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Abstract
Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for 
approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving 
diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 
86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 
100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the 
Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved 
(13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more 
unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP 
to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma 
(PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris 
hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired 
systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the 
most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely 
pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. 
Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering 
process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger 
structural variants, CNVs, and non-coding variants.
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Background
Childhood glaucoma (CG) comprises a group of rare dis-
eases that manifests before 18 years of age and is typically 
more severe than adult glaucoma [1]. According to the 
Childhood Glaucoma Research Network (CGRN), CG is 
classified as primary or secondary [2]. Primary childhood 
glaucomas include primary congenital glaucoma (PCG) 
and juvenile open-angle glaucoma (JOAG), whereases 
secondary childhood glaucomas include those associated 
with non-acquired ocular anomalies (such as Axenfeld-
Rieger spectrum (ARS), aniridia, and Peters anomaly), 
glaucoma associated with non-acquired systemic dis-
eases (such as connective tissue disorders including Mar-
fan syndrome, Weill-Marchesani syndrome, and Stickler 
syndrome), and glaucoma associated with acquired con-
ditions (such as trauma, infections, or surgeries) [2]. 
Glaucoma post cataract surgery has a different classifi-
cation [2]. Childhood glaucoma commonly presents as 
bilateral disease with features of photophobia, epiphora 
and blepharospasm [3, 4].

Children with PCG develop buphthalmos if disease 
onset is before 3 years of age secondary to the raised 
intraocular pressure (IOP), increased corneal diam-
eter (> 12  mm), Haab striae, corneal oedema, optic disc 
cupping and progressive myopia [3, 5, 6]. Aqueous fluid 
secreted by ciliary body is recycled in the anterior seg-
ment of the eye via the porous trabecular meshwork 
(TM) [7]. Defects in the TM and the iridocorneal angle of 
the anterior chamber, caused by maldevelopment of neu-
ral crest tissues, can hinder the drainage process leading 
to fluid accumulation in the anterior chamber with resul-
tant raised IOP [8]. Gonioscopy can reveal that the angle 
has an immature appearance of arrested development 
with a high flat iris insertion, with peripheral scalloping 
and circumferential iris vessels [9]. Elevated IOP can con-
sequently cause loss of retinal ganglion cells (RGCs) and 
a progressive optic neuropathy [4, 10–12], however optic 
disc cupping can be reversible with treatment [13]. Glob-
ally, the incidence rate of PCG is approximately 1–80 
cases per 100,000 live births [10, 14]. This prevalence var-
ies geographically and may rise by 5 to 10 times [15], in 
highly consanguineous populations such as in Slovakian 
Roma (1/1250) [16] and Saudi Arabia (1/2766) [17]. It is 
one of the most significant causes of childhood blindness 
worldwide [4, 15].

Prognosis and management of CG relies principally 
on prompt, precise diagnosis, and effective control of 
the IOP and prevention of amblyopia to preserve visual 
function [18–20]. Medical management with both topi-
cal and oral drugs can be used as a temporary modality 
or as an adjunct to surgery, but surgery remains the pre-
dominant treatment in order to control the IOP [3, 19]. 
However, periodic examinations and lifelong follow-ups 
are essential, as congenital glaucoma can worsen with 

complications impairing the visual function later in life 
[21, 22].

The genetic aetiology of CG is not fully understood, 
however, it is often associated with variants in genes 
exhibiting Mendelian inheritance [23, 24]. For PCG, the 
most prevalent genes implicated are CYP1B1, LTBP2, 
and TEK [23], while genes such as MYOC, TBK1, and 
OPTN are mainly associated with JOAG. Variants in 
genes FOXC1, PITX2, PAX6, and CPAMD8 contribute 
to CG associated with non-acquired ocular anomalies [7, 
23]. High penetrance with variable expressivity are com-
mon, resulting in phenotypic heterogeneity and overlap-
ping clinical features [25]. Only 10–40% of the PCG cases 
are familial with a history of consanguinity, the majority 
of cases are sporadic [26].

The CYP1B1 (cytochrome P450, family 1, subfamily B, 
polypeptide 1) gene, located on chromosome 2p21-p22 
[27], is well studied and is the most predominately linked 
gene to autosomal recessive PCG [24]. More than 200 
CYP1B1 variants have been linked to PCG [28], account-
ing for approximately 87% of the familial cases and 27% of 
sporadic cases [29]. The expression of CYP1B1 has been 
detected in various human tissues including the heart, 
brain, skeletal muscles [30], and several ocular tissues 
such as the iris, ciliary body, cornea, retinal epithelium 
[31, 32], but its expression in the TM remains contro-
versial [31, 33]. CYP1B1 has also been implicated in both 
vitamin A metabolism and transcription induction of 
genes necessary for the proliferation and differentiation 
of multiple ocular elements [34, 35]. In Cyp1b1-/- mice, 
anomalies in the architecture of TM and Schlemm’s canal 
(SC) of mice eyes were reported, resembling the ocular 
features of human PCG [36]. Further, various reports 
indicated ocular hypertension in Cyp1b1-/- mice induced 
by increased levels of oxidative stress, corresponding to 
the changes seen in human glaucomatous TM tissues, 
suggesting the role of CYP1B1 in the suppression of oxi-
dative stress [37].

The myocilin gene, MYOC, is expressed in the sclera, 
TM, ciliary body, retina, myocardium, and other non-
ocular tissues [38–40]. MYOC has been associated with 
juvenile and primary open-angle glaucoma (POAG) [41, 
42] accounting for 2–5% of the POAG cases [43, 44], 
and accounts for 5.5% of the PCG cases [45]. It has been 
suggested that defects in the MYOC protein affect the 
structure of TM and ciliary body, blocking the drainage 
of fluid, and rising IOP [46, 47]. Besides, the accumula-
tion of mutant myocilin in TM cells leads to endoplasmic 
reticulum (ER) stress and the activation of the unfolded 
protein response (UPR) cascade [48]. Interestingly, a pos-
sible functional interaction between CYP1B1 and MYOC 
has been identified, in which the former acts as a modi-
fier [49]. Causative variants in CYP1B1 negatively impact 
its ability to metabolise 17β estradiol resulting in the 
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overexpression of MYOC and can potentially lead to the 
development of glaucoma [49].

The forkhead box protein C1 (FOXC1) gene is 
expressed in human adult iris, foetal craniofacial tis-
sues, and other non-ocular tissues [50], and its murine 
homologue is abundantly expressed in the periocular 
mesenchyme and anterior segment tissues during eye 
development [51]. Variants in FOXC1 are associated 
with Axenfeld-Rieger syndrome/anomaly [50, 52], Peters 
anomaly [53], PCG [1, 52], and increased susceptibility 
to POAG [54]. A recent study reported that out of 131 
PCG patients, 8 (6.1%) harboured pathogenic FOXC1 
variants [1]. Additionally, extra-ocular features related 
to Axenfeld-Rieger syndrome (such as hearing impair-
ment, cardiac abnormalities, and developmental delay) 
are frequently present in human PCG patients harbour-
ing FOXC1 variants [1]. Mice with Foxc1 variants showed 
defects in the development of the anterior segment struc-
tures, comparable to the clinical ocular features of human 
patients [55].

The LTBP2 gene, encoding the extracellular matrix 
(ECM) latent transforming growth factor (TGF)-β bind-
ing protein 2, mapped to 14q24.3 [56], has also been 
implicated in PCG [57–59]. Variants in LTBP2 have been 
identified in PCG families from Pakistan, Iran, and in 
Slovakian Roma [7]. Additionally, recessive variants in 
this gene were detected in patients with megalocornea, 
lens dislocation, spherophakia, secondary glaucoma, and 
Marfan-like syndrome [60–62]. LTBP2 is expressed in 
the heart, placenta, skeletal muscle, liver [56], as well as 
in the ocular anterior segment, TM, and the ciliary body, 
thus may have a role in the morphogenesis of the ante-
rior chamber and maintenance of its muscular structure 
[57, 58]. Furthermore, LTBP2 knockdown in human TM 
cell cultures parallels the effects of oxidative stress induc-
tion, and both influence the expression of ECM genes 
and apoptosis in the TM cells, which may be mediated by 
the activation of the canonical TGF-β and BMP signaling 
pathways [63].

Approximately 5% of the PCG cases have been associ-
ated with haploinsufficiency of the angiopoietin receptor 
TEK gene [64, 65]. TEK-related PCG families have been 
reported to exhibit autosomal dominant inheritance with 
incomplete penetrance and phenotypic variation [64]. 
Aside from its expression in the developing embryonic 
vascular system in mice [66] and in human endothelial 
and haematopoietic cells [67, 68], it is also expressed in 
the SC [69, 70]. Deletion of Tek gene in mice led to the 
progressive degeneration of the SC, severe ocular hyper-
tension, deterioration of retinal ganglion cells, and glau-
coma [71]. It has been suggested that a functioning TEK 
gene is crucial during the normal development of the iri-
docorneal angle in the anterior chamber of the eye [64].

The ground-breaking efforts of the Genomics England 
100,000 Genomes Project (GE100KGP) have resulted 
in the sequencing of more than 100,000 whole genomes 
of more than 88,000 participants, of which 82% of cases 
were enrolled into the Rare Disease cohort, since the 
inception of the project in 2013 through 2018 [72]. Par-
ticipants were recruited through hospitals linked to one 
of 13 NHS genomic medicine centers across England 
[72]. The GE100KGP created platforms and automated 
processing pipelines for variant calling, quality check, and 
interpretation [72]. All participants underwent de-iden-
tification, and their clinical and genomic data are stored 
in a secure setting within the Genomics England (GE) 
research environment [72]. Academic researchers can 
access these data through a membership in one of the GE 
clinical interpretation partnership domains or through 
approved collaborations [72]. In the GE pilot study, WGS 
data of 4660 participants from more than 2000 families 
were analysed, and 25% of these cases received definitive 
diagnosis [73]. Out of these diagnoses, 14% were made in 
genomic regions that conventional genetic testing would 
have missed [73]. Beyond the immediate diagnosis, these 
data are also of significance to researchers who continue 
to use them to inform new diagnoses, and to develop 
effective therapies and drugs [73].

Despite insights into the molecular aetiology of CG, 
no gene-directed therapies are available as yet and the 
majority of patients lack a genetic diagnosis. Current 
diagnostic rates of CG and anterior segment dysgenesis 
sit between 24.5% and 33.9% using targeted gene pan-
els, whole exome/genome sequencing, or mixed test-
ing approaches [25, 74, 75]. To further improve the 
diagnostic yield of CG, we conducted an in silico analy-
sis by leveraging genome sequencing data of unsolved 
(or partially solved) CG cases from the GE100KGP [72] 
for variants in genes of interest. Using the CGRN clas-
sification, our cohort included primary and secondary 
CG associated with non-acquired ocular anomalies or 
non-acquired systemic diseases. Glaucomas caused by 
acquired conditions such as ocular surgeries, traumas, or 
tumours were excluded.

Methods
Patient cohort
Using the LabKey software within the GE research 
environment, Rare Disease participants who had been 
recruited into the GE100KGP between 2013 and 2018 
for WGS were queried. Unsolved patients who were 
recruited for Developmental glaucoma (HP:0001087) as 
a primary diagnosis in addition to those with the HPO 
terms Primary congenital glaucoma (HP:0008007), Late 
onset congenital glaucoma (HP:0008041), and Buphthal-
mos (HP:0000557) were included in this analysis.
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Whole genome sequencing
Whole genome sequencing was performed through the 
GE100KGP as described previously [76]. Briefly, TruSeq 
DNA PCR-Free Sample Preparation kit (Illumina Inc.) 
was used to extract genomic DNA. Whole genome 
sequencing (WGS) was done using high-throughput 
HiSeq X Ten platform (Illumina Inc.), yielding a coverage 
of 15X for the majority (> 97%) of the callable autosomal 
genome. Alignment of reads was done via Isaac (Illumina 
Inc.) using the reference human genome (assemblies 
GRCh37 or GRCh38). Variant calling was done using 
Starling (v2.4.7, Illumina Inc.) for single nucleotide vari-
ants (SNVs) and indels (insertion or deletions), Canvas 
[77] for copy number variants (CNVs), and Manta [78] 
for structural variants (SVs).

In silico analysis
Genes of interest were mainly selected based on the traf-
fic light system of the PanelApp [79], where only the 18 
Green (diagnostic-grade) genes of the glaucoma (devel-
opmental) panel (version 1.42) were prioritised dur-
ing interpretation, as they reflect high level of evidence 
for genotype-phenotype associations. Whereas Amber 
and Red genes were generally excluded as they repre-
sent borderline and low level of evidence, respectively. 
Twenty-two additional genes from other PanelApp pan-
els (Structural eye disease (version 3.2), Corneal abnor-
malities (version 1.12), or Cataracts (version 4.1)) or 
identified in CG cohorts reported in the literature were 
also included in our analysis [80, 81, 90–98, 82–89] 
(Table S1). Coordinates of the coding regions of our gene 
panel (40 glaucoma-associated genes) were retrieved 
using Ensembl BioMart [99, 100] and variant call files 
(VCF) with SNVs, insertions and deletions (indels), and 
SVs were scanned over these regions and filtered. Anno-
tation of extracted variants was done using Ensembl 
Variant Effect Predictor (VEP; v99) [101] for SNVs and 
indels, and AnnotSV (v3.1.1) [102] for CNVs and SVs. 
Using stepwise filtering, annotated SNVs were priori-
tised according to minor allele frequency (< 0.01) in the 
GE100KGP database and population databases (such as 
gnomAD (v.4.1.0) [103] and TopMed [104]), impact (high 
or moderate), consequence type, mode of inheritance (in 
familial cases), location within the gene, and deleterious-
ness (as predicted by in silico tools such as CADD [105], 
SIFT [106], Polyphen-2 [107], MutationTaster2 [108]). 
Other databases such as HGMD [28] (public version), 
ClinVar [109], and VarSome (v11.10) [110], were exam-
ined along with literature searches for published reports 
of variants identified in this cohort. Variants classified as 
pathogenic or likely pathogenic according to ACMG cri-
teria were prioritised. For the SVs, only the duplications 
and/or deletions that overlapped exonic regions of the 
genes of interest with ACMG scores > 3 were prioritised. 

Confirming the presence of variants was manually per-
formed using Integrative Genomics Viewer (IGV) and 
Samplot (for large duplications and deletions). Genetic 
findings were evaluated by an interdisciplinary team 
(including bioinformaticians, clinical scientists, and spe-
cialists in ophthalmic genetics) to validate variant del-
eteriousness. Novel variants detected in this study were 
submitted to ClinVar.

Further phenotyping
The medical records of the Moorfields Eye Hospital 
(MEH) glaucoma patients recruited into the GE100KGP 
were inspected for visual acuity, refraction, initial and 
recent IOP, glaucoma surgeries, additional ocular pheno-
types, systemic features, and family history. Fundus pho-
tographs were also examined, wherever possible.

Results
Genomics England (GE100KGP) cohort
Using the Human Phenotype Ontology (HPO) terminol-
ogies in LabKey, we identified a list of 86 unique partici-
pants from 78 unrelated families with CG. Fifteen cases 
from 13 unrelated families were solved using the Genom-
ics England/Genomic Medicine Centres (GE/GMC) diag-
nostic pipeline [111]. The whole genome sequencing data 
of the remaining 71 cases, from 65 unrelated families, 
were further interrogated using an expanded gene panel 
(40 genes reported to be associated with glaucoma), by 
investigating SNVs as well as structural and copy number 
variations in these genes. The CG cohort identified has a 
mean age of 21.0 ± 14.1 years (ranges from 6 to 76 years), 
of which 64% (55/86) were male patients. The majority of 
the patients were White British (63%; 54/86), followed by 
Asian Pakistani (9%; 8/86), White Irish (8%; 7/86), White 
Other (6%; 5/86), Asian Other (5%; 4/86), Black Carib-
bean (5%; 4/86), Black British (3%; 3/86), and Black Other 
(1%; 1/86) (Figure S1, Table S2).

Ocular and systemic features
Of the patient cohort, 44% (34/78) of the families had 
PCG, whereas 56% (44/78) had secondary glaucoma 
(Fig. 1A). Of the secondary glaucoma group, 55% (24/44) 
exhibited non-acquired ocular anomalies including 58% 
(14/24) with corneal abnormalities, 29% (7/24) with iris 
anomalies (including iris hypoplasia, ectopia pupillae, 
and polycoria), 29% (7/24) with cataracts, 25% (6/24) 
with anterior segment dysgenesis (ASD), 17% (4/24) had 
retinal disorders, 13% (3/24) had refractive error, and 8% 
(2/24) displayed nystagmus (Table S2). Given the limited 
clinical data available in the GE research environment, it 
could not be confirmed if the cataracts were diagnosed 
prior to glaucoma or post glaucoma surgery (except for 
case GEL-064-01; Table  1). 45% (20/44) of the second-
ary glaucoma cohort exhibited non-acquired systemic 



Page 5 of 19Al-Saei et al. BMC Genomics          (2024) 25:484 

features including 30% with deformities of the spine or 
extremities (6/20), 15% with growth disorders (3/20), 15% 
with hearing impairment (3/20), 10% with cardiovascular 
abnormalities (2/20), 5% had a collagenopathy (1/20), 5% 
had cancer (1/20), and 40% had multisystem anomalies 
encompassing defects in more than three systems (8/20) 
(Table S2).

Molecular diagnosis
A genetic diagnosis was confirmed in 23 CG cases from 
20 unrelated families (26%; 20/78) (Fig. 1B; Table 1, and 
Table S3). Recessive causative variants were homozygous 
in 50% (10/20) of the affected families and compound 
heterozygous in 20% (4/20) of the families, while 30% 
(6/20) of the families inherited variants in an autosomal 
dominant manner (Table S3). The majority of families 
(74%; 58/78) remain unsolved with no clear primary find-
ings (Fig.  1C). Approximately 80% (16/20) of the solved 
families obtained a molecular diagnosis based on cod-
ing SNVs or indels in genes determined by the glaucoma 

panel in PanelApp, followed by 15% (3/20) who received 
a diagnosis based on SNVs or indels outside the Pan-
elApp, in genes identified through literature search. The 
remaining 5% (1/20) were diagnosed based on SVs in an 
applied gene panel (Fig. 2).

Of the solved families, 25% (5/20) had PCG, while the 
remaining 75% (15/20) had secondary glaucoma, with 
53% (8/15) being glaucoma associated with non-acquired 
ocular anomalies including iris anomalies, cataracts, 
ASD, retinal detachment, band keratopathy, refractive 
error, nystagmus, iris and chorioretinal coloboma, and 
optic nerve anomalies, and 47% (7/15) being associated 
with non-acquired systemic features including facial 
dysmorphism, microcephaly, cerebellar atrophy, hear-
ing loss, dextrocardia, ciliary dyskinesia, collagenopathy, 
Charcot-Marie-Tooth (CMT) disease, autism spectrum 
disorders, in addition to intellectual and developmental 
delays (Table 1; Fig. 1B).

Our search strategy identified 22 potential disease-
causing variants mapping to 7 genes including 55% 

Fig. 1  Classification of clinical features in the childhood glaucoma (CG) cohort of GE100KGP. (A) Overview of the glaucoma classification in the 
whole CG cohort. (B) Classification of CG features in the solved families of the CG cohort. (C) Classification of CG in the remaining unsolved cases of the 
CG cohort
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Family ID Patient 
ID

Gender Age 
(Years)

Ethnicity Gene Clinical 
diagno-
sis (MIM 
number)

Primary CG/
secondary 
CG

NAOA/NASD Ocular 
phenotype(s)

Systemic 
features

GEL-002* GEL-002-01 F 9 Asian 
Pakistani

CYP1B1 Congenital 
glaucoma 
(231300)

Primary . CG Facial dysmor-
phism including 
down slanted 
palpebral 
fissures; ear ab-
normality; 1–2 
toe syndactyly; 
microcephaly; 
cerebellar atro-
phy; develop-
mental delay

GEL-007 GEL-007-01 F 9 Asian 
Pakistani

SLC4A11 CHED 
(217700)

Secondary NAOA CG; corneal 
oedema

.

GEL-007-04 F 7 Secondary NASD CG; cor-
neal oedema; 
unilateral 
corectopic 
pupil

Cardiac murmur

GEL-033 GEL-033-01 F 27 White 
British

TEK Congenital 
glaucoma 
(617272)

Secondary NAOA CG; 
megalocornea

.

GEL-048 GEL-048-01 M 10 White 
British

FOXC1 Axenfeld-
Rieger 
syndrome, 
type 3
(602482)

Secondary NASD CG Primary ciliary 
dyskinesia; situs 
inversus totalis; 
dextrocardia; 
bilateral con-
ductive hearing 
impairment

GEL-050 GEL-050-01 F 24 White 
British

TEK Congenital 
glaucoma 
(617272)

Secondary NAOA CG; megalo-
cornea; iris 
hypoplasia

.

GEL-056 GEL-056-01 F 11 Asian 
Other

CYP1B1 Congenital 
glaucoma 
(231300)

Primary . CG .

GEL-064 GEL-064-01 M 27 White 
British

SBF2 Charcot-
Marie-Tooth 
disease type 
4B2 (604563)

Secondary NASD CG; cataracts 
(post surgery)

CMT; severe 
autism; depres-
sion; chronic fa-
tigue syndrome; 
demyinating 
poluneuropa-
thy; pes cavus; 
hydromyelia

GEL-S01 GEL-S01-01 F 20 Black 
Caribbean

SOS2 Noonan 
syndrome 9 
(616559)

Secondary NASD CG; ptosis Noonan syn-
drome; devel-
opmental delay; 
cardiovascular 
abnormalities; 
hearing abnor-
mality; periph-
eral neuropathy; 
lymphedema

GEL-S02 GEL-S02-01 M 30 Asian 
Other

FOXC1 ASD 3 
(601631)

Primary . CG .

GEL-S03 GEL-S03-01 F 22 White 
British

CYP1B1 Congenital 
glaucoma 
(231300)

Primary . CG .

Table 1  Clinical and genetic features of probands identified with potential pathogenic variants in the solved GE100KGE CG cohort
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Family ID Patient 
ID

Gender Age 
(Years)

Ethnicity Gene Clinical 
diagno-
sis (MIM 
number)

Primary CG/
secondary 
CG

NAOA/NASD Ocular 
phenotype(s)

Systemic 
features

GEL-S04 GEL-S04-01 M 26 White 
British

CYP1B1 Congenital 
glaucoma 
(231300); 
ASD 6 
(617315)

Secondary NAOA CG; ectopia 
pupillae (RE); 
cataracts (LE)

.

GEL-S05 GEL-S05-01 M 24 White 
Other

CYP1B1 ASD 6 
(617315)

Secondary NAOA CG; ASD; 
cataracts

.

GEL-S05-04 F 8 Secondary NAOA CG; ASD; cor-
neal oedema; 
iris and
chorioretinal 
coloboma (LE)

.

GEL-S06 GEL-S06-01 M 19 White 
British

CYP1B1 Congenital 
glaucoma 
(231300); 
ASD 6 
(617315)

Secondary NAOA CG; nystag-
mus; cataracts; 
ASD

.

GEL-S07 GEL-S07-01 M 22 White 
British

CYP1B1 Congenital 
glaucoma 
(231300)

Primary . CG .

GEL-S08 GEL-S08-01 M 33 Asian 
Other

COL18A1 Knobloch 
syndrome, 
type 1, AR 
(267750)

Secondary NASD CG; high 
myopia; retinal 
dystrophy- 
part of 
Knobloch

Collagenopathy

GEL-S09# GEL-S09-01 M 18 White 
British

FOXC1 Axenfeld-
Rieger 
syndrome, 
type 3
(602482)

Secondary NASD CG; myopia; 
Haab striae; 
optic disc 
cupping

Flat feet; abnor-
mal shoulder 
positioning

GEL-S10 GEL-S10-01 M 36 Asian 
Pakistani

CYP1B1 Congenital 
glaucoma 
(231300); 
ASD 6 
(617315)

Secondary NAOA CG (unilat-
eral; RE); ASD; 
cataracts

.

GEL-S11 GEL-S11-01 M 25 Black 
Caribbean

CYP1B1 Congenital 
glaucoma 
(231300); 
ASD 6 
(617315)

Secondary NAOA CG; cataracts; 
nystagmus; 
ASD; astigma-
tism; myopia

.

GEL-S11-04 M 21 Primary . CG .
GEL-S12$ GEL-S12-01 F 19 White 

British
CYP1B1 Congenital 

glaucoma 
(231300); 
ASD 6 
(617315)

Secondary NASD GC; iris hypo-
plasia; ASD

Sensorineu-
ral hearing 
impairment

GEL-S13 GEL-S13-01 M 20 Asian 
Other

CYP1B1 Congenital 
glaucoma 
(231300)

Primary . CG .

Summary of each patient harbouring variant(s) identified in the regions of interest. Electronic and written notes of Moorfields Eye Hospital patients were 
examined, where available. AD: autosomal dominant; AR: autosomal recessive; ARS: Axenfeld-Rieger syndrome; ASD: anterior segment dysgenesis; CG: childhood 
glaucoma; CHED: congenital hereditary endothelial dystrophy of cornea; CMT: Charcot Marie tooth; F: female; LE: left eye; M: male; RE: right eye. *GEL-002 is 
diagnosed with PCG and their systemic abnormalities are considered due to a secondary unrelated genetic cause. #Family GEL-S09 was previously reported in 
Jackson et al. (2020) (Family 25,760) [74]. $Hearing impairment in GEL-S12 is likely caused by other genetic factors

Table 1  (continued) 



Page 8 of 19Al-Saei et al. BMC Genomics          (2024) 25:484 

(12/22) in CYP1B1 (11 families), 14% (3/22) in FOXC1 
(3 families), 9% (2/22) in TEK (2 families), 9% (2/22) in 
SBF2 (1 family), and 5% (1/22) in SLC4A11, COL18A1, 
and SOS2 (1 family each) (Fig. 3). All variants were either 
SNVs or indels, except for the novel 2.3Kb deletion 
in FOXC1 ((NC_000006.12:g.(1610150_1612452)del); 
overlapping exon 1). Two novel SNVs were identified to 
be likely associated with the phenotype, both of which 
were in the TEK gene, TEK(NM_000459.5):c.3011G>A 
p.(Trp1004*) and TEK(NM_000459.5):c.475+1G>T 
(Table  2). Only two (9%; 2/22) non-coding splice 
site variants (TEK(NM_000459.5):c.475+1G>T and 
SBF2(NM_030962.4):c.(2536+1G>A)) were detected in 
this cohort.

According to the classification guidelines of the Ameri-
can College of Medical Genetics and Genomics and the 
Association for Molecular Pathology (ACMG/AMP), 16 
of the SNVs and indels were classified as pathogenic (P) 
and 5 were classified as likely pathogenic (LP) (Table 2). 

The copy number variant (CNV) in FOXC1 scored class 
5 according to the ACMG criteria, which is considered 
pathogenic. All variants detected were in genes pre-
viously associated with glaucoma and are “Green” in 
the glaucoma panel of PanelApp except SLC4A11 and 
COL18A1 which are not in the glaucoma panel, but are 
rated “Green” in the corneal abnormalities (v1.12) and 
structural eye disease (v3.2) panels, respectively. How-
ever, the involvement of SLC4A11 and COL18A1 with 
glaucoma cases has been reported in the literature [88, 
112]. Furthermore, SOS2 is rated “Green” in the foetal 
anomalies panel (3.133), but recent studies have showed 
a probable association between variations in SOS2 and 
glaucoma [113, 114].

Genotype-phenotype correlations
CYP1B1  Variants in CYP1B1 (MIM number: 601771), 
associated with PCG and juvenile- or adult-onset primary 
open angle glaucoma (MIM: 231,300), were identified in 

Fig. 2  The diagnostic and research pipeline used in this analysis. Out of the 20 solved families, 16 were solved based on coding single nucleotide 
variants (SNVs) or insertions/deletions (indels) in genes from the developmental glaucoma panel, 3 were solved based on coding SNVs or indels outside 
the developmental glaucoma panel, whereas 1 were solved based on structural variants in genes from the developmental glaucoma panel. Flowchart 
adapted from Fig. 1 in “100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report”, by Smedley, et al., 2021, N Engl J Med, 
385(20), p. 1873
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55% (11/20) of the solved families, and were either homo-
zygous or compound heterozygous. Out of the 11 fami-
lies, 55% (6/11) had missense variants, 27% (3/11) had 
frameshift variants, while 18% (2/11) had both nonsense 
and missense variants (Table 2 and Table S3). One of these 
families (GEL-S11) was multiplex and exhibited pheno-
typic heterogeneity amongst affected siblings, in which 
one individual had PCG and the other had secondary 
glaucoma associated with non-acquired ocular anomalies 
including ASD, cataracts, nystagmus, myopia, and astig-
matism. Of the remaining 10 families, 5 exhibited PCG, 
whereas the remaining 5 exhibited secondary glaucoma- 
4 had non-acquired ocular anomalies including ectopia 
pupillae, iris hypoplasia, iris and chorioretinal coloboma, 
ASD, cataracts, and nystagmus, whereas 1 had glaucoma 

associated with non-acquired systemic diseases including 
hearing impairment (Table 2 and Table S3).

FOXC1  The forkhead box c1 gene (FOXC1; MIM num-
ber: 601090), associated with ASD (MIM: 601631) and 
ARS (MIM: 602482) was implicated in 3 families, who har-
boured heterozygous variants in FOXC1. Family GEL-S02 
and GEL-S09 had a missense (c.235C>A; p.Pro79Thr) and 
frameshift (c.1009_1012dup p.(Ala338Glyfs*191)) vari-
ant, respectively. Only GEL-S02 had PCG, whereas GEL-
S09 had ARS associated with secondary GC, myopia, and 
skeletal abnormalities. Additionally, family GEL-048 had 
a structural variant (NC_000006.12:g.(1610150_1612452)
del), which was associated with secondary glaucoma and 
non-acquired systemic complications including primary 
ciliary dyskinesia, dextrocardia, and conductive hearing 
impairment (Table 2 and Table S3).

Fig. 3  Monogenic pathogenic causes identified in the solved CG families. The mutational spectrum of families who received molecular diagnosis in 
this study. Majority (55%) of the families had variants in CYP1B1 gene, followed by 15% with variants in FOXC1, 10% in TEK, and 5% in SLC4A11, SBF2, SOS2, 
and COL18A1 (1 family each)
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Gene cDNA / GRCh38 Protein PVS1 PS3 PM1 PM2 PM5 PP3 PP5 Class. Family 
ID

COL18A1 NM_001379500.1
c.3523_3524del
21:45510090:CCT:C

p.(Leu1175Valfs*72) Y . . < 0.001 in 
gnomAD

. . Y P GEL-S08

CYP1B1 NM_000104.4
c.171G>A
2:38075218:C:T

p.(Trp57*) Y . . < 0.001 in 
gnomAD

. . Y P GEL-
S06*

CYP1B1 NM_000104.4
c.182G>A
2:38075207:C:T

p.(Gly61Glu) . . Y < 0.001 in 
gnomAD

Y Y Y P GEL-002;
GEL-
S11*

CYP1B1 NM_000104.4
c.840C>A
2:38074549:G:T

p.(Cys280*) Y . . < 0.0001 in 
gnomAD

. . Y P GEL-
S07*

CYP1B1 NM_000104.4
c.868dup
2:38074520:C:CG

p.(Arg290Profs*37) Y . . < 0.001 in 
gnomAD

. . Y P GEL-056;
GEL-S13

CYP1B1 NM_000104.4
c.1064_1076del
2:38071277:​T​T​C​T​G​C​C​T​G​
C​A​C​T​C:T

p.(Arg355Hisfs*69) Y . . < 0.001 in 
gnomAD

. . Y P GEL-
S04*

CYP1B1 NM_000104.4
c.1139A>G
2:38071215:T:C

p.(Tyr380Cys) . . Y < 0.00001 
in gnomAD 
exomes

. Y Y LP GEL-
S11*

CYP1B1 NM_000104.4
c.1147G>A
2:38071207:C:T

p.(Ala383Thr) . . Y < 0.00001 
in gnomAD 
exomes

. Y Y LP GEL-
S06*

CYP1B1 NM_000104.4
c.1159G>A
2:38071195:C:T

p.(Glu387Lys) . . Y < 0.001 in 
gnomAD

. Y Y P GEL-
S04*;
GEL-S05

CYP1B1 NM_000104.4
c.1168 C>T
2:38071186:G:A

p.(Arg390Cys) . . Y < 0.0001 in 
gnomAD

Y Y Y P GEL-
S07*

CYP1B1 NM_000104.4
c.1169G>A
2:38071185:C:T

p.(Arg390His) . . Y < 0.0001 in 
gnomAD

Y Y Y P GEL-S10

CYP1B1 NM_000104.4
c.1333T>A
2:38071021:A:T

p.(Phe445Ile) . . Y < 0.00001 
in gnomAD 
exomes

Y Y Y P GEL-S03

CYP1B1 NM_000104.4
c.1345del
2:38071008:TC:T

p.(Asp449Metfs*8) Y . . < 0.0001 in 
gnomAD

. . Y P GEL-S12

FOXC1 NM_001453.3
c.235 C>A
6:1610680:C:A

p.(Pro79Thr) . Y Y Absent from 
controls

Y Y Y P GEL-S02

FOXC1 NM_001453.3
c.1009_1012dup
6:1611451:G:GCGGC

p.(Ala338Glyfs*191) Y . . Absent from 
controls

. . Y P GEL-S09

SBF2 NM_030962.4
c.620G>T
11:10002689:C:A

p.(Gly207Val) . . . Absent from 
controls

. Y Y P GEL-
064*

SBF2 NM_030962.4
c.2536+1G>A
11:9853539:C:T

. Y . . Absent from 
controls

. . Y P

SLC4A11 NM_001174089.2
c.1343G>A
20:3230587:C:T

p.(Gly448Asp) . . . < 0.000001 
in gnomAD 
exomes

. Y Y LP GEL-007

SOS2 NM_006939.4
c.800T>A
14:50182521:A:T

p.(Met267Lys) . Y Y Absent from 
controls

Y Y Y P GEL-S01

Table 2  ACMG/AMP classification of the pathogenic or likely pathogenic single nucleotide variants identified
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TEK  The tyrosine kinase gene (TEK; MIM: 600221) 
associated with autosomal dominant PCG, was identi-
fied in families GEL-033 and GEL-050. Each had a novel 
variant in TEK; one was a nonsense variant (c.3011G>A 
p.(Trp1004*)) and the other was a splice site variant 
(c.475+1G>T), respectively. Both families exhibited sec-
ondary glaucoma with non-acquired ocular anomalies 
including megalocornea and iris hypoplasia (Table 2 and 
Table S3).

SLC4A11  The SLC4A11 gene (MIM: 610206), associated 
with autosomal recessive congenital hereditary endo-
thelial dystrophy (CHED; MIM: 217700), was detected 
in the multiplex family GEL-007, two affected individu-
als had a homozygous missense variant (c.1343G>A 
p.(Gly448Asp)). The proband (GEL-007-01) had second-
ary glaucoma with corneal oedema, while her sister (GEL-
007-04) had additional corectopic pupil and non-acquired 
systemic features (cardiac murmur) (Table  2 and Table 
S3).

SBF2  The set-binding factor 2 gene (SBF2; MIM: 607697), 
associated with Charcot-Marie-Tooth (CMT) disease, 
type 4B2 (MIM: 604563) was detected in the proband 
of family GEL-064 who harboured biallelic compound 
heterozygous variants; a missense variant (c.620G>T 
p.(Gly207Val)) and a splice site variant (c.2536+1G>A). 
The proband (GEL-064-01) exhibited secondary CG with 
non-acquired systemic features characterised by CMT, 
severe autism, and depression (Table 2 and Table S3).

SOS2  SOS2 gene (MIM: 601247) associated with Noonan 
syndrome 9 (MIM: 616559) was found in family GEL-S01 
with one affected individual (GEL-S01-01) with a hetero-
zygous missense variant (c.800T>A p.(Met267Lys)). The 
proband had secondary CG with non-acquired systemic 
disorders characterised by Noonan syndrome associ-
ated with cardiovascular anomalies, hearing abnormality, 
intellectual disability, and developmental delay (Table  2 
and Table S3).

COL18A1  The collagen, type xviii, alpha-1 gene 
(COL18A1; MIM: 120328) linked to autosomal recessive 
Knobloch syndrome (KS) type 1 (MIM: 267750) was iden-
tified in the proband of family GEL-S08. He has a homo-
zygous frameshift variant in COL18A1 (c.3523_3524del 
p.(Leu1175Valfs*72)) associated with secondary CG with 
non-acquired systemic disorders including collagenopa-
thy, in addition to ocular manifestations such as high 
myopia and retinal dystrophy (Table 2 and Table S3).

Variants of unknown significance
Eight unrelated patients were found to have 8 het-
erozygous variants of uncertain significance (VUS) in 
ADAMTS17 (NM_139057.4), CPAMD8 (NM_015692.5), 
CYP1B1 (NM_000104.4), GJA1 (NM_000165.5), 
MYOC (NM_000261.2), TEK (NM_000459.5), THBS1 
(NM_003246.4), and WDR36 (NM_139281.3) (Table  3 
and Table S4). The variant in ADAMTS17 was a 6.2Kb 
duplication (NC_000015.10:g.(100146719_100152954)
dup) of unknown significance. Current evidence is insuf-
ficient to prove disease causality of these variants, there-
fore, further investigation is required to confirm the 
pathogenicity.

Further phenotyping (Moorfields Eye Hospital patients)
Within the GE100KGP CG cohort, there were a total of 
48 Moorfields Eye Hospital (MEH) CG patients from 
41 unrelated families who underwent WGS, of which 
14 cases from 10 unrelated families were solved in this 
analysis with pathogenic variants in CYP1B1, COL18A1, 
FOXC1, SBF2, SLC4A11, and SOS2 (Table  1). Three of 
these are consanguineous families (GEL-007, GEL-S05, 
and GEL-S11). Additionally, 8 families (11 cases) had 
glaucoma-related surgeries (ranging from goniotomy, 
trabeculectomy, aqueous shunt implantation, and ciliary 
body cyclophotocoagulation), with an improvement in 
IOP reported in all individuals. Only case GEL-064-01 
was reported to have developed bilateral cataracts post 
glaucoma surgery (at 9 years of age), and corneal decom-
pensation was observed in GEL-S05-01 post surgery. Of 

Gene cDNA / GRCh38 Protein PVS1 PS3 PM1 PM2 PM5 PP3 PP5 Class. Family 
ID

TEK NM_000459.5
c.475+1G>T
9:27168606:G:T

. Y . . Absent from 
controls

. Y . LP GEL-050

TEK NM_000459.5
c.3011G>A
9:27217707:G:A

p.(Trp1004*) Y . . Absent from 
controls

. . . LP GEL-033

ACMG/AMP criteria for the classification of the identified variants. PVS1 is related to frameshift, nonsense, or splice site variants; PS3 is related to functional studies 
supporting the damaging effect of gene or variant; PM1 is related to missense variants in hotspot regions or functional domains; PM2 is related to the absence or 
presence at low frequencies in population databases like gnomAD, ExAC, 100 K, 1000 genomes; PM5 refers to alternative variants that have been determined to be 
pathogenic; PP3 related to computational predictions of pathogenicity; PP5 relates to pathogenic variants reported by reputable sources. Class: classification; LP: 
likely pathogenic; P: pathogenic; Y: Yes. *Variants in these families were inherited in compound heterozygous fashion, with variant phase being determined from 
parental data

Table 2  (continued) 



Page 12 of 19Al-Saei et al. BMC Genomics          (2024) 25:484 

Ta
bl

e 
3 

AC
M

G
/A

M
P 

cl
as

sifi
ca

tio
n 

of
 th

e 
sin

gl
e 

nu
cl

eo
tid

e 
va

ria
nt

s o
f u

nc
er

ta
in

 si
gn

ifi
ca

nc
e 

id
en

tifi
ed

G
en

e
cD

N
A

 / 
G

RC
h3

8
Pr

ot
ei

n
O

M
IM

PV
S1

PS
3

PM
1

PM
2

PM
5

PP
2

PP
3

PP
5

BS
2

BP
1

BP
4

BP
6

Cl
as

s.
CP

AM
D

8
N

M
_0

15
69

2.
5

c.
41

57
C>

A
19

:1
69

04
32

0:
G

:T

p.
(T

hr
13

86
As

n)
AR

.
.

.
<

 0
.0

00
1 

in
 g

no
m

AD
.

.
Y

.
.

Y
.

.
VU

S*

CY
P1

B1
N

M
_0

00
10

4.
4

c.
11

03
G

>
A

2:
38

07
12

51
:C

:T

p.
(A

rg
36

8H
is)

AR
.

Y
Y

<
 0

.0
1 

in
 g

no
m

AD
Y

.
.

Y
.

.
Y

Y
VU

S*

G
JA

1
N

M
_0

00
16

5.
5

c.
96

2G
>

T
6:

12
14

47
80

9:
G

:T

p.
(G

ly
32

1V
al

)
AD

, A
R

.
.

.
<

 0
.0

00
1 

in
 g

no
m

AD
.

Y
.

.
.

.
.

.
VU

S

M
YO

C
N

M
_0

00
26

1.
2

c.
52

6d
el

1:
17

16
52

08
5:

TC
:T

p.
(G

lu
17

6A
rg

fs
*2

)
AD

Y
.

.
<

 0
.0

00
03

 in
 g

no
m

AD
 e

xo
m

es
.

.
.

.
Y

.
.

.
VU

S

TE
K

N
M

_0
00

45
9.

5
c.

69
1G

>
C

9:
27

17
26

78
:G

:C

p.
(G

ly
23

1A
rg

)
AD

.
.

.
Ab

se
nt

 fr
om

 c
on

tr
ol

s
.

.
Y

.
.

.
.

.
VU

S

TH
BS

1
N

M
_0

03
24

6.
4

c.
25

71
 C

>
G

15
:3

95
92

60
6:

C:
G

p.
(A

sp
85

7G
lu

)
N

/A
.

.
.

Ab
se

nt
 fr

om
 c

on
tr

ol
s

.
.

Y
.

.
.

.
.

VU
S

W
D

R3
6

N
M

_1
39

28
1.

3
c.

20
60

 C
>

T
5:

11
11

21
05

3:
C:

T

p.
(S

er
68

7L
eu

)
N

/A
.

.
.

<
 0

.0
00

1 
in

 g
no

m
AD

.
.

Y
.

.
.

.
.

VU
S

A
CM

G
/A

M
P 

cr
it

er
ia

 fo
r t

he
 c

la
ss

ifi
ca

ti
on

 o
f v

ar
ia

nt
s 

of
 u

nc
er

ta
in

 s
ig

ni
fic

an
ce

 (V
U

S)
 id

en
ti

fie
d 

in
 th

e 
co

ho
rt

. P
VS

1 
is

 re
la

te
d 

to
 fr

am
es

hi
ft

, n
on

se
ns

e,
 o

r s
pl

ic
e 

si
te

 v
ar

ia
nt

s;
 P

S3
 is

 re
la

te
d 

to
 fu

nc
tio

na
l s

tu
di

es
 s

up
po

rt
in

g 
th

e 
da

m
ag

in
g 

eff
ec

t o
f g

en
e 

or
 v

ar
ia

nt
; P

M
1 

is
 re

la
te

d 
to

 m
is

se
ns

e 
va

ria
nt

s 
in

 h
ot

sp
ot

 re
gi

on
s 

or
 fu

nc
tio

na
l d

om
ai

ns
; P

M
2 

is
 re

la
te

d 
to

 th
e 

ab
se

nc
e 

or
 p

re
se

nc
e 

at
 lo

w
 fr

eq
ue

nc
ie

s 
in

 p
op

ul
at

io
n 

da
ta

ba
se

s 
lik

e 
gn

om
A

D
, 

Ex
A

C
, 1

00
K,

 1
00

0 
G

en
om

es
; P

M
5 

re
fe

rs
 to

 a
lte

rn
at

iv
e 

va
ria

nt
s 

th
at

 h
av

e 
be

en
 d

et
er

m
in

ed
 to

 b
e 

pa
th

og
en

ic
; P

P2
 is

 re
la

te
d 

to
 a

 g
en

e 
w

he
re

 m
is

se
ns

e 
va

ria
tio

n 
is

 a
 c

om
m

on
 c

au
se

 o
f d

is
ea

se
; P

P3
 is

 re
la

te
d 

to
 c

om
pu

ta
tio

na
l 

pr
ed

ic
tio

ns
 o

f p
at

ho
ge

ni
ci

ty
; P

P5
 re

la
te

s t
o 

pa
th

og
en

ic
 v

ar
ia

nt
s r

ep
or

te
d 

by
 re

pu
ta

bl
e 

so
ur

ce
s.

 B
S2

 is
 re

la
te

d 
to

 v
ar

ia
nt

s o
bs

er
ve

d 
in

 h
ea

lth
y 

ad
ul

t p
op

ul
at

io
ns

; B
P1

 is
 re

la
te

d 
to

 m
is

se
ns

e 
va

ria
nt

s i
de

nt
ifi

ed
 in

 a
 g

en
e 

w
he

re
 

tr
un

ca
tin

g 
va

ria
tio

n 
is

 a
 c

om
m

on
 c

au
se

 o
f d

is
ea

se
; B

P4
 re

fe
rs

 to
 m

ul
tip

le
 in

 si
lic

o 
al

go
rit

hm
s s

ug
ge

st
in

g 
no

 e
ffe

ct
 o

n 
ge

ne
 o

r g
en

e 
pr

od
uc

t; 
BP

6 
re

fe
rs

 to
 a

 re
lia

bl
e 

so
ur

ce
 re

po
rt

in
g 

th
e 

va
ria

nt
 a

s b
en

ig
n.

 C
la

ss
: c

la
ss

ifi
ca

tio
n;

 
LP

: l
ik

el
y 

pa
th

og
en

ic
; P

: p
at

ho
ge

ni
c;

 V
U

S:
 v

ar
ia

nt
 o

f u
nc

er
ta

in
 s

ig
ni

fic
an

ce
; Y

: Y
es

. *
Th

es
e 

va
ria

nt
s 

ha
d 

co
nfl

ic
tin

g 
ev

id
en

ce
 o

f p
at

ho
ge

ni
ci

ty
 in

 th
e 

lit
er

at
ur

e,
 s

o 
w

er
e 

co
ns

id
er

ed
 V

U
S 

in
 th

is
 a

na
ly

si
s



Page 13 of 19Al-Saei et al. BMC Genomics          (2024) 25:484 

this MEH series, 1 family had PCG (GEL-S07), while the 
remaining 9 families had secondary CG, of which 4 had 
non-acquired ocular anomalies such as corneal oedema, 
retinal dystrophy, cataracts, and refractive errors, and 5 
families exhibited non-acquired systemic features rang-
ing from a cardiac murmur (GEL-007-04), collagenopa-
thy (GEL-S08-01), skeletal anomalies (GEL-S09-01), 
hearing impairment (GEL-S12-01) and multiple morbidi-
ties (GEL-064-01) including Charcot-Marie-Tooth dis-
ease, demyelinating polyneuropathy, hydromyelia, autism 
spectrum disorder, anxiety, depression, and chronic 
fatigue (Table 1, Tables S2 and S3).

Discussion
Childhood glaucoma is a developmental eye disorder 
associated with significant genetic and phenotypic vari-
ability. A substantial proportion of childhood blindness 
is attributed to this severe, progressive glaucoma, neces-
sitating early detection and management. Besides mono-
genic factors, the aetiology of CG is further complicated 
by interactions of gene regulatory networks, resulting in 
it being associated with additional non-acquired ocu-
lar features and/or systemic manifestations as seen in 
56% (44/78) of our patient cohort. Herein, we report 
a comprehensive characterisation of the GE100KGP’s 
CG cohort, with an extensive description of the genetic 
and phenotypic spectrum in 78 CG families undergoing 
WGS. This work also highlights the crucial role of multi-
disciplinary care with detailed evaluation of patient phe-
notype and medical history to improve clinical diagnosis 
and inform genetic counselling.

The diagnostic yield for the CG cohort in the 
GE100KGP (including the solved families by the GE/
GMC diagnostic pipeline) is now 26% (20/78), which 
is comparable to the diagnostic rate of CG recently 
reported in an Australasian cohort (30.4%) [25]. The cur-
rent diagnostic rate of the GE/GMC diagnostic pipeline 
for rare diseases is 20.3% [115]. Variants identified in this 
analysis were previously missed by the GE/GMC diag-
nostic pipeline for a variety of plausible reasons including 
the variant tiering process, which omitted many popula-
tion-specific pathogenic variants (that exceeded an allele 
frequency of 0.01 for autosomal recessive and 0.001 for 
autosomal dominant variants in one subpopulation), fil-
tering methodologies, eliminating disease-causing non-
coding variants [116], the use of smaller gene panels that 
lacked some of the recently discovered disease-causing 
genes at the time of analysis, in addition to the prioriti-
sation of small variants (SNVs/Indels) analysis and dis-
missal of larger (structural and copy number) variants 
[115, 116]. The residual majority of CG families remain 
unsolved (74%; 58/78), which may partially be explained 
by the limited sample size, the presence of variants in 
non-coding regions which exert regulatory roles on gene 

expression but are more challenging to interpret and 
typically require experimental validation [117]. Analysis 
is limited to pre-defined gene panels linked to specific 
phenotypes/diseases, and thus runs the risk of overlook-
ing diagnoses and genes beyond the those in the panels 
applied. In a recent study, the DeNovoLOEUF tool was 
used to filter for rare, de novo, loss-of-function (LoF) 
variants in disease-causing genes in all rare diseases trios 
(13,949) in the GE100KGP [118]. Out of the 332 variants 
detected, 324 (98%) were diagnostic or partially diagnos-
tic, and 39 diagnoses were identified, which were over-
looked by the typical analysis of the GE100KGP data 
[118]. Applying such tool could potentially solve further 
cases in the CG cohort.

Approximately 90% (18/20) of the solved families 
obtained a molecular diagnosis based on variants (SNVs 
or CNVs) in genes determined by the PanelApp (Fig. 2). 
Our understanding of the genotype-phenotype correla-
tions is constantly evolving. Therefore, this illustrates the 
necessity of global partnerships to improve virtual gene 
panel curation and address inconsistencies, which can 
ultimately enable healthcare systems to incorporate and 
participate in data exchange [119].

CYP1B1, was the most prevalent gene in the 
GE100KGP CG cohort, accounting for a total of 13 cases 
from 11 unrelated families (11/20, 55%). In a cohort with 
mostly Caucasian participants [73], this prevalence (1 in 
7) of CYP1B1 is comparable to that reported in literature 
(1 in 5) [47, 120–122]. The majority of CYP1B1-related 
families (55%) had secondary CG, while 45% of them had 
PCG. Interestingly, the proband GEL-002-01 had PCG 
consistent with the homozygous inheritance of the patho-
genic variant (c.182G>A p.(Gly61Glu)) in CYP1B1. How-
ever, she also exhibited significant multisystem disorders, 
and after discussion within a regional multidisciplinary 
genetics team, it was concluded that there was likely to 
be another unrelated genetic cause for these systemic fea-
tures. The precise function of CYP1B1 in the human eye 
and CG development is still unknown. In mouse models, 
however, the deficiency of Cyp1b1 appears to be involved 
in maldevelopment of the anterior eye structures, which 
regulate the aqueous humour outflow pathway [36, 123, 
124]. Since glaucoma eventually results from defects in 
the RGCs due to increased sensitivity to IOP changes, the 
influence of Cyp1b1 on the development of RGCs under 
normal and stressed conditions, such as elevated ocular 
pressure, was investigated [123]. It was found that where 
deletion of Cyp1b1 alone is insufficent to demonstrate 
glaucomatous features in mice, it may increase the sus-
ciptibility of RGCs to degeneration in reponse to elevated 
IOP [123].

Two patients in the cohort (GEL-033-01 and GEL-
050-01) had heterozygous variants in the TEK gene, 
associated with secondary glaucoma and megalocornea 
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in both cases. The first patient had a loss-of-function 
variant TEK(NM_000459.5):c.3011G>A p.(Trp1004*), 
while the other had a novel splice donor variant 
TEK(NM_000459.5):c.475+1G>T, which was also car-
ried by her asymptomatic mother. The splice donor vari-
ant occurring at the boundary of exon 3, is predicted 
by the SpliceAI [125] and the Human Splicing Finder 
[126] to affect splicing, and is classified as likely patho-
genic according to the ACMG guidelines (Table  2). The 
proper translation of proteins is highly dependent on 
the pre-mRNA splicing machinery [127]. Alterations to 
sequences at the splicing regions could disrupt the splic-
ing system, resulting in exon skipping, new cryptic exons, 
or the development of new exon/intron junctions, that 
would consequently affect the processing of transcripts 
[127, 128], and may affect the production or function of 
proteins, which could explain the phenotype observed in 
the patient. However, molecular and functional valida-
tions are required to investigate the precise impact of the 
splicing variant on the function of the TEK gene and help 
establish genotype-phenotype correlations. Additionally, 
previous studies have reported asymptomatic carriers 
without the classic early-onset CG phenotype in fam-
ily members of affected individuals, suggesting that TEK 
gene may be associated with variable penetrance and 
expressivity in terms of severity and age of onset [64, 65], 
in keeping with this case.

In our cohort, 3 families (GEL-048, GEL-S02, and GEL-
S09) harboured heterozygous autosomal dominant vari-
ants in FOXC1, one of which had a clinical diagnosis of 
PCG (GEL-S02), while the remaining 2 cases had ARS 
associated with CG, hearing impairment, and congeni-
tal heart defects (in GEL-048), and glaucoma with myo-
pia and skeletal anomalies characterised by flat feet and 
abnormal shoulder positioning (in GEL-S09). It has been 
established that variations in FOXC1 gene are often asso-
ciated with a wide range of abnormalities such as vari-
ous types of glaucoma and systemic anomalies, including 
hearing loss [129]. This emphasizes the need for testing 
the FOXC1 gene in cases of CG particularly, as clinical 
symptoms of ARS can be subtle and go undetected [1].

Case GEL-S01-01 was diagnosed with Noonan syn-
drome associated with intellectual disability, cardiac 
abnormalities, hearing impairment, and ocular manifes-
tations including CG and ptosis. The patient was found 
to have a missense variant in SOS2, a gene known to be 
associated with Noonan syndrome [130]. Furthermore, 
SOS2 was found to be expressed in the human TM [113], 
and recent genome-wide and whole-exome studies have 
identified risk loci in SOS2 that may be associated with 
IOP and POAG, which could be involved in the signal-
ing pathways and developmental processes that under-
lie the risk for IOP elevation [113, 114]. Similarly, case 
GEL-S08-01 with CG and features of autosomal recessive 

Knobloch syndrome (KS) had homozygous missense 
variants in COL18A1. KS is typically associated with high 
myopia, retinal detachment, lens subluxation, and occipi-
tal encephalocele [131]. Other ocular anomalies, such 
as early-onset and acute angle closure glaucomas, have 
also been observed in KS patients [132, 133]. To the best 
of our knowledge, only three studies in literature have 
reported COL18A1-associated angle closure glaucomas 
in KS patients, suggesting a role for COL18A1 in irido-
corneal angle closure [112, 132, 133].

Less than half of the CG cohort in the GE100KGP 
(44%; 34/78) had PCG, while 56% (44/78) of the families 
had secondary glaucoma. Furthermore, of the second-
ary group, 55% (24/44) had glaucomas associated with 
non-acquired ocular anomalies whereas 45% (20/44) had 
non-acquired systemic diseases (Fig.  1A). Patients with 
syndromic features requires a multidisciplinary team 
approach and input by specialist paediatricians to reduce 
co-morbidities. The large majority of families (74%; 
58/78) remain unsolved (Fig.  1C), and thus require fur-
ther investigation for novel genes or regulatory elements, 
and implementation of improved tools to facilitate the 
diagnosis. Furthermore, acquired conditions, that are not 
present at birth, may also be responsible for the CG in a 
proportion of the unexplained cases, including traumas, 
steroid-induced glaucoma, uveitis, tumours, retinopathy 
of prematurity, and surgeries [2, 134–136].

Comprehensive diagnostic assessment capturing all 
relevant clinical information is of utmost importance, as 
the primary diagnosis in the clinic can impact the selec-
tion of gene panel and subsequent results. In family 
GEL-007, the proband and her sister were found to har-
bour a likely pathogenic homozygous missense variant 
in SLC4A11 (c.1343G>A p.(Gly448Asp)), a gene known 
to be associated with autosomal recessive congenital 
hereditary endothelial dystrophy (CHED). Glaucoma 
is a known associate feature of CHED [137–139], and 
can lead to misdiagnosis due to overlap in clinical fea-
tures during early childhood [140]. However, in the case 
of this family, the patients were not available for clinical 
re-examination to confirm the correct diagnosis. Thor-
ough evaluation should be carried out when glaucoma is 
suspected to ensure accurate disease phenotyping, and 
applying a mixed gene panel (including anterior segment, 
cornea, cataract and glaucoma genes) can increase the 
molecular diagnosis rate. Similarly, a 27-year-old male 
patient GEL-064-01 presented with multisystemic fea-
tures including CMT disease, demyelinating polyneu-
ropathy, severe autism, depression, anxiety, had mobility 
issues, and hydromyelia. He was found to harbour two 
compound heterozygous pathogenic variants in the 
SBF2 gene (c.620G>T p.(Gly207Val) and c.2536+1G>A), 
both found at the boundaries of exons 7 and 20, respec-
tively. Variants in SBF2 are known to be associated with 
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Charcot-Marie-Tooth disease type 4B2 accompanied by 
early-onset glaucoma (CMT4B2, MIM: 604563) [141, 
142]. Establishing the clinical diagnosis positively influ-
enced our analysis and made it possible to draw a genetic 
conclusion. CG families who have a molecularly-con-
firmed diagnosis enable genotype-phenotype correla-
tions to be established and future prognostic indication.

Miscommunication of clinical phenotype between 
clinicians and clinical scientists can lead to diagnostic 
errors, such as failing to order the necessary test, or mak-
ing errors during analysis and variant interpretation due 
to phenotypic terminologies being missing, imprecise, or 
misinterpreted [143]. For example, clinicians may apply 
terms to describe the patient’s current phenotype with-
out consideration of modifying factors such as surgery i.e. 
a presenting adult with PCG, who may have had several 
surgeries and now displays corectopia or develops cata-
racts or corneal decompensation, as opposed to the naïve 
(pre-intervention) congenital disease features. Providing 
more information on the patient’s medical presentation 
would aid the interpretation process and boost the prob-
ability of diagnosing the patient [143]. The proper use of 
HPO terminology will eliminate misinterpretations dur-
ing the analysis, thereby improving diagnostics [143].

In this cohort, 8 unrelated patients had 8 unique VUSs, 
which require further investigation. Interestingly, only 1 
of the VUS cases was a trio (i.e. patient with both par-
ents) while the remaining were duos (a patient with a 
single parent) or singletons (patient only). A recent study 
by Rehm, et al. (2023) demonstrated that the use of trios 
reduced the rates of inconclusive results compared to the 
use of less-than-trio (18.9% versus 27.6%, respectively) 
[144]. With the increased adoption of high-throughput 
NGS technologies, approximately 40% of total variants 
are inconclusive and are considered VUS [145]. None-
theless, variant interpretation has been improved by 
standardised classification (such as the use of the ACMG 
guidelines), establishment of publicly available databases 
integrating supporting evidence from epidemiological, 
clinical, structural, and functional data (such as gnomAD 
[103], ClinVar [109], TopMed [104], etc.), and collabora-
tive efforts of researchers and expert working groups to 
systematically curate the variant data and review proto-
cols of variant interpretation [146–148], as well as the 
utilisation of in silico tools that have the potential to 
enhance pathogenicity predictions of new variants [105, 
149, 150].

Conclusion
Understanding the aetiology of CG is crucial to delivering 
the most suitable clinical management and genetic coun-
selling, though it remains challenging given the variable 
penetrance and genetic heterogeneity associated with the 
disease. The majority of the CG cases are still genetically 

undiagnosed possibly due to complex causative factors 
such as gene modifiers, non-coding variants, novel genes, 
variants of unknown significance, or non-Mendelian 
aetiologies (such as epigenetic markers), or non-genetic 
causes that are not considered in the current analysis 
pipelines. Combining various technologies such as long-
read sequencing, RNA sequencing, and multiomics with 
regular re-analysis of the genomic data could help resolve 
these limitations. In addition, sequencing additional fam-
ily members and conducting segregation analysis can 
help exclude many non-pathogenic variations. Herein, 
we demonstrate that through systematic analysis of gene 
panels, we were able to effectively improve the propor-
tion of genetically diagnosed CG families within the 
GE100KGP cohort to 26%. By expanding the genetic 
spectrum of CG, our knowledge of the underlying biolog-
ical pathways may ultimately help personalise the treat-
ment of glaucoma.
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