Skip to main content
Figure 3 | BMC Genomics

Figure 3

From: Genome-wide association between DNA methylation and alternative splicing in an invertebrate

Figure 3

Alternative splicing and DNA methylation in genes is associated with a longer gene length. The cumulative distribution function (CDF) for the size of a gene (the size of the gene body, including introns, is the number of base pairs (bp) in the gene annotation) is plotted for several categories of gene methylation and alternative splicing. Top left panel: The CDFs of methylated and unmethylated genes show that methylated genes are longer than unmethylated genes. Top right panel: Alternatively spliced genes are longer than non-alternatively spliced genes. Bottom left panel: Methylation is also associated with longer gene size among non-alternatively spliced genes. Bottom right panel: Methylation is associated with longer gene size among alternatively spliced genes. Splice variants were annotated by assembling a de novo transcriptome from RNA-seq data. The length of a gene is defined to be the maximum length from any splice variant (including introns) of that gene. The significance of shifted distributions was quantified by using the Wilcoxon rank sum test with continuity correction (P < 2.2e-16 for each panel). Genome-wide DNA methylation data were obtained from BS-seq[18].

Back to article page