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Abstract

Background: Protein-DNA interactions are involved in many biological processes essential for
cellular function. To understand the molecular mechanism of protein-DNA recognition, it is
necessary to identify the DNA-binding residues in DNA-binding proteins. However, structural data
are available for only a few hundreds of protein-DNA complexes. With the rapid accumulation of
sequence data, it becomes an important but challenging task to accurately predict DNA-binding
residues directly from amino acid sequence data.

Results: A new machine learning approach has been developed in this study for predicting DNA-
binding residues from amino acid sequence data. The approach used both the labelled data
instances collected from the available structures of protein-DNA complexes and the abundant
unlabeled data found in protein sequence databases. The evolutionary information contained in the
unlabeled sequence data was represented as position-specific scoring matrices (PSSMs) and several
new descriptors. The sequence-derived features were then used to train random forests (RFs),
which could handle a large number of input variables and avoid model overfitting. The use of
evolutionary information was found to significantly improve classifier performance. The RF
classifier was further evaluated using a separate test dataset, and the predicted DNA-binding
residues were examined in the context of three-dimensional structures.

Conclusion: The results suggest that the RF-based approach gives rise to more accurate
prediction of DNA-binding residues than previous studies. A new web server called BindN-RF
http://bioinfo.ggc.org/bindn-rf/ has thus been developed to make the RF classifier accessible to the
biological research community.
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Background

Many nuclear proteins perform essential functions
through interaction with DNA. For instance, transcription
factors activate or repress downstream gene expression by
binding to specific DNA motifs in promoters [1]. To
understand the molecular mechanism of protein-DNA
recognition, it is important to identify the DNA-binding
residues in proteins. The identification is straightforward
if the structure of a protein-DNA complex is known. How-
ever, it is rather expensive and time-consuming to solve
the structure of a protein-DNA complex. Currently, only a
few hundreds of protein-DNA complexes have structural
data available in the Protein Data Bank [2]. With the rapid
accumulation of sequence data from many genomes,
computational methods are needed for accurate predic-
tion of DNA-binding residues in protein sequences. The
prediction results can provide useful information for pro-
tein functional annotation, protein-DNA docking, and
experimental studies such as site-directed mutagenesis.

Machine learning is particularly appealing for modelling
the DNA-binding pattern of amino acid residues.
Although some experimental observations have been
made for DNA-binding residues in protein structures, the
molecular recognition pattern is still poorly understood
[3]. It is thus desired that machine learning methods can
be used to model the complex patterns hidden in the
available structural data, and the resulting classifier can be
applied to reliable identification of DNA-binding residues
in protein sequences. The machine learning problem can
be formally specified as follows: given the amino acid
sequence of a protein that is supposed to interact with
DNA, the task is to predict which amino acid residues may
be located at the interaction interface. Since both the
structure of the protein and the sequence of the target
DNA are assumed to be unknown, it is challenging to pre-
dict DNA-binding residues from amino acid properties
and local sequence patterns.

Several machine learning methods have been reported for
predicting DNA-binding residues in protein sequences.
Ahmad et al. [4] analyzed the structural data of represent-
ative protein-DNA complexes, and used the amino acid
sequences in these structures to train artificial neural net-
works (ANNs) for DNA-binding site prediction. Yan et al.
[5] constructed Naive Bayes classifiers using the amino
acid identities of DNA-binding sites and their sequence
neighbours. However, the prediction accuracy was rela-
tively low in these studies [4,5], probably because amino
acid sequences were directly used for classifier construc-
tion.

The use of domain-specific knowledge for input encoding
has been shown to enhance classifier performance.
Ahmad and Sarai [6] developed an ANN-based method to
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utilize evolutionary information in terms of position-spe-
cific scoring matrices (PSSMs). The scores in a PSSM indi-
cate how well each amino acid position of a sequence is
conserved among its homologues. Since functional sites
tend to be conserved among homologous proteins, PSSMs
may provide relevant information for predicting DNA-
binding residues. It was found that the average of sensitiv-
ity and specificity could be increased by up to 8.7% using
PSSMs when compared with ANN predictors using
sequence information only [6]. More recently, PSSMs
were also used to train support vector machines (SVMs)
and logistic regression models for accurate prediction of
DNA-binding residues [7,8].

In our previous studies [9,10], ANN and SVM classifiers
were constructed using relevant biochemical features,
including the hydrophobicity index, side chain pK, value,
and molecular mass of an amino acid. These features were
used to represent biological knowledge, which might not
be learned from the training data of DNA-binding resi-
dues. It was found that classifier performance was signifi-
cantly improved by the use of biochemical features for
input encoding, and the SVM classifier outperformed the
ANN predictor [9,10].

There are two main objectives of the present study. The
first objective is to improve the prediction accuracy by
combining different types of biological knowledge in clas-
sifier construction. Although either PSSMs or biochemical
features have been used for input encoding, it is still
unknown whether classifier performance can be further
improved through a combination of relevant features,
including new descriptors of evolutionary information.
One potential problem is that the use of PSSMs for classi-
fier construction gives rise to a large number of input var-
iables. A training data instance normally includes
multiple neighbouring residues for providing context
information, and each residue has 20 PSSM scores. Con-
sidering the relatively small dataset currently available for
modelling DNA-binding sites, too many input variables
may result in model overfitting for most machine learning
algorithms. Thus, the second objective is to investigate
whether accurate classifiers can be constructed using the
random forest (RF) learning algorithm, which has the
capability to handle a large number of input variables and
avoid model overfitting [11]. The results obtained in this
study indicate that DNA-binding site prediction can be
significantly improved by using the RF-based approach
with biochemical features and several new descriptors of
evolutionary information for input encoding.

Methods

Data preparation

This study used two amino acid sequence datasets, PDNA-
62 and PDC25t, which were extracted from the structural

Page 2 of 9

(page number not for citation purposes)



BMC Genomics 2009, 10(Suppl 1):S1

data of protein-DNA complexes available at the Protein
Data Bank http://www.rcsb.org/pdb/. The PDNA-62 data-
set was used classifier construction in this work as well as
several previous studies [6-10]. The amino acid sequences
in PDNA-62 were derived from 62 structures of represent-
ative protein-DNA complexes, and the dataset had less
than 25% identity among the sequences. The PDC25t
dataset was derived from the protein-DNA complexes that
were not included in PDNA-62. The sequences in PDC25t
had less than 25% identity among them as well as with
the sequences in PDNA-62. In this study, PDC25t was
used as a separate test dataset for classifier performance
evaluation and comparison.

As in our previous studies [9,10], an amino acid residue
was designated as a binding site if the side chain or back-
bone atoms of the residue fell within a cutoff distance of
3.5 A from any atoms of the DNA molecule in the com-
plex. All the other residues were regarded as non-binding
sites. Both PDNA-62 and PDC25t are imbalanced datasets
with ~15% residues labelled as DNA-binding and ~85%
residues being non-binding.

Training strategies

Classifiers were trained using residue-wise data instances
derived from the sequence dataset (PDNA-62). Each data
instance had eleven consecutive residues, and the target
residue was positioned in the middle of the subsequence.
A data instance was labelled as positive if the target resi-
due was DNA-binding, or negative if the target residue was
non-binding. The context information provided by the
five neighbouring residues on each side of the target resi-
due was previously shown to be optimal for sequence-
based prediction of DNA-binding residues [9,10].

In classifier construction, the input vector was generated
by encoding each residue with three biochemical features
and several descriptors of evolutionary information (see
below). In our previous studies [9,10], the three biochem-
ical features, including the hydrophobicity index (feature
H), side chain pK, value (feature K), and molecular mass
(feature M) of an amino acid, were shown to be relevant
for DNA-binding site prediction.

Evolutionary information extraction

For DNA-binding site prediction, the labelled datasets
derived from the available structures are relatively small in
size. However, there are abundant unlabeled sequence
data in public databases such as UniProt [12]. The unla-
beled data contain evolutionary information about the
conservation of each sequence position. Because DNA-
binding residues tend to be conserved among homolo-
gous proteins [13], evolutionary information can be used
to enhance classifier performance.

http://www.biomedcentral.com/1471-2164/10/S1/S1

The procedure for extracting evolutionary information
from sequence alignments is outlined in Figure 1. For a
given protein sequence p, its homologues in a reference
database can be retrieved and aligned to p using the PSI-
BLAST program [14]. The sequence alignment is then used
to compute evolutionary conservation scores for each res-
idue in p. In this study, the protein sequence dataset Uni-
ProtKB http://www.pir.uniprot.org/ was used as the
reference database, and PSI-BLAST was run for three itera-
tions with the E-value threshold set to 1e-5. The following
descriptors of evolutionary information have been inves-
tigated for DNA-binding site prediction:

(1) BLAST-based conservation score (feature B): Let H, =
{hy, h,,..., h,} be the set of n hits (n > 0) in the PSI-BLAST
search for a query sequence p. Each hit is a pair-wise
sequence alignment, in which PSI-BLAST indicates
whether two aligned residues are identical or show simi-
larity based on the BLOSUMG62 scoring matrix [14]. The B
score for the residue g; at position i in p is computed as fol-
lows:

Y flajhj)
g = "i€Hp 1)

a;

n+<

n
where f (a; hy) is set to 1 if a; is aligned to an identical or
similar residue in h;, or 0 otherwise, and ¢ is a pseudo-
count (set to 10 in this work). The term (¢/n) is used to
scale the feature value, and it becomes smaller when n gets
larger. If p has no hit in the database (n = 0), the feature
value is set to 0. The B score was used to construct artificial
neural network classifiers in our previous study [9].

(2) Mean and standard deviation of biochemical feature
values: For each residue g; in the sequence p, the mean

( )_(Z,. ) and standard deviation (o) of a biochemical fea-

ture X, X € {H, K, M}, are calculated as follows:
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where y(a; h) is the value of feature X for the amino acid
residue in h;, which is aligned to g; at position i in p. The
mean of feature X, also referred to as H,,, K,, or M,, in this
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Sequence: PHHRAHYETEGSRGAVKAPTGG
Labels: 0001001011011000000000
¢ PSI-BLAST (3x)
PHHRAHYETEGSRGAVKAPTGG
BLAST TQHRARYLTEGSRGSVKDRTQQ
hits in QRMRFRYKCEGSAGSIPDTTKT
UniProt QRFRFRYGCEGSHGGLPGASKT
EKFRARYKSEGTHGSLKRTPKG

pn N

BLAST-based Mean of St dev of Position specific
conservation biochemical biochemical scoring matrix
score (B) features features (PSSM)

Figure |

Schematic diagram for extracting evolutionary infor-
mation from the PSI-BLAST search resulit.

paper, captures the biochemical properties of an amino
acid position in the sequence alignment. It has been
shown that basic and polar amino acids are overrepre-
sented while acidic and hydrophobic amino acids are
underrepresented in the population of DNA-binding sites
[4,9]. The standard deviation of feature X, also called H,,
K, or M,, reveals how well the biochemical properties of
an amino acid position are conserved in the aligned
homologous sequences.

(3) Position-specific scoring matrix (PSSM): The PSSM
scores are generated by PSI-BLAST [15], and there are 20
values for each sequence position. The evolutionary infor-
mation captured by PSSMs was previously shown to
improve the performance of artificial neural networks and
support vector machines for DNA-binding site prediction
[6,7]. However, PSSM is rather designed for BLAST
searches, and it may not capture all the evolutionary infor-
mation for modelling DNA-binding sites.

Random forests

The use of evolutionary information for classifier con-
struction results in a large number of input variables. In
particular, since PSSM has 20 scores for each sequence
position, it gives rise to 220 inputs for a data instance with
eleven residues. Considering the relatively small size of
the training dataset, too many inputs may result in model
overfitting. In this study, we used the random forest learn-
ing algorithm, which was shown to have the capability of
handling a large number of input variables and avoiding
model overfitting [11].

Random forests (RFs) use a combination of independent
decision trees to improve classifier performance. Specifi-
cally, each decision tree in a forest is constructed using a
bootstrap sample from the training data. During tree con-
struction, m variables out of all the n input variables (m
<<n) are randomly selected at each node, and the tree
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node is split using the selected m variables. Because of the
random feature selection, RFs can handle a large number
of input variables and avoid overfitting. For classifying a
data instance, a RF classifier combines the votes made by
the decision trees, and gives the most popular class as the
output of the ensemble. It has been shown that RFs out-
perform AdaBoost ensembles on noisy datasets, and can
work well on data with many weak inputs [11]. These
characteristics of RFs are appealing since the DNA-binding
data appear to be noisy and contain many weak sequence-
derived features.

In this study, we used the software package available at
http://www.stat.berkeley.edu/~breiman/RandomForests
to construct RF classifiers with the default parameter set-
tings. In particular, the number of variables selected to
split each node (m) was set to the floor of square root of
the total number of input variables. Other values of m
were also tested, but did not result in significant improve-
ment of classifier performance for DNA-binding site pre-
diction.

Classifier evaluation

We performed fivefold cross-validation experiments using
the PDNA-62 dataset for the initial estimation of classifier
performance. The trained classifier was further evaluated
using the PDC25t dataset. The following performance
measures were used in this study:

TP+TN

Accuracy = —— "% 4
< TP+TN+FP+FN 4)
TP

Sensitivity = ————— 5
Y= PPN (5)
N
Specificity = ———— (6)
P Y TN+FP
Strength = Sensitivity ;— Specificity 7)

where TP is the number of true positives (binding residues
with positive predictions); TN is the number of true nega-
tives (non-binding residues with negative predictions); FP
is the number of false positives (non-binding residues but
predicted as binding sites); and FN is the number of false
negatives (binding residues but predicted as non-binding
sites). Since the datasets used in this study are imbal-
anced, the overall accuracy alone could be misleading. For
instance, a classifier could achieve ~85% accuracy by sim-
ply predicting all the residues as negatives. Thus, both sen-
sitivity and specificity are also computed from prediction
results. Furthermore, the average of sensitivity and specif-
icity, referred to as strength in this paper, may provide a
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fair measure of classifier performance as shown in previ-
ous studies [4,9].

The Receiver Operating Characteristic (ROC) curve is
probably the most robust approach for classifier evalua-
tion and comparison [15]. The ROC curve is drawn by
plotting the true positive rate (i.e., sensitivity) against the
false positive rate, which equals to (1 - specificity). In this
work, the ROC curve has been generated by using differ-
ent threshold values for the output of a classifier and plot-
ting the true positive rate against false positive rate for
each threshold value. The area under the ROC curve
(AUC) can be used as a reliable measure of classifier per-
formance [16]. Since the ROC plot is a unit square, the
maximum value of AUC is 1, which is achieved by a per-
fect classifier. Weak classifiers and random guessing have
AUC values close to 0.5.

Results and discussion

Random forests for sequence-based prediction of DNA-
binding residues

As the first step to develop the new approach for DNA-
binding site prediction, random forests (RFs) were trained
with three biochemical features that were used to con-
struct ANN and SVM predictors in our previous studies
[9,10]. The biochemical features, including the hydropho-
bicity index (feature H), side chain pK, value (K) and
molecular mass (M) of an amino acid, were shown to pro-
vide relevant information for predicting DNA-binding res-
idues [9]. The input vector contained 33 feature values
because each data instance was a subsequence of eleven
consecutive residues with the target residue in the middle
position (see Methods). The context information pro-
vided by the ten neighbouring residues was found to be
optimal for DNA-binding site prediction [9,10].

As shown in Table 1, the RF classifier constructed without
evolutionary information achieved 70.23% overall accu-
racy with 73.46% sensitivity and 69.68% specificity in
fivefold cross-validation experiments on the PDNA-62
dataset. Since the dataset was imbalanced with only 15%
of the amino acid residues as DNA-binding sites, the per-
formance of the RF classifier was also measured by the
average of sensitivity and specificity (prediction strength =
71.57%), and the area under the receiver operating char-
acteristic curve (ROC AUC = 0.7837). Different training
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parameters were tested for constructing the RF classifier,
and the above performance measures were obtained with
1000 decision trees in the forest and m = 5 (see below).

The results suggest that, with the three biochemical fea-
tures, the RF classifier is slightly more accurate than the
ANN and SVM predictors [9,10]. By using the same data-
set (PDNA-62), the ANN and SVM predictors achieved the
prediction strength of 67.42% and 69.94%, respectively.
The ROC AUC of the ANN and SVM predictors is also less
than that of the RF classifier. However, RFs have the major
advantage in handling a large number of input variables
should various descriptors of evolutionary information be
used for input encoding.

Improved classifier performance by using evolutionary
information

Three types of evolutionary information, including the
BLAST-based conservation score, position-specific scoring
matrices (PSSMs), and the means and standard deviations
of biochemical feature values, have been examined for
their effect on classifier performance. The conservation
score (B) was previously used to train ANNs for DNA-
binding site prediction [9]. As shown in Table 2, the pre-
diction strength and ROC AUC are slightly improved by
adding the B score to the three biochemical features, sug-
gesting that the conservation score does not capture all the
evolutionary information for sequence-based prediction
of DNA-binding residues.

However, RF classifier performance is significantly
improved by using the PSSM descriptor of evolutionary
information. PSSMs were derived from the PSI-BLAST
search against the UniProtKB database as described in
Methods. Because each residue was encoded with 20
PSSM scores and 3 biochemical features, the input vector
contained 253 values for a data instance with eleven resi-
dues. As shown in Table 2, the use of PSSM for input
encoding improved the prediction strength to 76.82%.
The classifier also had higher ROC AUC (0.8521) than the
RF classifier constructed using the three biochemical fea-
tures alone (AUC = 0.7837). The results were obtained
with 1000 decision trees in the forest and the training
parameter m set to 15. Other parameter settings were also
tested, but did not give rise to better classifier perform-
ance.

Table I: Performance of different classifiers constructed using biochemical features.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) Strength (%) ROC

AUC

RF 70.23 73.46 69.68 71.57 0.7837

SVM 70.31 69.40 70.47 69.94 0.7524

ANN 64.38 71.33 63.51 67.42 0.7306
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Table 2: Effect of evolutionary information on the performance of RF classifiers.

Evolutionary information Accuracy (%) Sensitivity (%) Specificity (%) Strength (%) ROC AUC
None 70.23 73.46 69.68 71.57 0.7837
PSSM 75.09 79.26 74.38 76.82 0.8521
H,, Hy K Ky 74.78 77.70 74.29 75.99 0.8422
PSSM, H,,, Hy K., K4 78.20 78.06 78.22 78.14 0.8605

The means (H,,, K,,and M,,) and standard deviations (H,
K; and M) of the three biochemical features represent
new descriptors of evolutionary information, which indi-
cate how well the biochemical properties of an amino acid
position are conserved in the sequence alignment from
the PSI-BLAST search. It was found that the use of H,,, K,,,,
H,, and K, in classifier construction improved the predic-
tion strength to 75.99% with AUC = 0.8422 (Table 2). The
RF classifier was constructed using 1000 decision trees
and m = 8. However, adding M,, and M to the input vector
did not result in further improvement of classifier per-
formance (data not shown).

Interestingly, the most accurate classifier was obtained
with a combination of PSSM, H,,, H;, K,, and K, in addi-
tion to the three biochemical features for input encoding.
Since the input vector had 297 variables (27 inputs for
each of the eleven residues in a data instance), the training
parameter m was set to 17 for the forest with 1000 deci-
sion trees. As shown in Table 2, the resulting classifier
achieved the overall accuracy of 78.20% with 78.06% sen-
sitivity and 78.22% specificity. The prediction strength
reached 78.14%, representing an increase of 6.57% when
compared with the performance achieved without evolu-
tionary information (71.57%). This RF also had the high-
est level of ROC AUC (0.8605) among all the classifiers
(Table 2).

The significant improvement of classifier performance by
using evolutionary information has further been demon-
strated in the ROC analysis (Figure 2). The ROC curves
have been generated by varying the output threshold of RF
classifiers, and each point on a ROC curve represents a
trade-off between sensitivity and specificity. For classifier
performance comparison, the ROC curve of a more accu-
rate classifier is closer to the left-hand and top borders of
the plot. As shown in Figure 2, the RF classifier trained
with the two types of evolutionary information (HKM+EI)
is clearly better than the classifier constructed using only
biochemical features (HKM).

Comparison of classifier performance using a separate test
dataset

To further demonstrate the improved prediction of DNA-
binding residues, the most accurate RF (also called BindN-
RF) has been compared with the previous classifiers

(BindN, DP-Bind and DBS-PSSM) using a separate test
dataset, PDC25t. BindN uses the SVM classifier con-
structed using the three biochemical features (H, K and M)
in our previous study [10]. The DP-Bind web server http:/
[lcg.rit.albany.edu/dp-bind/ provides PSSM-based SVM
and kernel logistic regression predictors for DNA-binding
site prediction [7,8]. DBS-PSSM http://www.netasa.org/
dbs-pssm/ is the ANN predictor trained with PSSM and
sequence information [6]. All the above classifiers have
been constructed using the same training dataset, PDNA-
62, which shares less than 25% sequence identity with the
PDC25t dataset.

As shown in Table 3, BindN-RF gives the best predictive
performance with the prediction strength at 76.86% and
ROC AUC equal to 0.8495. Importantly, the performance
measures achieved by BindN-RF on the separate test data-
set (PDC25t) are comparable with those from the fivefold
cross-validation (Table 2), suggesting that over-fitting has
been avoided in the construction of the RF classifier. DP-

0.8 A
2
o
o 06
2
=
[72]
g
o 04-
S
S
=
o2/ HKM
; — HKM+EI
0 T T T T
0 0.2 0.4 0.6 0.8 1
False positive rate
Figure 2

ROC curves to show the effect of evolutionary infor-
mation. HKM represents the random forest classifier
trained with the three biochemical features (H, K and M), and
HKM+El indicates the most accurate classifier using evolu-
tionary information (PSSM, H,,, H,, K, and K ).
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Table 3: Comparison of classifier performance using a separate test dataset.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) Strength (%) ROC

AUC
BindN-RF 80.00 73.08 80.63 76.86 0.8495
BindN 70.81 68.70 71.01 69.85 0.7648
DP-Bind 78.89 65.89 80.76 7332 0.8149
DBS-PSSM 6791 37.48 70.72 54.10 0.5528

Bind also gives relatively high performance with 73.32%
prediction strength and ROC AUC = 0.8149 on the
PDC25t dataset. However, the ANN predictor trained with
PSSM and sequence information (DBS-PSSM) shows very
low performance on the PDC25t dataset, probably owing
to poor generalization of the representative DNA-binding
residues in the relatively small training dataset (PDNA-
62).

In Figure 3, ROC curves have been generated for the four
classifiers (BindN-RF, BindN, DP-Bind and DBS-PSSM)
based on their predictions made for the PDC25t test data-
set. Clearly, the RF classifier (BindN-RF) shows the best
performance for almost all the trade-offs between sensitiv-
ity and specificity. The results suggest that the RF-based
approach developed in this work is better than the previ-
ous methods for sequence-based prediction of DNA-bind-
ing residues.

Q
s
o
2
.‘ﬁ
o
Q
Q
2
= - —— BindN-RF
S ----DP-Bind
0295 e BindN
c ----- DBS-PSSM
0+ : : : :
0 0.2 0.4 0.6 0.8 1
False positive rate

Figure 3

ROC curves of different classifiers for DNA-binding
site prediction. The performance comparison is based on
the PDC25t test dataset. The four different classifiers are
BindN-RF (this study), BindN [10], DP-Bind [7,8] and DBS-
PSSM [6].

Structural validation of predicted DNA-binding residues
To determine whether the prediction results can provide
useful information for understanding protein-DNA inter-
actions and that the RF-based approach is better than our
previous method (BindN), the predicted DNA-binding
residues have been examined in the context of three-
dimensional structures. Figure 4 shows representative pre-
dictions made by BindN-RF and BindN for the 81
sequences in the PDC25t test dataset. The predictions
were based solely on amino acid sequence information,
and the structural data were used only for visualization of
the prediction results. In Figure 4A, DNA-binding residues
have been predicted using the RF classifier (BindN-RF) for
the bacterial QacR protein (PDB ID: 1JT0) involved in
multidrug binding and transcriptional regulation [17].
Significantly, 10 of the 12 DNA-binding residues were
correctly predicted, and there were only 5 false positive
predictions for the 166 non-binding residues in each pro-
tein subunit. When the QacR sequence was analyzed
using BindN, the false positive rate was very high (58 false
positive predictions for the 166 non-binding residues)
although all the 12 DNA-binding residues were correctly
identified (Figure 4B). Thus, for experimental studies such
as site-directed mutagenesis, the prediction result from
BindN does not provide as much useful information as
that from BindN-RF.

The BindN-RF web server

To make the accurate RF classifier available to the biolog-
ical research community, we have developed the BindN-
RF web server http://bioinfo.ggc.org/bindn-rf/. Users can
enter an amino acid sequence in FASTA format, and spec-
ify the desired level of sensitivity or specificity for DNA-
binding site prediction. For a query sequence, the system
performs a three-iteration PSI-BLAST search against the
UniProtKB database to extract evolutionary information
as described in Methods. The RF classifier constructed in
this work is then used to predict DNA-binding residues in
the query sequence. The user-defined level of sensitivity or
specificity is used to determine the output threshold for
the RF classifier according to its ROC curve. Thus, users
can choose a specificity level higher than the default value
(85%) to reduce the number of false positive predictions.
The output report of BindN-RF has been designed to be
self-explanatory, and is similar to that of BindN.0 A
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Figure 4

Predicted DNA-binding residues shown in the context of three-dimensional structures. Putative DNA-binding res-
idues were predicted for the bacterial transcriptional regulator QacR (PDB ID: 1JT0) using BindN-RF (A) and BindN (B). In
each protein-DNA complex, true positives (correctly predicted DNA-binding residues) are in red spacefill; true negatives in
green wireframe; false positives in yellow spacefill; false negatives in blue spacefill; and the DNA double helix in purple.

detailed description about the report format can be found
in our previous paper [10].

Conclusion

A random forest-based approach has been described in
this paper for predicting DNA-binding residues in protein
sequences. Since random forests can handle a large
number of input variables and avoid model overfitting,
accurate classifiers have been constructed by combining
biochemical features with several descriptors of evolu-
tionary information for input encoding. The new descrip-
tors developed in the present work have been shown to
enhance classifier performance when they are used
together with the biochemical features and position-spe-
cific scoring matrices. Thus, the new descriptors capture
certain evolutionary information that is not contained in
position-specific scoring matrices previously used for
DNA-binding site prediction. The best random forest clas-
sifier achieved 80.00% overall accuracy with 73.08% sen-
sitivity and 80.63% specificity on a separate test dataset.
Predictions at this level of accuracy may provide useful
information for protein-DNA docking and experimental
studies such as site-directed mutagenesis for understand-
ing protein-DNA interactions. The new approach has
been implemented in the BindN-RF web server for online
prediction of DNA-binding residues in protein sequences.
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