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Abstract 

Background  The cellular origin of hypopharyngeal diseases is crucial for further diagnosis and treatment, 
and the microenvironment in tissues may also be associated with specific cell types at the same time. Normal 
adjacent tissues (NATs) of hypopharyngeal carcinoma differ from non-tumor-bearing tissues, and can influenced 
by the tumor. However, the heterogeneity in kinds of disease samples remains little known, and the transcrip-
tomic profile about biological information associated with disease occurrence and clinical outcome contained in it 
has yet to be fully evaluated. For these reasons, we should quickly investigate the taxonomic and transcriptomic 
information of NATs in human hypopharynx.

Results  Single-cell suspensions of normal adjacent tissues (NATs) of hypopharyngeal carcinoma were obtained 
and single-cell RNA sequencing (scRNA-seq) was performed. We present scRNA-seq data from 39,315 high-quality 
cells in the hypopharyngeal from five human donors, nine clusters of normal adjacent human hypopharyngeal cells 
were presented, including epithelial cells, endothelial cells (ECs), mononuclear phagocyte system cells (MPs), fibro-
blasts, T cells, plasma cells, B cells, mural cells and mast cells. Nonimmune components in the microenvironment, 
including epithelial cells, endothelial cells, fibroblasts and the subpopulations of them were performed.

Conclusions  Our data provide a solid basis for the study of single-cell landscape in human normal adja-
cent hypopharyngeal tissues biology and related diseases.

Keywords  Human hypopharyngeal carcinoma, normal adjacent tissues, Single-cell RNA sequencing, Epithelial cells, 
Fibroblasts

Background
The hypopharynx, otherwise referred to as the laryn-
gopharynx, is the lowest part of the three pharyngeal 
divisions. It is located between the upper perineal mar-
gin plane and the lower annular cartilage plane, and con-
nects downward into the esophagus. Anatomically, the 
hypopharynx is usually defined as the point at which 
the anterior part of the pharynx divides into the larynx, 
followed by the posterior pharyngeal wall, the piriform 
sinus, and the posterior annular region leading to the 
entrance of the esophagus [1]. As part of the pharynx, the 
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hypopharynx plays a primary physiologic function as a 
cavity through which food and water pass through by the 
act of swallowing [2]. The hypopharynx also has key roles 
in breathing, speech formation [3], defense protection 
and partial immune functions. As these are key func-
tions required for daily life, it is important to ensure a 
deep understanding of the hypopharynx functional path-
ways and how they may be affected by external factors. 
This understanding will also guide the optimal treatment 
protocols for diseases related to the hypopharynx. As the 
cavity that connects the external and internal environ-
ments, the hypopharynx is susceptible to different harm-
ful factors such as alcohol [4], smoke, viral infection [5] 
and medicine [6], resulting in many different diseases 
within the hypopharynx. These include pharyngitis [7], 
laryngopharyngeal reflux [8], pharyngeal emergencies 
[9] and hypopharyngeal cancers, which are usually squa-
mous cell carcinoma (SCC) and have the worst prognosis 
among head and neck cancers, with 5-year survival rates 
as low as 29% [10].

Normal adjacent tissues (NATs), also known as non-
tumor tissues, are usually considered as a control group 
in tumor-related studies. A comprehensive analysis of 
transcriptomes and genome-derived haplotype-specific 
somatic copy number alterations suggested that the NAT 
is a unique intermediate state between healthy tissue and 
tumor and may accumulate oncogenic events [11]. In the 
process of diagnosis and treatment of tumors, cancer is 
usually treated after the formation process, which leads 
to the exploration of early cancer screening indicators 
and methods has become a problem. At present, there 
are related studies on paracancerous tissues of a variety 
of cancers, including liver cancer [12], breast cancer [13], 
urinary system tumors [14], etc. It is found that the adja-
cent tissues have the characteristics of early occurrence 
of cancer, and the molecular and biochemical character-
istics of adjacent tissues are also related to the malignant 
degree of tumors and the prognosis of patients. Paracan-
cerous normal tissue-derived organoids exhibit partial 
tumor-like characteristics at the transcriptome level, but 
retain normal genomic and global DNA methylome char-
acteristics [15]. So we thought that normal tissues adja-
cent to cancer could be used to study some molecular 
changes that may occur early in cancer development.

Recent advances in single-cell genomics have provided 
avenues to explore genetic and functional heterogene-
ity at cellular resolution [16, 17]. Single-cell sequenc-
ing technology is a new technology for high-throughput 
sequencing of genomes, transcriptomes and epigenetic 
groups at the single cell level [18]. In similar cell types, 
gene expression may be heterogeneous. The use of con-
ventional transcriptome sequencing technology would 
yield the average expression levels of genes within a 

tissue [19], masking differences between individual cells, 
when the pathogenesis of disease may only be related to 
one cell type [20]. RNA sequencing provides a powerful 
approach to characterize the clonal diversity of tumor 
cells and explore the role of atypical cells in tumor devel-
opment. There is a growing belief among scientists that 
single-cell RNA sequencing can uncover the heteroge-
neity of head and neck malignancies brought about by 
changes in hypoxia, stress, epithelial differentiation [21] 
and metabolism [22]. This could promote further under-
standing of the ability of different cell types to invade and 
metastasize [23–25], and how the surrounding micro-
environments influence these processes. Previous stud-
ies have reported single-cell transcriptome analysis of 
primary and metastatic tumor ecosystems in head and 
neck cancer, particularly oral head and neck squamous 
cell carcinoma (HNSCC) tumors [25]. Several stud-
ies have also focused on the single-cell components and 
immune microenvironment of hypopharyngeal carci-
noma [26, 27]. Nonetheless, there are no reports at the 
single-cell transcriptome level for normal adjacent tissues 
to hypopharyngeal carcinoma.

Tumor microenvironment (TME), is a complex and 
comprehensive system mainly composed of tumor 
cells, surrounding immune and inflammatory cells, 
tumor-associated fibroblasts, and nearby interstitial 
tissue, microvessels, as well as various cytokines and 
chemokines [28]. It can be divided into immune microen-
vironment dominated by immune cells and non-immune 
microenvironment dominated by fibroblasts. TME cells 
and their secreted molecules are now recognized to play 
a key role in the pathogenesis of cancer and are there-
fore attractive therapeutic targets [29]. Depending on the 
organ in which the tumor arises, and the patient charac-
teristics, the cellular composition and functional status of 
the TME will vary. Fibroblasts and endothelial cells were 
significantly enriched in our single-cell detection of para-
cancerous tissues. The microenvironment surrounding 
the tumor is essential for understanding recurrence and 
in developing surgical strategies [30]. Considering the 
response and characterization of tumor components and 
subtypes in paracancerous tissues, we believe that the 
study of fibroblasts and endothelial cells in paracancer-
ous tissues is of great significance.

It is generally accepted that lymphocytes are the 
smallest white blood cells and can be divided into T 
lymphocytes, B lymphocytes and natural killer (NK) 
cells based on their migration, surface molecules and 
functions. In view of the different characteristics, bone 
marrow-derived B cells are mainly involved in humoral 
immunity, while thymus-derived T cells are involved in 
cellular immunity. As the main component of lympho-
cytes, T cells have a variety of biological functions, such 
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as direct killing of target cells, assisting or inhibiting 
B cells to produce antibodies, and responding to spe-
cific antigens and mitotropins [31, 32], and producing 
cytokines, etc. T cells are activated by antigen-specific 
signals and ‘co-stimulatory’ signals [33]. T cells confer 
cellular immunity whereby they specifically bind target 
cells to directly kill those target cells, and by releasing 
lymphokines, which are important in expanding and 
enhancing the immune effect [34, 35]. The main T cell 
cluster was divided into four subclusters, which were 
annotated as regulatory T cells (Tregs), conventional 
CD4 T helper cells (CD4 T +  + CONV), and two cyto-
toxic CD8 T cell populations [25]. They proposed that 
the different T cell expression states may be important 
in understanding and predicting responses to check-
point immunotherapies [36]. Based on the unique 
physiological function of T cells and the distinctive 
advantage of single-cell sequencing, we postulated that 
single-cell sequencing can assist in expanding on cur-
rent understanding of the typical tissue structure and 
function and the interactions between different cells, in 
particular the role that T cells play in normal tissue and 
disease progression.

In this study, we were interested to gain new insights 
on the common and specific characteristics of differ-
ent cell types within normal tissues of the hypophar-
ynx as well as to understand the interaction between 
varied cell types of hypopharynx and immune cells. 
We prepared single-cell suspensions of human 
hypopharyngeal tissue and performed scRNA-seq 
using a high-throughput droplet mediated scRNA-
seq platform. A total of 39,315 high-quality human 
cells were obtained from five donors (HSCC_N1, N2, 
N3, N4 and N5). The population of cells was made up 
of 10,723 epithelial cells, 2527 endothelial cells, 3987 
mononuclear phagocytes, 884 T cells, 723 fibroblasts, 
328 plasma cells, 270 B cells, 196 mural cells and 117 
mast cells. RNA sequencing of this population of cells 
produced a single-cell transcriptome dataset. As dif-
ferent types of cells play important roles in the early 
stage of carcinoma, we grouped the cells based on dif-
ferent expression signatures and studied the differences 
between groups. Analysis of this substantial single-cell 
transcriptome data set enabled us to validate previously 
reported adjacent to tumor tissues-related susceptibil-
ity genes. More importantly, the adoption of unbiased 
cell classification allowed us to discover novel genes 
with specific expression in certain cell types. In sum-
mary, our obtained data provide richer transcriptome 
information for normal adjacent to hypopharyngeal 
cancer cells, and provide an important reference for the 
accurate classification of cells and the study of the rela-
tionship between different cells and diseases.

Methods
We outline the hypopharyngeal scRNA-seq method. The 
whole process includes sample collection, tissue dissocia-
tion and preparation, single-cell RNA sequencing pro-
cess, and scRNA-seq quantitative and statistical analysis.

Sample collection, processing and transportation
Fresh human hypopharyngeal samples (normal and neo-
plastic) were obtained from patients undergoing surgery 
under sterile conditions at the Department of Otolaryn-
gology, Qilu Hospital, Shandong University. After tissue 
dissection, the tissue of interest was cut into large bean-
grain sized blocks (approximately 100 mg), washed twice 
with sterile phosphate buffer (PBS), and immediately 
treated with GEXSCOPE® tissue preservation solution 
(Singleron, Nanjing, China). Stored tissue samples were 
transported on ice to Singleron Biotechnologies.

Tissue dissociation and preparation of single cell 
suspension
Samples were washed 3 times in Hank’s Balanced Salt 
solution (HBSS) and then cut into 1–2 mm pieces. The 
Tissue blocks were then dissociated with 2 mL GEX-
SCOPE® Tissue Dissociation Solution (Singleron) for 15 
min at 37 °C with continuous agitation. After digestion, 
samples were filtered through a 40-micron sterile filter 
followed by centrifugation at 200 g for 5 min. The super-
natant was then discarded and the precipitate was re-
suspended in 1 ml PBS (HyClone). To remove Red Blood 
cells, 2 mL GEXSCOPE® Red Blood Cell Lysis Buffer 
(Singleron) was added for 10 min at 25 °C. The combined 
solution was then centrifuged at 500 × g for 5 min and re-
suspended in PBS. Samples were stained with trypan blue 
(Sigma) and evaluated by light microscopy.

Single cell RNA sequencing
Single-cell suspensions of 1 × 10^5 cells /mL were pre-
pared in PBS (HyClone). Single-cell suspensions were 
then loaded into the microfluidic device and scrNA-seq 
libraries were constructed according to the Singleron 
GEXSCOPE® Single-cell RNA Library Kit (Singleron 
Biotechnologies protocol) [37]. Individual libraries were 
diluted to 4 nM and pooled for sequencing. Pools were 
sequenced using 150 bp paired-end Reads on an Illumina 
HiSeq X.

Quantification and statistical analysis of scRNA‑seq
Using fastQC v0.11.4 (https://​www.​bioin​forma​tics.​babra​
ham.​ac.​uk/​proje​cts/​fastqc/) to deal with the raw Reads, 
to use the internal pipeline generated gene expression 
profile. In brief, we filtered readings without poly-T tails 
and extracted cell barcodes and unique molecular iden-
tifiers (UMI). Trim the adapter and poly-A tail used 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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FASTP (version 1) [38]. The readouts were aligned 
with the human reference genome GRCh38 (ACC.
no. Gca_000001405.15.) transcriptome using STAR 
(v2.6.1b) before using integrated version 92 gene annota-
tions (FASTP 2.5.3A and featureCounts 1.6.2) [39]. The 
readouts were grouped with those of a human reference 
genome pair with the same cell barcode, UMI, and genes 
using integrated version 92 Gene Annotations (FASTP 
2.5.3A and featureCounts 1.6.2) to calculate the number 
of UMIs per gene per cell. UMI counts for each cell bar-
code were used for further analysis. Cell type identifica-
tion and cluster analysis were performed using the Seurat 
program (//satijalab.org/seurat/, R package, V.3.0.1) [40, 
41]. Used the read.table function to read the UMI count 
table into R. Then set the parameter resolution of the 
FindClusters function to 0.6 to identify clusters. The 
FindMarkers function was used to identify differentially 
expressed genes (DEGs) between different samples or 
between consecutive clusters using the Seurat program. 
We used clusterProfiler software to perform GO func-
tional enrichment analysis on gene sets to find biological 
functions or pathways significantly associated with differ-
entially expressed genes [42]. Expression matrix files for 
subsequent analyses were generated based on gene num-
bers and UMI numbers (Table 1).

Quality control, dimensionality reduction, clustering
Cells were filtered according to the following param-
eters: less than 200 or the top 2% of genes and the top 
2% of UMI counts were excluded. Cells with more than 
20% mitochondria were also depleted. After filtration, 
39,315 cells were retained for downstream analysis, with 
an average of 1727 genes and 5151 UMI per cell. For 
reduction and clustering, we used the functions in Seurat 
V3.1.2 (Satijalab/Seurat:3.1.2). Gene expression was nor-
malized and scaled using NormalizeData and ScaleData. 
Principal component analysis (PCA) FindVariableFeau-
tres was used to select the top 2000 genes with variable 
expression. FindClusters divided the cells into 31 clusters 
using the first 20 principal components and a resolution 
parameter of 1.2. For subclustering of nine cell types, the 
resolution was set differently (0.2 in epithelial cells, 0.1 in 

fibroblasts, 0.8 in endothelial cells, 0.8 in mononuclear 
phagocytes, 0.8 in T cells. Uniform manifold approxima-
tion and projection (UMAP [43]) algorithm was applied 
to visualize cells in a two-dimensional space.

Differentially expressed gene (DEG) analysis
Seurat FindMarkers selects genes as DEGs that are 
expressed in ≥ 10% of cells within the cluster with average 
log twofold change greater than 0.5 based on Wilcoxon 
likelihood ratio tests using default parameters.

Cell cycle status evaluation
Scran package was used for G1 phase cell identifica-
tion. Seurat package was used for G2 and M phase cell 
identification.

Cell type annotation
The cell-type identity of each cluster was determined 
based on the expression of canonical markers found in 
DEGs, combined with knowledge from the literature.

Trajectory analysis
To map cell subtype differentiation/transformation in dif-
ferent subtypes, we performed a pseudo-time trajectory 
analysis using Monocle2 [44]. To construct trajectories, 
differentially expressed genes were used to classify cells 
in order of spatial and temporal differentiation. DDRTree 
is used to perform FindVairableFeatures and dimension-
ality reduction. Visualize trajectories by plotting cell tra-
jectories [45].

Patient survival analysis
We analyzed the association between fibroblast subset 
marker genes and survival in patients with head and neck 
squamous cell carcinoma on GEPIA [46].

Results
Hypopharyngeal specimens from organ donors (five 
males) aged 41 to 74 years were freshly collected, dis-
sected and digested into single cells (Supplementary 
Tables S1, S2, “Methods”). After collection, dissocia-
tion, and preparation of normal and pathological tissues, 

Table 1  Detailed QC of FASTQ files

Sample name Sample ID Estimated 
Number of 
Cells

Fraction 
Reads in 
Cells

Mean 
Reads per 
Cell

Median 
UMI per 
Cell

Total Genes Median 
Genes per 
Cell

Sequencing 
Saturation

Sequencing 
depth

HSCC_N1 M-21240647 5,001 29.20% 78,507 3,627 26,855 1,370 65.39% 78,507

HSCC_N2 M-21240474 11,530 48.62% 35,422 5,625 30,694 1,754 46.93% 35,422

HSCC_N3 M-21240488 8,588 49.43% 35,601 5,990 30,421 1,999 46.72% 35,601

HSCC_N4 M-22023264 7,961 47.41% 55,992 5,552 30,263 1,804 52.03% 55,992

HSCC_N5 M-22023021 6,235 40.03% 62,622 4,959 29,362 1,707 63.03% 62,622
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single cells were sequenced, quantified, and statistically 
analyzed (Fig.  1a). After QC, 39,315 high-quality adja-
cent-to-tumor hypopharyngeal cells were further ana-
lyzed (Table 2). We used the UMAP method to visualize 
cell clustering (Fig. 1b). Nine cell clusters were identified, 
with the number of cells in each cluster ranging from 117 
to 10,723 cells (Fig. 1c). Based on the marker genes, we 
classified cells into clusters 1–9 corresponding to epithe-
lial cells, endothelial cells (EC), mononuclear phagocytic 
system cells (MP), fibroblasts, T cells, plasma cells, B 

cells, parietal cells, and mast cells, respectively (Fig. 1d). 
In order to better determine the characteristics and func-
tions of each of the nine subgroups, we analyzed the top 
five genes expressed in each cluster (Fig.  1e). We also 
tested the expression of the marker genes in each sub-
set in other subsets to verify the specificity of the marker 
genes (Fig. 1f ).

Mentioning single cell sequencing, the quality control 
(QC) is an unavoidable problem, as it is both related to 
the feasibility of the experiment and the reliability of 

Fig. 1  scRNA-seq reveals the cell population of the normal adjacent tissues (NATs) in hypopharyngeal carcinoma. (a) Overview of the scRNA-seq 
process using human hypopharynx normal adjacent tissue samples. (b) Uniform manifold approximation and projection (UMAP) plot showing 
the unbiased classification of adjacent cancer cells. (c) Bar chart showing the proportion of each cell type in each sample. (d) Heat map 
showing the top 10 marker genes of each cluster. (e) Bubble chart showing top five genes expressed in each cluster. (f) Violin plots representing 
the expression of marker genes in different clusters
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the results. Seurat was used to ensure quality control 
of the scRNA sequencing output and to calculate the 
number of genes per cell, UMI number, and percentage 
of mitochondrial genes (Fig. S1a). Then we comprehen-
sively analyzed the presentation of these three different 
data in all samples, on which the cells can be divided 
into different subtypes in a visual way (Fig. S1b). We 
also assessed the cell-cycle status of each cell (Fig. 
S1c) and calculated the proportion of cells in differ-
ent cycle states for each subpopulation (Fig. S1d). Five 
samples were compared to remove batch effects (Fig. 
S1e). Because the proportion of mitochondrial genes 
reflects the state of the cell, the exclusion criteria were 
controversial. In this study, we selected cells that were 
conserved and filtered out with a percentage of mito-
chondrial genes > 20%.

From the analysis, the detected cells were mainly 
divided into two basic cell types: non-immune cells and 
immune cells. The non-immune cells were very abun-
dant, included epithelial cells, endothelial cells, fibro-
blasts and mural cells, which were also the focus of our 
study. Meanwhile, the immune cells also formed an inte-
gral part of the tissue microenvironment and included 
MPs, T cells, B cells, plasma cells and mast cells. Among 
all the nine cell types, epithelial cells were the most abun-
dant with a total number of 10,723, almost one-third of 
the total cell number. In our analysis, epithelial cells were 
classified into five subpopulations (Fig.  2a). The pres-
ence of these unknown subpopulations was not deemed 
to be an artifact as they were detected in every sample 
(Fig.  2b). We counted the proportion of each epithe-
lial cell subtype in each sample (Fig.  2c). In addition to 
this, we present a method for detailed classification of 
cell subsets by expression of canonical marker genes in 
epithelial cell subtypes (Fig. 2d) and chose top five typi-
cal genes expressed in each subtype (Fig. 2e). The top ten 
expressed genes can help us to understand the specificity 
of each subset of cells, and may have a crucial inspiration 
for the search of some genes worth exploring (Fig.  2f ). 
Furthermore, We performed pseudo-time trajectories on 
all epithelial cells and showed fate decisions among them 
(Fig. 2g–k).

Considering the important role of cancer associated 
fibroblasts (CAFs) in the tumor microenvironment, we 
also analyzed the specific types of fibroblasts in the adja-
cent tissues. In our analysis, fibroblasts were classified 
into two subpopulations (Fig. 3a). Fibroblasts of the five 
samples could similarly be roughly divided into two pop-
ulations (Fig. 3b). Therefore, we counted the proportion 
of each fibroblasts subtype in each sample (Fig.  3c). In 
addition, we analyzed the expression of signature genes 
in these two positional subsets (Fig.  3d, e). The top ten 
expressed genes can help us to understand the specificity 
of the two subset of cells (Fig. 3f ). The pseudo-time tra-
jectories showed fate decisions among two types of fibro-
blasts. Pseudo-time trajectories could identify the origin 
and end points of differentiation according to the trajec-
tory distribution of cell types and the expression changes 
of signature genes, and we noticed that the two subsets 
were mainly distributed at opposite ends of the time axis 
(Fig. 3 g). We thought cluster Fibroblast2 may represent 
a more advanced tendency to differentiate into tumor 
stages. After that, we performed pseudo-temporal sort-
ing for all cells (Fig. 3 h), and found that all the cells could 
be divided into nine clusters according to four key time 
points (Fig.  3i). We then examined the distribution of 
each sample on the proposed time trajectories and found 
significant differences in cellular composition and dif-
ferentiation estimates among samples (Fig.  3j). Then we 
presented the expression changes of marker genes during 
the course of pseudotime development (Fig. 3k).

Due to the different positions of the two subgroups 
in the stage of differentiation, we performed further 
queries on the signature genes of the two subgroups. 
We investigated the relationship between the expres-
sion of marker genes in two clusters and the survival 
of HNSC patients. We first selected the top 151 genes 
highly expressed in Fibroblasts1 (avg_logFC > 0.5) 
and analyzed their relationship with the survival of 
HNSCC  patients. We found that high expression of 
these signatures was significantly associated with 
improved patient survival. The top 40 genes were fur-
ther analyzed and nine genes were found to be sig-
nificantly correlated with survival. Among them, 

Table 2  Sequencing statistics based on cells

Sample name Sample ID Valid Reads Q30 Bases in 
Barcode

Q30 Bases in UMI Reads mapped 
uniquely to Genome

Base Pairs Mapped 
to Exonic Regions

HSCC_N1 M-21240647 91.98% 95.87% 94.73% 81.21% 83.81%

HSCC_N2 M-21240474 93.04% 95.99% 95.02% 87.23% 94.39%

HSCC_N3 M-21240488 92.95% 95.72% 94.59% 87.30% 93.13%

HSCC_N4 M-22023264 88.44% 95.49% 94.03% 63.65% 93.74%

HSCC_N5 M-22023021 93.18% 95.21% 93.55% 82.72% 88.51%
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eight genes showed their high expression was associ-
ated with improved survival, including CCL9, RGS5, 
TNFRSF11B, SPRR3 (cutoff-high 40%, cutoff-low 
60%), ITGA8, CCL11, KRT13 and FMOD (Fig.  4a). 
We also selected the top 119 genes highly expressed 

in Fibroblasts2 (avg_logFC > 0.5) and made associated 
survival analysis with HNSCC patients. We found that 
high expression of these signatures was also connected 
with poor prognosis (HR value > 1). We searched top 40 
genes in Fibroblasts2 and found six genes were found 

Fig. 2  Subpopulations and pseudotime trajectory of epithelial cells. (a) Uniform manifold approximation and projection (UMAP) plot showing 
the sub classification of epithelial cells. (b) UMAP plot of five subtypes colored by samples. (c) Bar charts showing the proportion of each epithelial 
cells subtype totally and in each sample. (d) Violin plots representing the expression situation of common marker genes in different subtypes 
of epithelial cells. (e) Bubble chart showing five typical genes expressed in each subtype. (f) Heat map showing the top ten marker genes of each 
subpopulation. (g) Pseudotemporal trajectory of five epithelial cells types. (h) Pseudotime was coloured in a gradient from dark to light yellow, 
and the start of pseudotime is dark. (i) The pseudotime trajectory was divided into five different states. (j) The trajectory showing the distribution 
of cells from five samples. (k) Heat map for clustering the top genes that affected cell fate decisions
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to be significantly correlated with survival. All of the 
upregulation of the six signatures was associated with 
poor survival, including MFAP5 (cutoff-high 55%, cut-
off-low 45%), EFEMP1 (cutoff-high 60%, cutoff-low 
40%), SFRP2, SRPX, PCOLCE2 and MT2A (Fig. 4b). We 

then explored the molecular functions and pathways 
involved in the two subpopulations. We first analyzed 
the gene ontology and found that cell components like 
insulin-like growth factor binding protein complex and 
growth factor complex, Toll-like receptor 2 binding and 

Fig. 3  Subpopulations and pseudotime trajectory of fibroblasts. (a) Uniform manifold approximation and projection (UMAP) plot showing the sub 
classification of fibroblasts. (b) UMAP plot of five subtypes colored by samples. (c) Bar charts showing the proportion of each fibroblasts subtype 
totally and in each sample. (d) Violin plots representing the expression situation of common marker genes in different subtypes of fibroblasts. (e) 
Bubble chart showing five typical genes expressed in each subtype. (f) Heat map showing the top ten marker genes of each subpopulation. (g) 
Pseudotemporal trajectory of five fibroblasts types. (h) Pseudotime was coloured in a gradient from dark to light yellow, and the start of pseudotime 
is dark. (i) The pseudotime trajectory was divided into nine different states. (j) The trajectory showing the distribution of cells from five samples. (k) 
Heat map for clustering the top genes that affected cell fate decisions
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Fig. 4  Survival analysis of fibroblast marker genes and related pathway analysis. (a) Survival analysis of fibroblasts1 marker genes in HNSCC patients. 
(b) Survival analysis of fibroblasts2 marker genes in HNSCC patients. (c) GO analysis of the two subtypes of fibroblasts. (d) Heatmap representing 
the top hallmarkers of two subtypes. (e) Heatmap showing KEGG pathways in two subtypes of five samples
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other biological process were enriched in fibroblasts2, 
which means this subtype related with cell growth, 
differentiation and the process of immune regulation 
(Fig. 4c). Hallmark pathway analysis helped us find the 
biochemical processes and roles that fibroblasts may 
participate in the transformation from normal micro-
environment to tumor microenvironment, for instance, 
from Hedgehog signaling in fibroblasts1 to Myc signal-
ing in fibroblasts2 (Fig. 4d). We also made KEGG analy-
sis and showed heterogeneity across patients (Fig. 4e).

As the second most abundant cell after the epithe-
lial cells, endothelial cells could be divided into four 
subpopulations, which were vascular endothelial cells 
(VECs), capillary endothelial cells (CapECs), lymphatic 
endothelial cells (LECs) and arterial endothelial cells 
(AECs) (Fig.  5a). All four subpopulations were detected 
in every sample (Fig. 5b). The proportion of each subtype 
was calculated in total and in each sample, except for that 
N1 did not contain LECs (Fig. 5c). In addition, we used 
a method to enable detailed classification of cell subsets 
based on the expression of typical marker genes in the 
subtypes of mononuclear phagocytes (Fig. 5d, e). The top 
ten expressed genes enriched our understanding of the 
various subpopulations (Fig. 5f ). Pseudo-time trajectories 
divided all cells into five stages according to the key time 
nodes (Fig.  5 g). And we could notice that LECs were 
mainly clustered at the initiation stage of differentiation 
while other three clusters had distribution at all stages 
(Fig.  5 h). In order to clarify the heterogeneity between 
samples, we fit on the curve with a certain local cell as 
an independent unit and found that N5 was mainly con-
centrated at the beginning and the end (Fig. 5i). Also, the 
distribution of each sample on the proposed time trajec-
tories showed significant individual differences (Fig.  5j). 
We also presented the changes of the expression of mark-
ers during the pseudotime developing process (Fig. 5k).

Even though the proportion of mast cells and mural 
cells is small, we still believe that they play an impor-
tant regulatory role in the microenvironment of normal 
adjacent tissues. We focused on their functions by GO 
analysis and KEGG analysis. The GO analysis of mast 
cells mainly fasten on the immunomodulating activ-
ity, as it is a type of immune cells (Fig. 6a). However, we 
noticed many essential pathways associated with mast 
cells, including MAPK signaling pathway, osteoclast dif-
ferentiation, apoptosis and other ways (Fig.  6b). So we 
analysed the potential connection between the enriched 
pathways (Fig.  6c). The GO analysis of mural cells was 
mainly about extracellular matrix and muscle contrac-
tion (Fig. 6d). KEGG analysis was similar with GO results 
showing Focal adhesion, ECM-receptor interaction and 
many others (Fig. 6e). Similarly we analysed the potential 
connection between the enriched pathways (Fig. 6f ).

The largest number of immune cells was the MPs at 
3987 cells, more than 10% of the total number. In our 
analysis, MPs were classified into five subpopulations, 
which were monocytes, macrophages, mature dendritic 
cells, conventional type 1 dendritic cells (cDC1) and con-
ventional types 2 dendritic cells (cDc2) (Fig. S2).

As an important component of immune system, T cells 
also require further assessment. In this study, a total of 
884 T cells were noted, about 2.25% of the total number, 
which is not surprising as T cells play a significant role 
in cellular immunity under normal physiological con-
ditions. In our analysis, T cells were also classified into 
five subpopulations, including CD4 + naive T cells, Treg, 
CD8 + Teff, proliferating T cells and innate lymphoid 
cells (ILCs) (Fig. S3).

As the identity and functions of the epithelial cell sub-
types was unknown, we performed further functional 
(Fig.  7a-c) and pathway analyses (Fig.  7d) for each sub-
type. The tissues that removed from around the patients’ 
hypopharynx were normal paracancerous tissues. Our 
analysis of these tissues, their subtype cell clusters 
and genes enabled us to propose potential biomarkers 
(Fig.  7e) and will also enable further exploration of the 
interactions between different cell types (Fig. 7f ).

Discussion
Histologically normal tissue adjacent to the tumor (NAT) 
is commonly used as a control in cancer study. In our 
previous research, we used the five normal adjacent tis-
sue samples as control to analyze the immune micro-
environment in tumor tissues and metastatic lymphoid 
tissues cancer studies [27]. The study of NAT tissue has 
been first described as the “field cancerization” theory 
[47], then many studies suggested that the microenvi-
ronment surrounding the tumor is essential for under-
standing recurrence and in developing surgical strategies 
[30]. There were a large number of mutations and clonal 
expansions in adjacent normal epithelial tissues. More-
over, early clonal development and eventual cancer 
formation in paracancerous tissues have potentially dif-
ferent molecular mechanisms [14]. Also, there were large 
amount of chromosomal alterations [48], somatic muta-
tions and clonal dynamics [49] in NATs. Using normal 
adjacent tissue as this control has many advantages, how-
ever, in comparing only tumor and NAT tissues, many 
potential cancer biomarker candidates may be missed 
and others spuriously implicated. Direct study of the spe-
cific cell populations in the adjacent tissues will help us 
to find the possible therapeutic target cells and targets in 
the adjacent tissues.

The purpose of our single-cell sequencing is not only 
to understand the classification of cell subtypes in nor-
mal adjacent to hypopharyngeal cancer tissues and the 
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expression of heterogeneous genes connected with vari-
ous cell–cell interactions, but also to provide database 
for researchers to refer to when they study the mecha-
nisms related to hypopharyngeal cancer. From this point 
of view, we need to pay attention to some targets and 

indications related to cancer initiation, development and 
prognosis in our classification and research results.

As mentioned above, epithelial cells make up the larg-
est proportion of all cells, so its role in normal tissues 
deserved discussion. Based on the top five expressed 

Fig. 5  Subpopulations and pseudotime trajectory of endothelial cells. (a) Uniform manifold approximation and projection (UMAP) plot showing 
the sub classification of endothelial cells. (b) UMAP plot of cell distribution colored by samples. (c) Bar charts showing the proportion of each 
endothelial cells subtype totally and in each sample. (d) Violin plots representing the expression situation of common marker genes in different 
subtypes of endothelial cells. (e) Bubble chart showing five typical genes expressed in each subtype. (f) Heat map showing the top 10 marker 
genes of each subpopulation. (g) Pseudotemporal trajectory of all endothelial cells divided into five stages. (h) Pseudotemporal trajectory of five 
endothelial cells types. (i) Pseudotime trajectory showing the location of cells from each tissue during differentiation process. (j) The trajectory 
showing the distribution of four subpopulations in five samples. (k) Heat map for clustering the top genes that affected cell fate decisions
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Fig. 6  Functional enrichment analysis of mast cells and mural cells. (a) Bar chart showing the GO analysis of mast cells. (b) Bubble chart 
representing KEGG pathways associated with mast cells. (c) Mapplot showing the connection between enriched pathways of mast cells. (d) Bar 
chart showing the GO analysis of mural cells. (e) Bubble chart representing KEGG pathways associated with mural cells. (f) Mapplot showing 
the connection between enriched pathways of mural cells
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genes in five different subpopulations, we tend to define 
genes that are highly expressed in all five subpopu-
lations detected as marker genes for epithelial cells, 
namely CSTB, KRT13, and KRT4. The large number of 
cell subsets were basically in the terminal stage of cell 
development and differentiation in quasi-chronological 
analysis, and cells in the initial stage with strong ancestry 
accounted for less in the five samples. Besides, the subset 

epithelial cells 5 in the initial stage was only detected in 
two tissue samples, which led us to consider whether 
there was a correlation between the heterogeneity of epi-
thelial cell subsets and their sensitivity to cancer-related 
factors between different patients.

When we consider the role of epithelial cells in can-
cer, the first thing that usually comes to mind is epithe-
lial-mesenchymal transformation (EMT) [50]. Under 

Fig. 7  Functional subdivision of epithelial cells and interaction analysis between different cells. (a) Heatmap showing the key biological processes 
that different subtypes involved in. (b) Heatmap showing the cellular component which means the structural location where the gene product 
performs its function in each subtype. (c) Heatmap showing the major biological processes in which multiple molecules are involved in each 
subtype of epithelial cells. (d) Heatmap showing the signaling pathways involved in different kind of subpopulations. (e) Heatmap showing the top 
hallmarkers of 5 subtypes. (f) Heatmap showing the number of pairs of the interaction between each two cell types, the darker the color, the higher 
the number of pairs
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normal conditions, epithelial cells play a protective 
and resorptive role in tissues, but in the process of the 
development of various malignant tumors, with gene 
mutations [51] or under the induction of inflamma-
tory factors [52], tumor cells can obtain invasive char-
acteristics through EMT, infiltrate into the surrounding 
stroma, and form a microenvironment that promotes 
tumor growth and metastasis [52]. Therefore, we hope 
that subsequent innovative studies can find some pre-
dictive genes related to the risk factor of epithelial-mes-
enchymal transformation of tumor tissue by comparing 
it with the normal marker in our database, so as to tar-
get it to play a blocking role.

As the main component of non-immune cells in the 
microenvironment, cancer-associated fibroblasts (CAFs) 
plays an essential role in the development of carcinoma, 
the signal transduction between different subtypes of 
CAFs and immune cells can promote tumor develop-
ment, invasion and metastasis [54]. The genes that 
highly expressed in the two subtypes can affect HNSCC 
patients’ survival time. RGS5 highly expressed fibroblasts 
is clustered as vascular CAFs [55], and the fibroblasts in 
our study is associated with TNF, EGF and chemokine 
related functions. In the two subtypes of fibroblasts, 
APOD gene presents a high expression state. As a mem-
ber of the lipoprotein family, APOD is mainly produced 
by the brain and testes. Lipoprotein is involved in the 
lipid transport metabolism process [56], and also plays a 
vital role in the aging process of various organs [57], so 
the relationship between APOD and fibroblasts in our 
sequencing results needs to be further studied. The most 
noteworthy is the significant difference in the propor-
tions of the two subgroups among the five patients. We 
will follow up the recovery and survival of the patients 
after cancer surgery to find out the role of the two sub-
groups in the severity of the disease.

Tumor endothelial cells (TECs) is associated with 
angiogenesis during tumor development, its production 
and tumor progression promote each other [58]. Apart 
from this, it is also involved in other biological processes 
such as immune regulation [59] and extracellular matrix 
composition [60]. Antiangiogenic therapies provide clini-
cal and survival benefits in patients with many types of 
cancer by inhibiting angiogenesis and endothelial cells. 
The heterogeneity of tumor endothelial cells makes anti-
angiogenic therapies have significant differences in effi-
cacy and drug resistance [61]. As angiogenesis is one of 
the hallmarks of cancer, anti-angiogenic therapy (AAT) is 
widely used in a variety of cancers. A research suggested 
a pan-cancer mechanism of pro-inflammatory signals 
from the tumor stimulates an inflammatory response in 
the adjacent endothelium [11], which means not only 
normal adjacent tissues can simulate the changes in the 

early stages of cancer, but only tumors can affect sur-
rounding endothelial cells.

Mast cells are granulocytes that mediate host defense 
and maintenance of homeostasis by swiftly degranulat-
ing histamines, cytokines, and chemokines. They are well 
known for their role in allergies and autoimmunity, but 
they can also infiltrate tumors. Mast cells exert both pro- 
and anti-tumorigenic activities depending on the micro-
environmental stimuli. They can directly target tumor 
cells, but they mainly regulate the recruitment and activ-
ity of other immune populations and the endothelium 
[62]. In our study, mast cells also related with apoptosis 
and other non-immunal pathways, which attracted our 
attention.

Mural cells are microcirculating vascular smooth mus-
cle cells (vSMC) and pericytes. Both types are in close 
contact with the endothelial cells lining the capillaries 
and are important for vessel development and stability. 
Parietal cells are involved in the formation of normal vas-
culature and respond to factors such as platelet-derived 
growth factor B (PDGFB) and vascular endothelial 
growth factor (VEGF) [63]. Mast cells and endothelial 
cells are the main members of the vasculature in tumors, 
which is a key component of the tumor microenviron-
ment with critical roles in regulating metastatic seeding 
and progression [64]. In our results, we found mural cells 
played important roles in extracellular environment, this 
may promote the transformation from adjacent status to 
cancer status and meanwhile affect the malignant degree 
of carcinoma.

As the largest proportion of immune-related cells in 
our sequencing results, monocytes are a subpopulation 
of white blood cells that play a key role in maintain-
ing homeostasis, pathogen recognition and clearance, 
as well as inflammation. We found that in the five sam-
ples, macrophages invariably accounted for the largest 
cell population. As an ‘undercover agent’ in the immune 
system, macrophages can undergo different activation in 
different environments, thus forming subsets with differ-
ent molecular and functional characteristics, and are key 
effector cells of innate immunity with powerful phago-
cytosis. Activated macrophages mainly include M1 mac-
rophages and M2 macrophages, M1 macrophages can kill 
tumor cells and resist pathogen invasion, and M2 mac-
rophages, which account for the vast majority of tumor 
tissues, mainly play a role in promoting tumor growth, 
invasion and metastasis [65]. Therefore, macrophages 
can also be used as a follow-up research focus.

Except for macrophage, other cell subtypes, cDC1 and 
cDC2 also attracted our attention, with studies show-
ing that conventional type 1 dendritic cells (cDC1) are 
thought to perform antigen cross-presentation, which 
is required to activate CD8 + T cells, while cDC2 [66] 
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is dedicated to activating CD4 + T cells. CD4 + T cells 
are also thought to help CD8 + T cell responses through 
a variety of mechanisms [67]. The expression of cDC1 
and cDC2 is also consistent with the detection results of 
CD8 Teff and CD4 Naive T cells in the T cell subpopula-
tion of our sequence, demonstrating the accuracy of our 
sequencing results.

T cells, as the main force of cellular immunity in normal 
tissues, were also significantly detected in the sequencing 
results. Unexpectedly, proliferating T cells still account for 
a large proportion, and even account for more than half of 
the samples in one clinical sample. We think these results 
prove that as a common pathway for respiratory digestion, 
hypopharynx adapts to stronger immunity in the face of 
more complex bacterial and viral environments.

Considering the data types of various cells, finally, 
we still analyzed the interaction mode between differ-
ent subtypes of epithelial cells, the place of action and 
enrichment pathways of metabolites, and markers with 
follow-up exploration significance. Through the analysis 
of correlations between different cell subtypes, we hope 
to provide some new combinations of cells with intercon-
nected influences for subsequent cellular microenviron-
ment analysis and interaction studies.

Conclusion
In conclusion, we have provided a transcriptome profile 
of normal adjacent tissues in hypopharyngeal carcinoma. 
The data we report here extend our current understand-
ing of the tumor-related microenvironment in normal 
tissues at early stage of the disease at the molecular level, 
investigate hypopharyngeal cell biology and the relation-
ship between cell types and disease, and follow up with 
further taxonomic studies of nonimmune components in 
the tissue microenvironment.

Data records
All hypopharyngeal sequence data have been uploaded 
to NCBI GEO database. The raw data for the BAM file 
has been archived in the NCBI Sequence Read Archive 
(SRA) and can be accessed under project accession num-
ber GSE206038.
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