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Abstract

Background: The identification of gene differential co-expression patterns between cancer stages is a
newly developing method to reveal the underlying molecular mechanisms of carcinogenesis. Most
researches of this subject lack an algorithm useful for performing a statistical significance assessment
involving cancer progression. Lacking this specific algorithm is apparently absent in identifying precise gene
pairs correlating to cancer progression.

Results: In this investigation we studied gene pair co-expression change by using a stochastic process
model for approximating the underlying dynamic procedure of the co-expression change during cancer
progression. Also, we presented a novel analytical method named 'Stochastic process model for Identifying
differentially co-expressed Gene pair' (SIG method). This method has been applied to two well known
prostate cancer data sets: hormone sensitive versus hormone resistant, and healthy versus cancerous.
From these data sets, 428,582 gene pairs and 303,992 gene pairs were identified respectively. Afterwards,
we used two different current statistical methods to the same data sets, which were developed to identify
gene pair differential co-expression and did not consider cancer progression in algorithm. We then
compared these results from three different perspectives: progression analysis, gene pair identification
effectiveness analysis, and pathway enrichment analysis. Statistical methods were used to quantify the
quality and performance of these different perspectives. They included: Re-identification Scale (RS) and
Progression Score (PS) in progression analysis, True Positive Rate (TPR) in gene pair analysis, and Pathway
Enrichment Score (PES) in pathway analysis. Our results show small values of RS and large values of PS,
TPR, and PES; thus, suggesting that gene pairs identified by the SIG method are highly correlated with
cancer progression, and highly enriched in disease-specific pathways. From this research, several gene
interaction networks inferred could provide clues for the mechanism of prostate cancer progression.

Conclusion: The SIG method reliably identifies cancer progression correlated gene pairs, and performs
well both in gene pair ontology analysis and in pathway enrichment analysis. This method provides an
effective means of understanding the molecular mechanism of carcinogenesis by appropriately tracking
down the process of cancer progression.
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Background

Microarray technology enables us to examine the expres-
sions of thousands of genes on a genomic scale. It has
great potential to reveal the molecular mechanism of
many diseases including cancer progression. However,
because microarray technology usually uses differentially
expressed genes as its fundamental base, it generates an
enormous amount of information. Analysing this large
amount of information for researchers is strenuous and
often leaves to miss accurate interpretation of it.

Recent studies based on the pattern of gene co-expression
shed light on the deficient methods to analyse the expres-
sion of differential genes. Evidence has shown that genes
with similar transcriptional expression profiles are likely
to be regulated through the same mechanisms [1]. This
pattern change of co-expression at the transcriptional level
may directly indicate the change of regulatory networks
during different stages of cancer progression. There also
exists a relationship between gene pair co-expression and
the interaction of their encoded proteins [2-5]. This pro-
tein interaction variation is able to be monitored on a
genomic scale via the change of gene pair co-expression.
Furthermore, analysis of genome-wide co-expression may
provide information on those weakly expressed differen-
tial genes. Nevertheless they are co-expressed with detect-
able differentially expressed genes [6].

Several approaches [7-10] have been made to explore dif-
ferential gene pair co-expression patterns at two biological
stages. Lai YL et al. [7] extended the traditional F-statistic
to Expected Conditional F-statistic (ECF-statistic), to
detect these gene pairs at different cellular states. Choi JK
et al. [8] combined the effect size as a standardized index
for meta-analysis, to measure the covariate effect of gene
pairs in a number of different cancers, then constructed
cancerous and healthy co-expression networks; with the
view of gene network, differentially co-expressed gene
pairs could be identified. Li KC [10] devised a conception
of liquid association (LA) to study genome-wide co-
expression dynamics. His method shows that the co-
expression alteration of two genes depends on the expres-
sion level of a third gene. Yoon SH et al. [9] defined a cor-
relation ratio to present gene pair co-expression change
and assessed statistical significance for gene co-expression
change based on a distribution of correlation ratio.

All of the above methods are very insightful; however,
they lack to provide a view that the change of gene pair co-
expression pattern results from disease progression. Iden-
tifying gene co-expression pattern change usually involves
a statistical significance assessment. If a cancer progres-
sion is not considered during the assessment of signifi-
cance, the identified gene pairs would have less
correlation with cancer progression. On the other hand,
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some gene pairs representing disease progression might
be missed. Therefore, more realistic model concerning
cancer progression in a significance assessment is needed.

A stochastic process model is an ideal tool to address pro-
gression-related issues. For a series of random events, the
stochastic process has the capability to quantify the inher-
ent dynamic rules in terms of probability; it is certainly
being useful when uncertainty is involved in the progres-
sion.

Cancer progression is an evolutionary process which is
constituted by a series of random genomic mutation
events and governed by selective pressure [11]. Under
such pressure the mutations acquired result in a relatively
small number of clones of cancer cells [12]. Such mutated
cells genetically develop into being immune evasive,
resistant to chemotherapy, and very adaptive to androgen
ablation for a prostate cancer. These nature selected mech-
anisms for survival result from random events presented
in the final consecutive genetic alterations. During recent
decades, a number of stochastic models [12-14] with var-
ying degrees of mathematical complexity have been pre-
sented to describe some processes of carcinogenesis, such
as cell growth, chemotherapy resistance, and angiogen-
esis.

To analyse co-expression performance during cancer pro-
gression, understanding that at each mutation step the co-
expression of a gene pair may change randomly is critical.
Therefore, in our study we mainly seek to develop a sto-
chastic system to study the gene pair co-expression
change. During the process, most co-expressions do not
change remarkably. Yet, some co-expressions of genes
have significant changes which are determined or elected
by nature selection during cancer cell evolution. Our
method uses the theory of evolution as foundation for sig-
nificance assessment. The stochastic process is used to
approximate the co-expression change as a null distribu-
tion based to identify significant co-expression change.
This identification process highly correlates with cancer
progression procedure, and the identified gene pairs could
reflect nature selected cancer cell's strategy for survival. In
particular, there is a simple stochastic process case - the
random walk, which has been widely used in carcinogen-
esis study, especially when genomic variations are
involved [15-17]. Since gene pair co-expression changes
take place on a genomic scale, in this study we employ the
random walk model to approximate co-expression change
during cancer progression.

Prostate cancer is a leading cause of death in the United
States and Western Europe [18]. Dietary factors, lifestyle-
related factors, and hormones, particularly androgens,
have long been implicated in the pathogenesis of prostate
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cancer (review [19]). Therapy for the advanced form of
prostate tumour generally involves either surgical gona-
dectomy to remove the major source of androgens or drug
treatments that suppress androgen production and trans-
portation. These treatments are somewhat -effective
because they can initiate apoptosis in prostate cancer cells.
When the tumour is able to be effectively treated it is
termed as being hormone sensitive (HR). Unfortunately,
some fractions of the prostate cancer cells finally survive
the therapy, and become highly aggressive and metastatic.
This treatment-ineffective stage is usually regarded as hor-
mone refractory (HR). The molecular mechanisms of
prostate cancer carcinogenesis and progression are still
hard to understand in part due to the few studies focusing
on detecting gene co-regulation changes in the context of
cancer progression.

In this study, we present a novel analytical method named
'Stochastic process model for Identifying differentially co-
expressed Gene pair' (SIG method) to investigate gene
pair co-expression change. The SIG method aims to iden-
tify gene pairs with significant differential co-expression
patterns, and combines a stochastic model with gene pair
co-expression change. For each gene, we derive its analyt-
ical distribution of co-expression change with other genes;
which is very useful when wanting to determine the signif-
icance assessment of gene pair co-expression change.
Based on analytical distribution results and multiple
hypothesis testing, we assess the significance of co-expres-
sion change. Furthermore, we are then able to identify
gene pairs significantly different co-expressed. We apply

Table I: Performance comparison for three methods
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this method to two microarray data sets, both of which
measure gene expressions in prostate cancers with pro-
gression relationships. One data set consists of hormone
sensitive tumours and hormone refractory tumours [20],
the other data set consists of healthy and cancerous pros-
tate tissues [21]. When the SIG method is applied a large
number of gene pairs co-expressed differentially are then
detected, and some regulatory networks are reconstructed
according to the identified pairs. In turn, many mecha-
nisms of prostate cancer progression are revealed. This
method is compared with two other similar methods: the
Expected Conditional F-statistic method (ECF method)
presented by Lai YL et al. [7] and the Detection of Altered
Gene Associations method (DAGA method) proposed by
Yoon SH et al. [9]. To evaluate the methods systematically,
we compare the results of three methods from three differ-
ent perspectives: cancer progression analysis, gene pair
analysis, and pathway analysis.

Results

Being stochastic model based, the SIG method is able to
calculate and predict the process of co-expression change.
The effect of cancer progression is involved in gene pair
identification, and gene pairs with significant co-expres-
sion change could be detected with high relevance to can-
cer progression. Herein, the three approaches of the SIG
method, the ECF method [7] and the DAGA method [9]
were applied to two data sets [20,21], and their perform-
ance are assessed comparably from three perspectives:
progression, gene pair and pathway. The same threshold
for significance assessment was set for the three methods,

Data type Statistics Methods
SIG method ECF method DAGA method
HS vs. HR Identified pairs 428,582 2,101,425 5,212,394
RS 1.49% 100% 91.07%
P-value of RS 0.011 | 0.93
PS_Avg 1.74 0 0.02
P-value of PS_Avg 0.032 | 0.97
TFR 1.39% 0.49% 0.26%
PES_Avg 3.56 2.56 2.02
cancer vs. healthy Identified pairs 303,992 14,228,478 32,569,223
RS 1.40% 100% 96.21%
P-value of RS 0.013 | 0.87
PS_Avg 1.65 0 0.0l
P-value of PS_Avg 0.036 | 0.99
TFR 0.92% 0.39% 0.25%
PES_Avg 3.32 2.36 1.86

RS: Re-identification Scale, overlap between the pairs identified before and after changing disease progression relation; PS: Progression Score, ratio
of the nominal P-value of a pair before changing disease progression relation to that of a pair after changing disease progression relation; TPR: True
Positive Rate, the proportion of functionally relevant pairs in all characterized pairs; PES: Pathway Enrichment Score, the degree to which
differentially co-expressed gene pairs are overrepresented at a pathway. The 'Avg' refers to the average value for an item.
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and results of performance comparison were listed in
table 1.

Datasets used

Two public microarray data sets were used to assess the
performance of three methods. One data set [20] includes
10 HR primary prostate tumour biopsies and 10 primary
untreated HS tumours. After dissecting the samples by
Laser Capture Microdissection, the RNA was extracted and
amplified. The gene expressions were assessed using
Affymetrix Human Genome U133A GeneChip, which
contains probes representing 22,344 genes and expressed
sequence tags (ESTs). We normalized the data by rescaling
all arrays in order to equalize the median intensities of
them. For each chip, the intensities of replicated genes
were averaged. Genes with more than 60% missing values
were excluded. The missing values of remaining genes
were imputed via KNN method which uses nearest neigh-
bour averaging. After filtering, there were 4,848 genes for
analyses.

The other data set [21] without missing value contains
high-quality expression profiles which were derived from
52 prostate tumours and 50 healthy prostate specimens,
using oligonucleotide microarrays containing probes for
approximately 12,600 genes and ESTs. The methods for
normalization and processing replicated genes were the
same as those for the above data set and 8,921 genes
remained after data pre-processing.

Analysis from progression perspective

Generally, cancer progression is irreversible. For instance,
prostate cancer progresses from HS stage into HR stage;
however, HR prostate cancer hardly converts back into HS
prostate cancer. Therefore, taking the progression of can-
cer into account, one will tend to identify the gene pair
highly correlated with progression. We call such gene pair
as 'progressive'. In contrast, given a reverse progression the
possibility of identifying this gene pair would be elimi-
nated.

First step was to calculate the gene pair differential co-
expression based on the original order of progression, the
identified gene pairs were then called 'pre-changed' pairs.
Next, we reversed this data invertedly to the order of pro-
gression. These identified gene pairs were then called
'‘post-changed' pairs. This identification procedure was
also performed when using the other two methods. We
defined two metrics to investigate the reliability of a
method for identifying progressive gene pairs: the Re-
identification Scale (RS), and the Progression Score (PS).

To examine the overlap between pre-change pairs and
post-change pairs, a metric named Re-identification Scale
(RS) was defined:
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N
RS = —overlap 1 09, (1)
Nopre
where N, represents the number of overlapped gene

pairs, and N, represents the total number of pre-change
pairs. The smaller the RS value, the better the method for
detecting gene pairs relevant to cancer progression. The
statistical significance of a RS value was calculated using
one-sided random permutation test. The RS value for the
real data was calculated and compared with 1,000 RSs
generated by randomly assigning the sample labels to the
expression values of the genes. For each permutated data
set, pre-change pairs and post-change pairs can be identi-
fied under the above procedure using the SIG method.
The nominal P-value then is the fraction of RS values of
random data that were smaller than or equal to the RS
value of real data.

As illustrated in table 1, the RSs obtained using the SIG
method are less than 2% of the two data sets and are
highly significant, suggesting that the gene pairs identified
by our method are 'progressive’. While the other two
methods are not designed to detect progressive gene pairs,
which leads to the RS values all close to 1 with little signif-
icance.

In order to make the progression grade for each gene pair,
we defined a metric named Progression Score (PS):

PS=-Ig Ppre (2)
Ppost

where P, and P, correspond to the nominal P-values of
pre- and post- progression change, respectively. We aver-
aged the PSs of all gene pairs and used the PS average as a
metric to compare the three methods. The significance of
a PS average was calculated similarly to preceding RS sig-
nificance assessment using one-sided random permuta-
tion test. The significance P-value is the fraction of PS
average of random data that were greater than or equal to
the PS average of real data.

Using the ECF method and the DAGA method, the P,
and P, of each gene pair are almost equal as predicted.
Accordingly, the PSs for all gene pairs identified by the
two methods are close to 0 and have little significance
(Table 1). In contrast, the SIG method has high PS average
values which are far from 0 with P-values of 0.032 and

0.036 for the two data sets.

To investigate whether gene pairs identified by the SIG
method are more relevant to cancer progression than
those identified by other methods, we calculated the dis-
tribution of PSs of identified gene pairs (Figure 1). By
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Progression score (PS) distribution of all gene pairs.
Setl refers to the gene pairs both identified by the SIG
method and the ECF method; Set 2 contains gene pairs
exclusively identified by the SIG method; Set 3 contains gene
pairs cannot be identified by the SIG method; Set 4 contains
gene pairs exclusively identified by the ECF method. Gene
pairs in Set | and Set 2 show much higher PS values com-
pared with the gene pairs in other two Sets.

applying the SIG method and the ECF method to the HS
cells versus HR cells data set, we calculated PS distribution
for four sets of the results. Set 1 contains gene pairs iden-
tified both by the SIG and the ECF methods. Set 2 con-
tains gene pairs exclusively identified by the SIG method.
Set 3 contains gene pairs not identified by the SIG
method. Set 4 contains gene pairs exclusively identified by
the ECF method. The SIG algorithm was then applied to
the four gene pair sets to calculate Progression Scores. All
of the four calculated PS distributions are illustrated in
Figure 1. A great majority of gene pairs in Set 1 and Set 2
show much higher PS values when comparing them with
the values of the gene pairs in Set 3 and Set 4, in which PSs
are around 0. This suggests that the SIG method identifies
progressive gene pairs. The PS distribution of Set 4 is
almost the same as that of Set 3, indicating that the gene
pairs solely identified by the ECF method show less rele-
vance to the cancer progression.

Additionally, some gene pairs have only been identified
by the SIG method, such as CEBPD and CTNNBI1, FAS
and FADD, BCL2L2 and BID. These genes are involved in
the progression from HS stage to HR stage; with high PS
significance, their nominal P-values of PS are less than
0.05. Understanding how a pair of genes is involved in
prostate cancer progression is possible, because the inter-
action of two proteins links with the co-expression pattern
of the genes encoding them [2-5]. The correlation coeffi-
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cients and PS values of the gene pairs in this study are
listed in additional file 1.

Gene pair of CEBPD and CTNNB1 shows strong negative
correlation at HR stage and low at HS stage. CEBPD
encodes a transcription factor important for adipogenesis
in promoting preadipocyte's differentiation. CTNNBI1
encodes B-catenin which plays a key role in Wnt signal-
ling, and maintains preadipocytes at an undifferentiated
state through inhibition of CEBPs [22]. Compared with
HS stage, cancer cells at HR stage are poorly differentiated
and thus CEBPD is more inclined to the inhibition of
CTNNBI1. Therefore, this pair has negative correlation at
HR stage, and reveals a clue for cell progression to an
undifferentiated status at HR stage.

FAS and FADD are apoptosis-related genes. FAS encodes a
death receptor, FADD encodes a death domain-contain-
ing adaptor, and activated FAS can recruit FADD by
homophilic interaction [23]. The result shows that corre-
lation of FAS and FADD is positively high at HR stage and
low at HS stage. The HS samples are untreated, still fed
with androgens; the HR cancer cells are androgen ablation
treated and deprived of 'nutrition'. Therefore, more apop-
tosis has been initiated for HR cells, which results in FAS
and FADD only highly correlating at the HR stage and ini-
tiating an apoptosis pathway. These early actions take
place as a step for prostate cancer progressing from HS
stage to HR stage.

Gene pair of BCL2L2 and BID shows highly negative cor-
relation at the HR stage and low correlation at the HS
stage. BCL2L2 contributes to reduced cell apoptosis, and
BID encodes a death agonist with physical binding to
BCL2L2 [24]. In HR stage, apoptosis has been initiated by
FAS - FADD interaction, but most cells still survive. This
implies apoptosis may be blocked in the downstream of
this pathway. Our result suggests that BCL2L2 may bind
BID to mask its pro-apoptotic activity and to block the ini-
tiated apoptosis at the HR stage. Therefore, this informa-
tion reveals a critical step in the progression of prostate
cancer, how some cells are not driven by apoptosis.

Analysis from gene pair perspective

As many gene pairs may be identified, we ask whether
these pairs are of biological significance. To address this
issue, a True Positive Rate (TPR) was defined to assess the
biological reliability of the identified pairs. Two genes can
either be functionally relevant with True Positive (TP) or
irrelevant with False Positive (FP). To quantify the func-
tion relevance of identified gene pairs, we used curated
pathway annotations from the KEGG, GenMAPP data-
bases, and GO annotations. When two genes share the
same pathway annotation in any of the databases, the pair
is labelled as TP; when two genes are annotated with two
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non-overlapping pathways this pair is labelled as FP. In
some cases one gene of a pair is not annotated, such gene
pairs are defined as non-discriminatory (ND) since cur-
rent knowledge is insufficient to conclude whether they
are functionally relevant or not. We then defined True
Positive Rate (TPR) as:

TP

R = . 3
TP+FP )

As shown in Table 1, the number of identified gene pairs
by our method is the lowest of the three methods. The
number of gene pairs identified using the SIG method
constitutes only about 20% of the pairs using the ECF
method, and 10% of the pairs using the DAGA method.
The TPR values of the SIG method are much higher than
those of other two methods, demonstrating that our
method is more effective in selecting biologically relevant
gene pairs.

Additionally, the TP gene pairs identified by different
methods were investigated with Progression Score to
determine whether they were involved in prostate cancer
progression. Similar to the procedure to determine total
gene pairs' PS distribution, we took HS cell data versus HR
cell data as the specimen sample, and used the ECF results
for comparison. We calculated Progression Score (PS) dis-

0.60 1
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0.40 A

0.301
0.20 4

0.10 ] )
0 ———
40 1

-2

2 3 4
Progression Score

Figure 2

Progression score (PS) distribution for True Positive

(TP) gene pairs. Set | refers to the TP gene pairs both

identified by the SIG method and the ECF method; Set 2 con-

tains TP gene pairs exclusively identified by the SIG method;

Set 3 contains TP gene pairs cannot be identified by the SIG

method; Set 4 contains TP gene pairs exclusively identified by

the ECF method. TP gene pairs in Set | and Set 2 show the
higher PS values compared with the other two sets.
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tributions for four TP gene pair sets. As shown in Figure 2,
TP pairs in Set 1 and Set 2 have much higher PS values
compared with TP pairs in Set 3 and Set 4. The PS distri-
butions of TP pairs in Set 3 and Set 4 are both low and very
close to each other. The PS distribution difference
between Set 2 and Set 4 implies that the 'true positive'
gene pairs identified exclusively by the ECF method dem-
onstrate little relevance to cancer progression; further-
more, the TP gene pairs identified by the SIG method have
stronger correlation with progression, suggesting that they
are more likely involved in cancer development.

Analysis from pathway perspective

Pathway information is vital for successful function anal-
ysis of cancer progression. A pathway is a set of gene-gene
co-regulations which operate in concert to carry out a bio-
logical process and typically present abnormalities in
molecular disease mechanisms [25]. Therefore, for a given
pathway, we can investigate how it is enriched to affect
cancer progression with identified differentially co-
expressed gene pairs. In this context, we perform pathway
enrichment analysis to determine cancer progression
related pathways.

To investigate the ability of a method to identify progres-
sive functional relevant pathways based on enrichment
analysis, we formulated a Pathway Enrichment Score
(PES) that reflects the degree to which differentially co-
expressed gene pairs are overrepresented in a pathway.
The calculation of the PES was similar to the Gene Set
Enrichment Analysis [26]. We ranked all identified gene
pairs according to their metric of ordered co-expression
change. For any given pathway, a score was calculated by
reading in a downward direction in the pair list. When we
encountered a pair of genes located both in this pathway,
the score increases; otherwise, it decreases. The PES is cal-
culated as the maximum value deviated from zero. The
higher a PES value, the more identified gene pairs
enriched in a pathway.

Totally 144 previously studied pathways were down-
loaded from the KEGG and the GenMAPP databases and
chosen for the PES calculation. These PES results were cal-
culated using the three methods (the SIG method, the ECF
method, and the DAGA method), and are listed in addi-
tional file 2.

It is known that a large number of pathways are involved
in prostate cancer progression. Thus, we measured the
functional involvement of all pathways to compare global
effects of the three methods. For the data set which shows
progression from healthy to cancerous, the average PES
values of all pathways combined were 3.32, 2.36, and
1.86 calculated by the SIG method, the ECF method, and
the DAGA method, respectively (Table 1). The P-values of
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the t-test were 2.5E-03 and 1.18E-09, for the PES value dif-
ference between the SIG method versus the ECF method,
and for the PES value difference between the SIG method
versus the DAGA method, respectively. For the data set
with progression from HS classification to HR classifica-
tion, the PES averages were 3.56, 2.56 and 2.02 (Table 1),
respectively. The P-values of the t-test were 2.5E-03 and
1.74E-09, for the PES value difference between the SIG
method versus the ECF method, and for the PES value dif-
ference between the SIG method versus the DAGA
method, respectively. The highest PES average value
obtained by the SIG method indicates that among the
three methods, our method shows the highest capability
to identify functional pathways relevant to progression.

Best CJ et al. [20] reported that several pathways including
cell cycle, apoptosis, adipogenesis, immunoreaction coor-
dination and androgen receptor signalling, have signifi-
cant effects in distinguishing the HR state from the HS
state, and playing important roles in prostate cancer pro-
gression. In addition, Singh D et al. [21] suggested that the
pathways of cell cycle, apoptosis, angiogenesis, epidermal
growth factor receptor (EGFR) netpath and Wnt netpath,
are involved in deciding the progression process from
healthy to cancerous. For each individual pathway men-
tioned above, we compared the PES values obtained from
the three methods. As illustrated in Figure 3, the SIG
method showed the highest PES values for all the men-
tioned pathways in the two data sets. Since these pathways
have been reported as progression related, it is suggested
that the SIG method is suitable for detecting pathways
associated with cancer progression in comparison with
other two methods.

Discussion

We compared the SIG method with the ECF method and
the DAGA method by applying them to two different data
sets [20,21]. After the investigation of performance, our
method shows stronger reliability in identifying progres-
sive gene pairs and progression relevant pathways. In
addition to its convincing performance, the SIG method
has several remarkable features in its algorithm (Table 2).
Moreover, based on the gene pairs identified by the SIG
method, we can not only deeply interpret some previously
unknown interactions between a pair of genes, but also
infer several gene interaction networks involved in the
mechanisms of prostate cancer progression.

Algorithm features

First of all, in our method, the co-expression change
between different cancer stages is measured by the ratio of
co-expression. Then the analytical distribution of correla-
tion ratio was derived using stochastic process model to
work as the foundation of significance assessment. There-
fore, the nominal P-value of the gene pair being con-
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Pathway enrichment score (PES) comparison. Path-
ways known to be involved in the progression of prostate
cancer are employed. (a) The four pathways involved in pros-
tate cancer progression from HS stage to HR stage. (b) The
four pathways involved in prostate cancer progression from
healthy stage to cancerous stage.

cerned could be calculated. In the ECF method, an ECF-
statistic was used as a metric for gene pair co-expression
change analysis. To estimate its significance level, an
approximate distribution for ECF-statistic was obtained
with a large number of simulation data to make up the
null hypothesis. It gives rise to two questions: even if the
number of simulations is large, the distribution is still
skewed from biologically structured distribution; genes
play a variety of roles in vivo in terms of the range of genes
they influence directly and indirectly. A transcription fac-
tor in upstream of a pathway may regulate many target
genes. In contrast, a gene in downstream of a pathway
may only interact with a few other genes. Thus, genes
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Table 2: Algorithm comparison for three methods
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Features Methods
SIG method ECF method DAGA method
Measure of co-expression change z-CC ratio ECF-statistic z-CC ratio
Analytical distribution + - +
Progression consideration + - -
Multiple test analysis + - -
Gene specificity analysis + - -
Gene pair duple confirmation + + -

The symbols '+' and '-' represent existence and absence of the corresponding categories. Because the distribution for each gene is different, gene
pair duple confirmation refers to a gene pair (A, B) could be identified only when gene A is chosen, the pair shows significant co-expression change;
meanwhile, when gene B is chosen, the pair is also determined with significant differential co-expression between two progressive stages.

should be considered specifically, instead of being uni-
formly treated. The DAGA method also derived the theo-
retical distribution of correlation ratio; while it lacks the
factors of cancer progression and gene specificity.

Next, for the significance assessment of differential co-
expression, we calculate the nominal P-value for each
individual gene pair differential co-expression. The inci-
dence of false positives for the total data, referred as 'fam-
ily wise error rate', would be too high if not for adjusting
the individual nominal P-values. This should be treated
with multiple hypothesis testing. However, both the ECF
method and the DAGA method lack the multiplicity of
nominal P-values which was caused by performing statis-
tical tests on many genes in parallel. Therefore, the family-
wise error rate may be much larger than the expected sig-
nificance level. In contrast, we use the West-Young permu-
tation method [27] to address the problem of multiple
hypothesis testing, which specifically considers the
dependence structure between genes.

Finally, formulations by the SIG method and the ECF
method make dual confirmation of identification. In
other words, gene A and gene B will not be classified as a
differential co-expressed gene pair until each gene could
be identified when the other gene is factored into consid-
eration. For the SIG method, the distribution of correla-
tion ratio is gene-specific. As for the ECF method, the ECF-
statistic was introduced and ECF-statistic of the two genes
in a pair was asymmetric. This is the reasoning for identi-
fying gene pair with dual confirmation. However, the
DAGA method only performed gene pair identification
based on single confirmation, which may lead to a large
number of false positive gene pairs.

Explanation of gene pair interactions

In addition to advantages in an algorithm feature, the SIG
method can extract and provide insightful biological clues
for interpreting certain gene's puzzling mechanisms dur-
ing prostate cancer progression.

The gene pairs exclusively identified by the SIG method
unravel mechanisms for PPARG function loss during pros-
tate cancer development. PPARG encodes a protein in the
peroxisome proliferator activating receptor (PPAR) fam-
ily, and is a critical transcription factor to promote adipo-
genesis. PPARG has been reported to repress prostate
cancer under some undetermined mechanisms [28],
mainly due to the disadvantage made by adipogenesis for
a cell to maintain in undifferentiated state. However,
PPARG has high expression levels in prostate cancer cells,
especially for the more undifferentiated stage [28]. Thus,
PPARG seems to lose its repression role in prostate cancer.
Genetic causes have been excluded since neither muta-
tions in PPARG gene nor deletions in chromosomal
region were detected in prostate cell lines or in tumours
[28]. Therefore, we suppose the inactivation of PPARG
occurs as a result of gene deregulation. Since PPARD has
been suggested as a potent inhibitor for transcription
activity of PPARG [29] based on the gene pairs exclusively
detected by the SIG method, we provide explicable clues
of PPARD's regulation role to promote PPARG inactiva-
tion.

PPARD belongs to PPAR family just as PPARG. It shows
contradictory effects of roles during cellular development.
A recent report [29] demonstrated it as rescuing prostate
epithelial cells from growth inhibition. In the results of
the SIG method, gene pair PPARD and DVLI has highly
positive correlation at HR stage and little correlation at HS
stage. DVL1 encodes a protein in Wnt signaling which can
inactivate GSK3B, prevent it from phosphorylating p-cat-
enin (CTNNB1) with subsequent degradation. Because
PPARD could play a role through activation of down-
stream genes [30], we assume that PPARD may enhance
DVL1's transcription in HR stage. Consequently, GSK3B is
inactivated and the degradation for B-catenin is decreased.
Since CTNNBI may repress CEBPD's activity, the latter has
effect on enhancing PPARG's activity [31]. Therefore, we
conclude that PPARD's activation on DVLI leads to
repressing PPARG's activity, and this gives clues for
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tumour repressor PPARG's inactivation and leads to can-
cer progression into the HR stage.

Similarly, PPARD and NCOA?2 are exclusively detected by
SIG method, with highly negative correlation at HR stage,
and little correlation in HS stage. The protein encoded by
NCOA?2 has intrinsic histone acetyltransferase activity,
and is required for the maximal PPARG activity [31]. Infer-
ring that PPARD also represses NCOA2's activity, provides
another clue for PPARD's inactivation in prostate cancer
progression.

Construction of gene interaction network

An important characteristic of the SIG method is that from
its ability to identify differentially co-expressed gene pairs,
we can track cancer progression at the molecular level, and
obtain some biochemical information about 'evolution
footprints'. In order to comprehend prostate cancer pro-
gression mechanisms, we exemplify prostate cancer pro-
gression from HS stage to HR stage. Deprived of
androgen, cells at HS stage are confronted with survival
selection. Despite of the neutral changes of gene pair co-
regulation, under the pressure of androgen ablation,
many cancer cells will die. Some malignant cells survive
by developing proper anti-apoptosis strategies and finally
adapt to hormone-refractory environment. Eventually the
entire tumour becomes hormone unresponsive and loses
growth control.

During this progression from HS stage to HR stage, the
TNF signalling pathway plays an important role. It has
been reported that in the early cancer stage, TNF plays the
role as tumour repressor, but in the late cancer stage, it
promotes cell proliferation [32]. The underlying mecha-
nism of this process is still unclear. A network integrating
TNF-induced NF-kB pathway and TNF-induced apoptosis
pathway together, is inferred built on the gene pairs iden-
tified by the SIG method (illustrated in Figure 4). The NF-
kB pathway is well known for cell proliferation and for
direct activation of androgen receptor [33]. This network
reveals the competitive relationship between the two
pathways, and indicates the mechanisms of the function
alteration of TNF during prostate cancer progression. The
details of biological inference for gene pairs and network
construction can be consulted in additional file 3.

To achieve NF-«B activation, TNF induces the activation
of IKBKB, leading to proteolytic degradation of I-xB; then
NF-«B is liberated from I-kB's control, allowing NF-«xB to
translocate into nuclear, to regulate the transcription of
various downstream genes involved in carcinogenesis to
suppress apoptosis. TNF-induced activation of IKBKB first
requires TNF to stimulate TNFR1, then the ligand-binded
TNFR1 can recruit TRADD, in order to serve together as an
assembly platform for binding TRAF2 and RIP. TRAF2 is
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sufficient to recruit IKBKB into TNFR1 complex whereas
RIP is necessary for IKBKB activation [34]. In apoptosis
pathway, TNFR1 also acts as a death receptor. Other death
receptors such as FAS and TNFRSF10B directly bind to
FADD to initiate apoptosis, whereas TNFR1 interacts indi-
rectly with FADD through TRADD, which is also respon-
sible for bridging TNFR1 to TRAF2 in NF-xB activation.
Therefore, both pathways of NF-«B and apoptosis were
competing for TNFR1, and the self-inhibitory circuits
determine this predominance. Self-inhibitory circuit
refers to the termination of TNF-induced response, in
which ZA20D2 and TNFAIP3 play the key roles. TNFAIP3
can inhibit both NF-xB activation and TNFR1-mediated
apoptosis, whereas ZA20D2 only inhibits NF-xB activa-
tion [35]. In our identified gene pairs, ZA20D2 shows neg-
ative correlation with CSNK2A2 only at HR stage but little
correlation at HS stage, and is inferred to be degraded by
CSNK2A2. This implies that at HR stage, the self-inhibi-
tory circuit for NF-«xB signalling has been blocked, and
therefore NF-kB prevails in the competition for TNFR1.
Besides, TNFAIP3 shows strong negative correlation with
GSK3B at HS stage but weak correlation at HR stage, and
thus is inferred to be degraded by GSK3B. At HS stage,
apoptosis was not initiated since cells were not deprived
of androgens, so in the competition for TNF's participa-
tion in NF-kB activation and apoptosis, NF-kB took an
advantageous place. However, based on results derived
from the SIG method, we find NF-«xB would be finally
inactivated by PPP3R1's dephosphorylation on RELA.
This attenuates cancer aggravation at HS stage. In addi-
tion, as illustrated in Figure 4, at HR stage, the already ini-
tiated apoptosis caused by androgen ablation may be
blocked in various schemes for cell survival.

In addition, there are also some other pathways have been
inferred, such as the arachidonic acid metabolism path-
way (illustrated in Figure 5) and androgen receptor signal-
ling pathway (illustrated in Figure 6), which are also very
critical in prostate cancer progression. These pathways are
presented in details in additional file 3.

Conclusion

We presented a novel method named the SIG to identify
gene pairs with significant differential co-expression pat-
terns in two cellular states with progression relationship.
For the first time, the SIG method combines gene co-
expression pattern change study with the concept of
dynamic cancer progression. This was formulated by
applying a stochastic process model to approximate gene
co-expression change procedure during cancer progres-
sion. This method was applied to two prostate cancer data
sets and systematically compared the results with other
two current similar methodologies. The results show a
high reliability in identifying gene pairs relevant to cancer
progression, in gene pair ontology analysis, and in path-
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NF-kB regulated
proliferation

TNF-induced NF-xB and apoptosis pathways. Gene in a dark ellipse means it displays differential effects but is missed in
the microarray data set. A red arrow indicates an inferred positive effect, and a green bar indicates an inferred negative effect.
Double slashes means the effect is blocked. A rectangle containing two genes indicates that these two proteins constitute a
complex. If a gene-to-gene effect is inferred to only occur in HS stage or HR stage, the line between the two genes is marked
with 'HS' or 'HR" in a small circle, respectively. A blue arrow suggests a lead to final effect, such as apoptosis or proliferation.
Note that p50 and RELA constitute the complex NF-kB. This figure illustrates the completions between NF-xB pathway and
apoptosis pathway represented by molecular regulation changes during cancer progression.

way enrichment analysis. Therefore, this method provides
insights into understanding carcinogenesis by appropri-
ately tracking major molecular mechanisms of cancer pro-
gression, and to serve as a new tool for future cancer
etiology study. The SIG method is available as a free soft-

ware source at http://argdb.fudan.edu.cn/sig/sig.html.

Methods

Overview of SIG method

We present the SIG method based on stochastic process
model, to examine genome-wide expression profiles from

cancer samples at two stages correlated with progression
from stage 1 (early stage) to stage 2 (late stage). The SIG
method aims to find gene pairs with significant co-expres-
sion change between two stages, i.e. gene pairs have high
co-expression in one cancer stage, and have little correla-
tion in the other cancer stage.

There are three key steps in the SIG method:

Step 1: Calculating a correlation ratio (CR) to evaluate
gene pair co-expression change. We calculate a ratio of z-
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Arachidonic acid metabolism pathway. The annota-
tions of symbols and lines are the same as Figure 4. This fig-
ure shows the molecular signs represented by gene pair co-
expression changes for arachidonic acid (AA) metabolism
and prostanglandin generation in promoting prostate cancer
progression.

transformed correlation that reflects the grade to which a
gene pair is differentially co-expressed between two cancer
stages.

Step 2: Estimating the significance level of CR. For a gene
in interest, we estimate the statistical significance (nomi-
nal P-value) of the CR formed by another gene with it.
Based on a random walk model in stochastic process, we
construct an analytical distribution of CRs formed by all
other genes with the gene factored into consideration to
work as a background for significance assessment. This
analytical distribution preserves gene specificity and can-
cer progression pertinence to better fit complex correla-
tion structure in gene expression data.

Step 3: Adjusting for multiple hypothesis testing. When an
entire database of genes is evaluated, to reduce the family
wise error we adjust the estimated significance to account
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Androgen receptor pathway. The annotations of sym-
bols and lines are the same as Figure 4. This figure suggests at
HR stage, the aberrances in AR signalling can be manifested
in two steps. The first step is the activation of AR including
its transport into nucleus without androgen induction, and
the second step is the regulation of nuclear coactivators and
repressors for AR's transactivation.

for multiple hypothesis testing by using Westfall-Young
permutation, which exactly takes advantage of the
dependence structure between genes.

Random walk model

The random walk model is a simple case of stochastic
process. The basic idea of a random walk can be described
by a drunkard's tottering along a street in a stepwise proc-
ess: he may walk forward or backward stumblingly with
the same probability at each step as generally assumed.
This drunkard is known to initially depart from the zero
position, and the probability of his being at the position x
after time 7 passed is modelled as follows

&(x,7 + A7) = %5@ — Ax7) +%6(x L AnT),  (4)

where @(x,7) is the probability. After differential approx-

imation, the solution of Equation (4) is approached as:

2
u=uy(x1)= (471'DT)_1/2 exp(— ZE), (5)

where u is the probability density as u = @ /2Ax and D is

a constant as D= lim
Ax—0,At—0

represents the cumulative effect of many random events

(Ax)? /2Ax . This solution

over the time interval 7. It is the general premise that for a
cancer cell at each mutation step, the co-expression of a
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gene pair varies randomly with the same chance to
increase or decrease. Therefore, it is very similar to the ran-
dom walk carried out in a stochastic form.

Stochastic process-based analytical distribution of
correlation ratio

For a gene pair (A, B), we use Pearson correlation coeffi-
cient (CC) denoted as r to measure their co-expression. r
is calculated in both stage 1 and stage 2. Then we trans-
form 7 into a metric z using Fisher's r-to-z transformation
as z = In[(1 + r)/(1 - r)]/2. After the transformation, z is
well known to be normally distributed [36]. We use the z-
transformed correlation coefficient (z-CC) to measure the
co-expression of a gene pair, and in the following text, we
name z-CC as 'correlation’' for simplicity.

For a gene A of interest, let X denote the correlations of all
other genes with it in one stage, and Y denote the corre-
sponding correlations in the other stage. Since correlation
has been z-transformed, both X and Y are normally dis-
tributed:

_ 1 _(x-ux)?
fX(x)_mGX exp( 26}2( )' (6)
and
_ 1 (r-y)?
fY(Y)_\/EGY exp(— 2 )' (7)

2GY

where x and y are the values of correlation, z, 1y and oy,
oy are the expectations and standard deviations of X and Y
respectively, which are be estimated using standard meth-
ods.

We use the ratio of correlation of one stage relative to the
other stage for measuring the co-expression change of a
gene pair. The ratio of correlation is denoted as T, and cal-
culated as T = X/Y. The analytical distribution of the ratio
of correlation is described as follows:

oo 0
fr)= | Pty =[S ndy, (®)

where t is the value of variant T, fy,(x, y) is the joint prob-
ability density of X and Y. The co-expression of a gene pair
progresses from an initial value in the early stage to a final
value in the late stage, thus X and Y are dependent on each
other. The joint probability of X and Y should be calcu-
lated using the conditional probability, which measures
the probability of a correlation transformed to a final
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value when its initial value is known. Due to the direction
that cancer only progressing from stage 1 to stage 2, there
are two cases when computing the conditional probability
of X and Y during the calculation of analytical distribu-
tion.

1) X belongs to stage 2, and Y belongs to stage 1

In this case, the joint probability of a gene pair's correla-
tion values in two cancer stages is represented as:

fxv (e, y) = G [V fy (V) )

where G(x|y) is the conditional probability density for a
correlation transforming from value y in stage 1 into value
x in stage 2. For this point, the conditional probability acts
as the keystone in our theory. Since the conditional prob-
ability is highly correlated with progression between the
two stages. Herein, we combine the differential co-expres-
sion study with stochastic process model by using the
solution of random walk model to approximate the con-
dition probability of correlations. According to random
walk model, for a prostate cancer cell, the correlation of a
gene pair has equal chance to increase or decrease, there-
fore G(x|y) has similar cumulative effect with @(x,7) as

shown in Equation (4), and is approximated in the fol-
lowing formula. Please refer to additional file 3 for the
detailed derivation.

_ -1/2 _ (x—y)2 10
Glx|y) = (4xDd) P expl- 1), (10)
where d represents the progression distance from stage 1
to stage 2, and D is a constant as defined in Equation (5).
For generality, we setd = 1 and D = 1 for the investigations
in this paper. The joint probability in Equation (9) is com-
puted as:

_[(x_}/)z + (y—ug)z ]}

fxy(x,y) = 4Dd

ex
27\/2Ddoy pi 25y

(11)

Note that x = ty, then by combining Equations (8) and
(11), the analytical distribution function for the ratio of
correlation of stage 2 relative to stage 1 is presented as:

2
fr(t) = Kmexp(—cm ~baexp(L )]
(12)
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2 2
t-1 H
where a=D" b=-H" c="Y
4Dd T ,.2 o2 262
Y Y Y
0 ) ) L
A= exp(—ay“)dy , and K is a normalization constant.

b/2a

A typical curve of f;(t) is plotted in Figure 7a, using the
prostate cancer data of HS samples versus HR samples
[20] as example. The profile of f;(¢) is semblable to that of
normal distribution, but f(t) has higher density in the
center and lower density in the tails. For a given gene, its
analytical distribution of the ratio of correlations formed
by all other genes pairing this gene, is treated as a back-
ground to assess the significance of the observed values of
the ratio of correlations. Based on the analytical distribu-
tion, gene pairs with absolutely large values of correlation
ratio could be identified, i.e. gene pairs with high co-
expression in stage 2 and little correlation in stage 1 are
regarded as significantly differentially co-expressed.

It should be noted that there is a limitation in our meth-
odology. If the correlation changes from positive to nega-
tive or from negative to positive, the corresponding ratio
(referred as "P/N ratio") is negative and most of them are
not far away from 0. If P/N ratio is negatively large
enough, then the corresponding gene pair could be iden-
tified. However, there is still a small part of P/N ratios
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escaping from being identified, and these gene pairs
would be missed accordingly.

2) X belongs to stage 1, and Y belongs to stage 2

In this case, the joint probability for a gene pair's correla-
tion values in two cancer stages is represented as:

fxy (%, y) = Gy [ ) fx (%), (13)

where G(y|x) is the conditional probability density for the
correlation transforming from an initial value x in stage 1
into a final value y in stage 2. After similar derivations, the
analytical distribution function f;(t) for the correlation
ratio of stage 1 relative to stage 2 is given as

’2
1 b

t)=K'———exp(—')[1-b"A’exp(~—)],

=K e e P el
(14)

_1)2 2 X
where a’= (2521 -, b'=—w—§, CIZszf

20‘X Sx 2GX

0
A= s exp(—a’y?)dy, and K is a normalization con-
a

stant.
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Figure 7

Analytical distribution function of z-CC ratio between HS stage and HR stage. (a) The analytical distribution f; of z-
CC ratio T = X/Y, X represents z-CCs at the HR stage and Y denotes z-CCs at the HS stage. T represents the gene pair co-
expression alteration. (b) The theoretical distribution f; of z-CC ratio T = X/Y, X and Y represent z-CCs at HS stage and at HR

stage respectively.
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There are some essential differences between Equations
(12) and (14), mainly manifested by the expressions of a
vs. a', and b vs. b'. Detailed derivations for Equations (12)
and (14) are demonstrated in the additional file 3.

A typical curve for the analytical distribution f(t) of cor-
relation ratio in Equation (14) is plotted in Figure 7b, also
based on the data set of HS vs. HR. Notice that most cor-
relation ratios (stage 1/stage 2) are very close to zero;
whereas in Figure 7a, correlation ratios (stage 2/stage 1)
scatter more incompactly from 0. This suggests that gene
pairs may have more co-expressions in stage 2 (HR) than
in stage 1 (HS); in other words, it implies that the number
of gene-gene interactions, either activation or repression,
increases remarkably during prostate cancer evolution.

Estimating significance of gene pair differential co-
expression

For a gene of interest, since the correlation ratio (CR) is
calculated as a quantification of evidence for differential
co-expression, a cut-off for identification is needed by
using a false discovery rate criterion, or in other words, the
significance level. This process involves calculating the
null hypothesis distribution of CR that contains little co-
expression change. The profile character of the analytical
distribution function f;(t) has the properties similar to
null hypothesis, and also keeps information about gene
specificity. In our methodology, the calculation of null
distribution is achieved through an approximation of the
analytical distribution of the interested gene. Importantly,
this approximation preserves gene specificity and progres-
sion character, in order to make gene pair identification
without systematic derivation. Therefore, it provides a
more biologically reasonable assessment of significance
than that obtained by the traditional simulation data.

Therefore, we calculate the nominal P-value of a correla-
tion ratio for significance estimation, based on the analyt-
ical distribution f;(t) of the gene in interest. The
calculation is carried out by the area integral of distribu-
tion function.

By setting a false discovery rate « to the nominal P-value,
in principle, gene pair co-expression change can be deter-
mined as whether it is significant or not. However, the
incidence of false positives for the total data, referred as
'family wise error rate', would be high if we do not adjust
individual nominal P-values. We use the Westfall-Young
Permutation [27] to do the multiple hypothesis testing to
correct for false positive occurrence, because this is the
only correction for taking advantage of dependence struc-
ture between genes, and accounts for gene co-regulation
(review [37]). In the SIG method, for a given gene, West-
fall-Young permutation is employed to calculate adjusted
P-value for the pair formed by another gene with the given
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gene. The details of this multiple hypothesis testing are
demonstrated in additional file 3.

Identifying gene pair with differential co-expression
pattern

We propose the following procedure for identifying differ-
ential gene pair co-expression patterns in different biolog-
ical stages. For a gene A, this procedure screens all the
other genes B and selects genes that form differentially co-
expressed pair with it. For a gene pair (A, B), two analytical
distributions f; and fr may be not the same. To

achieve consistency, a pair of genes will be considered to
be detected only if their CR-based adjusted P-values in
each analytical distributions are both greater than a
threshold value .

Taking together, the procedure of determining a gene pair
(A, B) with significant co-expression pattern change is
described as follows:

1) Calculate the correlation ratio t,5 for gene pair (A, B).
2) Figure out the analytical distributions f; and fy .

3) For gene A chosen, calculate the adjusted P-value p* for
tip if p* <o, regard gene B as differentially co-expressed
with gene A.

4) For gene B, repeat step 3).

5) If gene A and gene B both have differential co-expres-
sion with each other, identify them as a significant differ-
entially co-expressed pair.

In this paper, we set P-value threshold « = 0.05.

List of abbreviations

SIG: Stochastic process model for Identifying differen-
tially co-expressed Gene pair; HS: Hormone Sensitive; HR:
Hormone Resistant; RS: Re-identification Scale; PS: Pro-
gression Score; TP: True Positive; FP: False Positive; ND:
Non-Discriminatory; TPR: True Positive Rate; PES: Path-
way Enrichment Score; CC: Correlation Coefficient; z-CC:
z-transformed Correlation Coefficient; CR: Correlation
Ratio; Avg: Average.
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Additional material

Additional file 1

Gene pairs mentioned in biological analysis. In this supplementary file,
gene pairs mentioned in the biological interpretation and network infer-
ence sections are listed, with differential co-expression patterns between
the HS stage and the HR stage built on the SIG method. In addition, cor-
relation coefficient and Progression Score (PS) are listed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-340-S1.doc]

Additional file 2

PES comparison for three methods based two data sets. In this supple-
mentary file, based on two data sets (Best CJ et al.'s prostate cancer data
for HS samples versus HR samples; Singh D et al.'s prostate data for
healthy samples versus cancerous samples), we list the Pair Enrichment
Score (PES) results derived by three methods (the SIG method, the ECF
method, and the DAGA method) for 144 curated pathways.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-340-S2 xls]

Additional file 3

SIG algorithm & Biological inference. In this supplementary file, we
give the detailed description of the SIG algorithm, and also provide the
detailed biological inference for networks.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-340-83.doc]
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