). This alignment can
be performed manually by the user, or using dedicated
tools [22]. CGB automates the transfer of TF-binding
motif information from multiple sources across target
species. CGB estimates a phylogeny of the reference and
target TF orthologs, and uses the inferred distances be-
tween reference and target species to generate a
weighted mixture PSWM in each target species, follow-
ing the weighting approach used in CLUSTALW [23].
This provides a principled and reproducible approach
for the dissemination of TF-binding motif information,
forgoing the need to manually adjust inferred collections
of TF-binding sites in each target organism [10].

Promoter scoring and probabilistic framework
The frequency information in a PSWM can be trans-
formed into a position-specific scoring matrix (PSSM)
and used to identify TF-binding sites in genomic se-
quences. The use of a PSSM score cut-off for predicting
putative TF-binding sites in promoter regions has long
been the de facto standard in regulon analysis [8—10, 24,
25]. However, this approach is not well-suited for the
comparative genomics framework, because thresholds
may often need to be tuned in different bacterial ge-
nomes owing to their particular distribution of oligo-
mers [6]. To circumvent this problem, here we adopt a
Bayesian probabilistic framework originally developed
for regulon analysis in metagenomic sequences [26].
This framework estimates posterior probabilities of regu-
lation that are easily interpretable and directly compar-
able across species.

For each position i of a promoter region, we first com-
bine the PSSM scores obtained in the forward (f) and re-
verse (r) strands using the function [26]:

PSSM(S,) — 10g2 <2PSSM(S{) . 2PSSM(S;)) (1)

To estimate the posterior probability of regulation of a
promoter, we define two distributions of PSSM scores
within a promoter region. In a promoter not regulated
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by the TF, we expect a background distribution of scores
(B). We approximate this distribution using a normal
distribution parametrized by the statistics of PSSM
scores in promoters genome-wide:

B~ N(/"G7 UZG) (2)

In a promoter regulated by the TF, however, we expect
that the distribution of PSSM scores (R) be a mixture of
both the background distribution (B) and the distribu-
tion of scores in functional sites. The latter can be ap-
proximated with a normal distribution parametrized by
the statistics of the TF-binding motif (M):

R~ ocN(,uM, 012\,[) + (1—a)N(/4G, GZG) (3)

The mixing parameter « is a prior that corresponds to
the probability of a functional site being present in an
average-length regulated promoter and can be easily esti-
mated from experimental data. Bacterial transcription fac-
tors regulate most of their target genes by binding to a
given number of sites in the promoter region, and the
average length of the promoter region in a given organism
can be readily approximated as the average intergenic dis-
tance between the first genes in opposing directons. For a
transcription factor known to typically bind one site per
regulated promoter, and an estimated average promoter
length of 250 bp, we obtain a = 1/250 = 0.004. This results
in a mixture distribution for the regulated promoter (R)
drawing predominantly (99.6% of the time) from the back-
ground distribution of scores (B).

For any given promoter, we can define the posterior prob-
ability of regulation P(R|D) given the observed scores (D):

P(DIR)P(R)
P(D)
P(D|R)P(R)

~ P(DIR)P(R) + P(D|B)P(B) )

P(R|D) =

Assuming independence among the scores at each
promoter position, the likelihood functions can be esti-
mated for a given score s; using the density function of
the R and B distributions defined above:

P(DIR) = [T L(silaN (uar, 031) + (1-0)N (s, 05))

(5)
P(D|B) = [[ L(siIN (ug. o)) (6)

The priors P(R) and P(B) can be inferred from the ref-
erence collections. P(R) can be approximated as the
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number of known regulated promoters in a reference
genome, divided by the total number of operons, and
P(B) is trivially 1-P(R). Alternatively, the number of reg-
ulated promoters can be estimated from the information
content of the species-specific TF-binding motif [6, 27].

Operon prediction

Operon prediction remains a challenging problem in
bacterial genomics [28]. Available comparative genomics
platforms rely on curated operon databases to improve
accuracy, but this limits their applicability to a prese-
lected set of complete bacterial genomes [10, 11]. To en-
able analyses including newly sequenced, complete or
incomplete bacterial genomes, CGB implements a two
tiered operon prediction sequence. Intergenic distance is
an effective and widely-used predictor of operons. Genes
pairs in a same directon (adjacent in the same orienta-
tion with no intervening genes in the opposite strand)
are considered to belong to an operon if their intergenic
distance is below a pre-stablished threshold [29-31]. Be-
cause different genomes can have different coding dens-
ities, CGB defines this threshold in an adaptive manner
as the average intergenic distance in all directons within
a given genome. We benchmarked this approach using
experimental operon data from the ODB database for
six bacterial species (Fig. 2), revealing that dynamically
adapting the threshold to each bacterial genome signifi-
cantly enhances the prediction accuracy.

When reconstructing regulons through comparative
genomics, errors in operon prediction can yield two dif-
ferent scenarios: an operon may be split and regulation
for some of its genes hence not properly detected, or
spurious genes may be incorporated into an operon and
their regulation inaccurately predicted. To circumvent
this problem CGB predicts operons using a conservative
threshold to minimize undesired operon splits (Fig. 2). It
then scans the upstream region of all genes to detect any
genes within a predicted operon harboring a high-
scoring TF-binding site. This is defined as a site scoring
above a PSSM score threshold that satisfies the equality
between the negative logarithm of the false positive rate
(FPR) and the information content of the TF-binding
motif [32]. In such cases, the operon is split on the gene
with the identified high-scoring site. This allows recover-
ing relevant regulation information for genes that may
have inaccurately included within an operon in the ini-
tial prediction.

Ortholog detection and ancestral state reconstruction

Ortholog detection remains a challenging, computationally-
intensive problem in bioinformatics [33]. Available com-
parative genomics platforms make use of precompiled
ortholog sets [10, 11], but this restricts the range of bacter-
ial species that can be analyzed. To provide the user with
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greater flexibility, CGB implements automated detection of
orthologous groups in the species under analysis. Ortholo-
gous genes are detected as reciprocal best BLAST hits for
each pair of species using tBLASTX with default parame-
ters and a 10™'° cutoff e-value. Pairwise reciprocal BLAST
hits are used to generate a graph where vertices correspond
to gene products and edges denote best reciprocal BLAST
hit relationships, and orthologous gene groups are detected
as cliques in the graph [34]. Crucially, regulon reconstruc-
tion through comparative genomics does not require that
all orthologs groups across target species be identified.
CGB limits ortholog detection to those genes present in op-
erons with a posterior probability of regulation higher than
a user-specified cut-off in any of the target species. This
dramatically reduces the complexity of the ortholog detec-
tion step, enabling it to be performed in real time.
Integrating the regulon information inferred from each
target genome is a critical step in comparative genomics
in order to generate insights on the overall makeup of
the regulon and its evolutionary history. A common rule
of thumb in many comparative genomic analyses has
been to assume that the detection of putative TE-
binding sites in the promoter region of orthologous op-
erons from two or more sufficiently divergent genomes
represents strong evidence of regulation [7-9]. More re-
cently, comparative regulon reconstruction has been for-
mally recast as an ancestral state reconstruction
problem, wherein one seeks to infer the likelihood of
regulation for a given operon on a phylogenetic tree
[18]. CGB implements this approach through bootstrap-
ping ancestral state reconstruction for any given gene on
a phylogenetic tree of TF instances. For each bootstrap

replicate, CGB assigns discrete regulated (s;) or non-
regulated (so) states to each target species by sampling
randomly according to the inferred posterior probability
of regulation. If the species does not encode an ortholog
for the given gene, the absent (s,) state is assigned. CGB
then uses BayesTraits to infer the discrete regulation
states on ancestral nodes for each bootstrap replicate
[35]. These inferred ancestral states are averaged over all
bootstrap replicates to obtain ancestral posterior prob-
abilities of regulation.

Comparative analysis of the LexA regulatory network in
gram-positive bacteria

The SOS response is a transcriptional regulatory net-
work that responds to DNA damage and activates the
expression of genes to address DNA lesions and their ef-
fects. The SOS response was first described in Escheri-
chia coli, where it was shown to regulate over 40 genes
involved in three primary functions: DNA repair, inhib-
ition of cell division and translesion synthesis [36, 37].
DNA damage is sensed by the recombination protein
RecA, which can promote the autocatalytic cleavage and
inactivation of the transcription factor LexA, leading to
de-repression of its target genes [36, 38]. Later research
has shown that the SOS response is widespread in bac-
teria but, in contrast with other regulatory networks,
multiple LexA-binding motifs have been reported in dif-
ferent bacterial phyla [39]. Both the binding motif and
the regulatory network for LexA have been amply docu-
mented the Actinobacteria and the Firmicutes [40—44],
providing an ideal test case for assessing the perform-
ance of CGB. We performed a comparative analysis of
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the LexA regulon across seven bacterial species: five for
which the SOS response has been reported (Corynebac-
terium glutamicum ATCC 13032, Bacillus subtilis 168,
Staphylococcus aureus NCTC 8325, Listeria monocyto-
genes EGD-e and Mpycobacterium tuberculosis H37Rv)
and two related species where the SOS response remains
uncharacterized (Leifsonia xyli CTCBO07, Acidothermus
cellulolyticus 11B).

In agreement with previous reports [9], our analysis
reveals that the core SOS regulon in Gram-positive bac-
teria encompasses the LexA and RecA proteins, as well
as error-prone polymerases, a radical SAM protein and a
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cell-division inhibitor (Fig. 3). The plot also illustrates
how CGB distributes the available experimental informa-
tion on TF-binding motifs across all target species, gen-
erating phylogenetically weighted mixture motifs that
smooth out motifs with low experimental support. We
assessed the accuracy of CGB at determining the regula-
tory state of target genes using the predicted posterior
probability of regulation in different reference species.
Our results show that, among genes predicted to be reg-
ulated in at least one species, the posterior probability
generates sharp distinction between regulated and non-
regulated genes, yielding accuracy across a broad range
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of thresholds. Analysis of the prediction accuracy for in-
dividual genes reveals that there is a consistent positive
correlation (0.33 + SD 0.08; Spearman correlation coeffi-
cient) between true positives in individual species and
the number of species in which the gene was predicted
to be regulated, supporting the fundamental assumption
that conservation of regulatory elements is indicative of
functionality.

Analysis of type Il secretion system regulation by HrpB/
HrpX

Regulation of the bacterial type III secretion system
(T3SS) has been described as mediated by the orthologous
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transcription factors HrpX (Xanthomonas oryzae) and
HrpB (Ralstonia solanacearum) [45, 46]. In both systems,
this TF has been shown to regulate the expression of
genes governing the assembly of the T3SS apparatus and
several of the effectors that these pathogenic bacteria
translocate into host cells. Here we used experimental TF-
binding motif from Xanthomonas and Ralstonia species
available in the CollecTF database (Fig. 4a) to analyze the
evolution of this regulatory network in several groups of
pathogenic bacteria harboring HrpB/X orthologs. This is
accomplished by first propagating the experimental motif
among all target species (Fig. 4b), and then performing the
comparative analysis.
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sites indicated. b Weighted mixture motifs generated by CGB on different target species following the HrpB/X-based phylogenetic tree. ¢ Partial
view of the CGB-generated heatmap depicting the HrpB/X regulon across 37 complete bacterial genomes encompassing members of the
Comamonadaceae, Burkholderiaceae, Oxalobacteraceae and Xanthomonadaceae families. Each row represents an orthologous group, sorted by
average posterior probability of regulation. Cells are colored from green (regulation) to red (no regulation); blue denotes ortholog absence.
Colored circles next to species names indicate propagated motif (panel B) used in the genome search for the species. d Bootstrapped ancestral
state reconstruction of the posterior probability of regulation for virulence regulator Phrl
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The results (Fig. 4c) reveal that the only elements of
the HrpB/X regulon conserved across all the species an-
alyzed are the members of the two core operons that de-
fine the structural elements of the type III secretion
system. Beyond this core HrpB/X regulon, the analysis
(Fig. 4c) shows the divergent uptake of different effectors
and chaperones in Ralstonia, Burkholderia and Xantho-
monas species, indicating that the core T3SS effectome
under HrpB/X regulation in each of these genera di-
verged soon after each obtained its T3SS module, pro-
viding specialized functions in each group [47]. This
divergent uptake can be traced to specific lineages
through ancestral state reconstruction (Fig. 4d), as in the
case of the Ralstonia genus for the virulence regulator
PrhI [48]. Our results showcase the ability of CGB to
automatically ~disseminate experimental TF-binding
motif information among target species in a principled
manner (Fig. 4a&b), to use all available sequence files for
any given genome (multiple chromosomes and plas-
mids), to highlight the core elements of a transcriptional
regulatory network spanning multiple bacterial orders
(Fig. 4c), and to provide a formal inference of the ances-
tral state of regulation for any given gene (Fig. 4d).

Reconstruction of the SOS response network in the
Balneolaeota phylum

Metagenomic, single-cell and systematic large-scale gen-
omic sequencing studies have uncovered the existence
of several new major bacterial phyla [13-16]. Genomic
data corresponding to these phyla is often only available
as whole-genome shotgun assemblies and is hence not
amenable to comparative genomics studies using avail-
able platforms that rely on precompiled complete gen-
ome datasets. The Balneolaeota phylum comprises
several genera of halotolerant bacteria, but there is scant
experimental information on their physiology [49]. Here
we coupled motif discovery with comparative genomics
using CGB to reconstruct the LexA regulon of the Bal-
neolaeota. Motif discovery (Fig. 5a) was performed on
the promoter regions of Balneolaeota LexA homologs
with MEME, and the resulting motif was used as input
for CGB analysis without phylogenetic weighting. After
performing the comparative analysis of the putative
LexA regulon across all species with available genome
sequence in the Balneolaeota phylum (Fig. 5b), we vali-
dated in vitro predicted LexA-binding sites in the pro-
moter region of all genes with orthologs in at least six of
the seven species analyzed and presenting an average
inter-species posterior probability of regulation above
0.5 (Fig. 5c). The resulting EMSAs on Balneola vulgaris
and Rhodohalobacter halophilus promoters (Fig. 5c) re-
veal that all the predicted LexA-regulated promoters are
bound by LexA. The high precision illustrates the useful-
ness of leveraging the comparative genomics approach

Page 8 of 11

implemented in CGB to boost the accuracy of in silico
prediction of TF-regulated genes on individual genomes.

Our results (Fig. 5b) reveal that the Balneolaeota LexA
protein binds a novel direct repeat motif with consensus
sequence TTACACATATTTTWTACATA (Fig. b5a;
Additional File 1). In spite of substantial operon re-
arrangement, the Balneolaeota LexA regulon encodes a
SOS response network encompassing the LexA repressor
and the inducer of the system (RecA), as well as several
translesion synthesis polymerases (polymerases IV and
V), a helicase, a radical SAM protein and a predicted
SOS peptidase [50] (Fig. 5¢). These results represent the
first description of the LexA regulon in the Balneolaeota
phylum, reinforcing the notion that translesion synthesis
is the primary role of the SOS response and that this
system has convergently evolved to regulate error-prone
polymerases following drastic changes to the LexA-
binding motif [51]. They also illustrate the complex evo-
lutionary history of the LexA protein, which appears to
have independently evolved in several instances the abil-
ity to recognize a direct repeat motif structure, as op-
posed to the canonical palindromic LexA-binding motif
[51-53]. This example illustrates the ability of CGB to
leverage draft genome sequence data to infer regulons in
novel phyla, and to operate in tandem with comparative
motif discovery methods, using a single instance of the
inferred TF-binding motif uniformly distributed across
target species.

Conclusions

Comparative genomics is a powerful method to infer the
composition and evolutionary history of prokaryotic
transcriptional regulatory networks. The pipeline re-
ported here, CGB, automates the comparative genomics
analysis under a formal Bayesian probabilistic frame-
work, enabling the use of ancestral state reconstruction
to infer the evolutionary make up of TRNs. The system
also enables automated integration of multiple sources
of experimental information, forsaking the need to
manually port TF-binding motif information. By
means of a dynamic operon prediction algorithm and
real-time ortholog detection, CGB enables users to
analyze any record of draft and complete genomic
data available in the NCBI GenBank and RefSeq data-
bases, providing an unparalleled degree of flexibility
for this type of comparative analyses. The lack of reli-
ance on external databases, such as operon databases,
makes CGB resilient to unexpected downtimes on
third-party systems, with the exception of NCBI ser-
vices. The results reported for two transcriptional
regulatory different systems showcase the flexibility of
CGB and provide evidence of convergent and diver-
gent evolution in regulatory networks.
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Materials and methods

CGB platform

CGB is a Python library for comparative genomics of
transcriptional regulation in prokaryotes. It is written
entirely in Python 2.7 using the object-oriented pro-
gramming paradigm and deployed as a conda virtual en-
vironment (Continuum Analytics). CGB is freely
available under a GPL license on GitHub [54]. CGB ex-
ternal requirements are Clustal Omega [55], NCBI
BLAST+ [56] and BayesTraits [35].

Motif data and motif discovery

Collections of experimentally-validated TF-binding sites
for HrpB and HrpX were downloaded from the CollecTF
database [57]. HrpB orthologs in Proteobacteria and
LexA orthologs in the Balneolaeota phylum were de-
tected as best reciprocal BLAST hits using, respectively,
the Ralstonia solanacearum HrpB protein [WP_
011004170.1] and the Verrucomicrobium spinosum DSM
4136 LexA protein [WP_009959117] as a queries and a
cut-off e-value of 10™°. The upstream regions (- 250, +
50bp from predicted translational start site) of genes
coding for identified LexA orthologs were downloaded
from the NCBI GenBank database and input to MEME
for motif discovery using the any number of repetitions

(ANR) site distribution and motif width limits of 10—22 bp.
CGB configuration files for the analyses here reported are
provided as supplementary material (Additional File 2).

Protein purification and electro-mobility shift assays

The Balneola vulgaris DSM 17893 lexA gene [B155_
RS0104985] was synthesized by ATG:biosynthetics
GmbH, Germany, subcloned into the pUA1108 vector
[58] and overexpressed in E. coli BL21-CodonPlus
(DE3)-RIL (Stratagene) cells. The resulting LexA His-
tagged protein was purified following a previously de-
scribed protocol [52]. Electro-mobility shift assays
(EMSA) were performed using 100 bp-long DNA probes
(Additional File 3). Probes were generated using two
complementary synthetic oligonucleotides centered on
predicted LexA-binding sites and performing PCR with
M13 forward and reverse digoxigenin-labeled oligos, as
described previously [59]. EMSAs were carried out on a
mixture containing 20ng of each digoxigenin-marked
DNA probe and 40 nM of purified LexA protein [60].
Samples were loaded onto 6% non-denaturing Tris-
glycine polyacrylamide gels and digoxigenin-labeled
DNA -protein complexes were detected using the manu-
facturer’s protocol (Roche NimbleGen).
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