Skip to main content
Figure 11 | BMC Genomics

Figure 11

From: Transcriptomic changes during regeneration of the central nervous system in an echinoderm

Figure 11

Suppression of excitotoxicity as a possible adaptation contributing to efficient neural regeneration in echinoderms. (A) The relevant genes in the transcriptome of the sea cucumber H. glaberrima. Their expression levels (relative to the uninjured tissues) and results of homology search against the UniProt database. Red and blue colors indicate significant (adjusted p < 0.001, more than two fold change in expression level) up-regulation or down-regulation, respectively. (B) A diagram illustrating a hypothetical mechanism of excitotoxicity suppression in the injured radial nerve cord of H. glaberrima. Down-regulation of genes coding for two enzymes, GCPII and Abat, results in decreased glutamate production. Decreased activity of GCPII also leads to accumulation of its substrate, NAAG, which further inhibits release of glutamate from presynaptic terminals, but stimulates production of TGF-beta, which promotes neuronal survival. Down-regulation of ionotropic glutamate receptors (Glur1, Glur4) reduces the overstimulation of the post-synaptic membrane by glutamate and thus prevents downstream neurotoxic cascades from being triggered.

Back to article page