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Abstract

Background: Ratio-based analysis is the current standard for the analysis of dual-color microarray data. Indeed, this
method provides a powerful means to account for potential technical variations such as differences in background
signal, spot size and spot concentration. However, current high density dual-color array platforms are of very high
quality, and inter-array variance has become much less pronounced. We therefore raised the question whether it is
feasible to use an intensity-based analysis rather than ratio-based analysis of dual-color microarray datasets.
Furthermore, we compared performance of both ratio- and intensity-based analyses in terms of reproducibility and
sensitivity for differential gene expression.

Results: By analyzing three distinct and technically replicated datasets with either ratio- or intensity-based models,
we determined that, when applied to the same dataset, intensity-based analysis of dual-color gene expression
experiments yields 1) more reproducible results, and 2) is more sensitive in the detection of differentially expressed

very small.

genes. These effects were most pronounced in experiments with large biological variation and complex
hybridization designs. Furthermore, a power analysis revealed that for direct two-group comparisons above a
certain sample size, ratio-based models have higher power, although the difference with intensity-based models is

Conclusions: Intensity-based analysis of dual-color datasets results in more reproducible results and increased
sensitivity in the detection of differential gene expression than the analysis of the same dataset with ratio-based
analysis. Complex dual-color setups such as interwoven loop designs benefit most from ignoring the array factor.
The applicability of our approach to array platforms other than dual-color needs to be further investigated.

Background

During the last decade, microarray technology has
evolved into an indispensable tool for high-throughput
gene expression studies. For example, microarrays are
now routinely applied to identify differentially expressed
genes between paired sample series, classify tumors in
prognostic groups, and identify transcriptional altera-
tions during development [1-3]. Two main types of
commercial high density microarray platforms have
emerged: one-color oligonucleotide platforms such as
Affymetrix and Illumina, and dual-color oligonucleotide
platforms such as Agilent and Nimblegen. Dual-color
gene expression platforms are very efficient in directly
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comparing two conditions, by hybridizing the two con-
ditions together on the same array. This greatly reduces
the possible confounding effects of inter-array variability
and local array effects.

The outcome of comparative microarray experiments
is a ranked list of significant genes, possibly involved in
the process under investigation. The resulting gene list
then serves as a starting point for further investigations,
such as constructing new hypotheses, or the in vitro
characterization of putatively identified genes. Due to
their dimensionality (few observations, many variables),
microarray experiments suffer from high rates of false
positive and negative findings [4]. Thus, the issue of
reproducibility is of utmost importance in array
experiments.
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Analysis of variance (ANOVA) is a widely used tool to
analyze and rank genes in both one- and dual-color
comparative gene expression experiments [5]. The
ANOVA model incorporates factors such as treatment,
tissue and age to estimate the effect of interest per gene.
For dual-color arrays specifically, an array effect is
included in the model to determine the technical noise
introduced by any between-array differences. Account-
ing for such an array effect in the analysis of dual-color
arrays was initially necessary due to the relatively poor
quality of array platforms: researchers were confronted
with different levels of background signals across arrays,
and the process of spotting cDNAs yielded probes with
different shapes and probe concentrations. The latest
generations of commercial dual-color platforms however
use synthesized oligonucleotide probes instead of cDNA
probes, and are of much higher and consistent quality
and concentration. Subsequently, the variance intro-
duced by the array effect has become much less pro-
nounced [6]. We recently reported that using the
Agilent arrayCGH platform or other CGH array plat-
forms, the separate channels of these dual channel
arrays are interchangeable, avoiding redundant hybridi-
zations of the same reference material in every experi-
ment [7]. We therefore raised the question whether the
results obtained by separately analyzing intensities from
co-hybridized gene expression array samples are more
reproducible than results based on classical ratio-based
analysis. As an added benefit, an intensity-based analysis
approach allows for pairwise comparison between any
samples.

We have performed a set of experiments to determine
whether the intensity-based analysis of dual-color arrays
is more reproducible than the conventional ratio-based
analysis. Two independent datasets were used: a human
keratinocyte cell line dataset, and a dataset based on
human brain tissue. By selecting these datasets, we were
able to study the performance of the ratio- and inten-
sity-based models in two distinct situations: no biologi-
cal variation (cell line dataset) versus substantial
biological variation (brain dataset).

For both the intensity-based and ratio-based analysis,
we estimated the reproducibility and sensitivity in the
detection of differential gene expression by analyzing
technical replicates. Technical replicates, consisting of
two non-overlapping sets of microarrays, were used
rather than biological replicates, as our focus is on
inclusion or exclusion of the array factor, which is a
technical factor. Furthermore, we used a model selection
algorithm to determine whether either intensity or ratio
based analysis was most suitable for each dataset.

Our results indicate that intensity-based analysis out-
performs the standard ratio-based analysis of the same
dataset. Intensity-based results are more reproducible,
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and increase the sensitivity of detecting regulated genes.
Our results also indicate that differences between ratio-
and intensity-based results become smaller in large data-
sets with simple designs, suggesting that more complex
designs such as factorial and loop designs benefit most
from our approach.

Results

Intensity-based analysis yields comparable results to
ratio-based analysis, but is more sensitive in detecting
differential gene expression

To determine the feasibility of intensity-based analysis of
dual-color arrays, we performed a microarray experi-
ment in which the effects of 4 different treatments (T1,
T2, T3 and T4) were investigated using two keratino-
cyte-derived cell lines by measuring transcript levels on
Agilent 4 x 44K Whole Human Genome arrays. The
entire experiment was technically replicated (experiment
C1 and C2, the hybridization setup can be found in
Additional file 1).

One of the prerequisites of intensity-based analysis of
dual-color arrays is that co-hybridized samples do not
influence gene expression measurements in the opposite
channels. In other words, the intensity distribution of
sample X should be independent of the co-hybridized
sample. A hierarchical cluster analysis of the individual
intensities of all arrays showed that cell line-treatment
combinations invariably clustered together (Figure 1).
This indeed suggests that intensities do not seem to be
influenced by the co-hybridized sample or array used, as
the array effect appears to be smaller than the treatment
effect. To further investigate the magnitude of array-spe-
cific effects we compared the relative effect sizes of the
array and treatment effects as defined by the ANOVA
model. This analysis revealed that, apart from the noise
component introduced by genes that are not differen-
tially expressed between treatments, the treatment effect
is much larger than the array effect (Figure 2A). Conse-
quently, we expected the in silico reconstructed ratios
between two samples that were not co-hybridized, to be
very similar to the directly measured ratios between
those samples. We indeed observed a strong linear cor-
relation between the directly measured ratios, and the in
silico reconstructed ratios based on separate hybridiza-
tions (average correlation 0.78, range 0.47-0.88, Addi-
tional file 2).

To investigate whether these findings translate to other
datasets as well, we analyzed a publicly available dataset
in which two commercially available samples were
hybridized 10 times on Agilent dual-color microarrays
(data obtained from the MAQC dataset [6]). We
selected this experiment specifically, because treatment
and array effects are not partially confounded (as is the
case in the cell line dataset), and biological variance is
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Hierarchical clustering of intensities of cell line dataset
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Figure 1 Intensities of the same sample measured on separate arrays are highly correlated. Hierarchical clustering of log2-transformed
single channel intensities of the complete cell line experiment. Only genes with an average intensity A > 7 were used. Note that identical cell
line-treatment combinations always cluster together, regardless of the co-hybridized sample. Sample naming = [cell line] [treatment] [duplicate
set].
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Figure 2 Comparison of effect sizes for array and treatment factors. Comparison between the relative sizes of the array and treatment
effects, derived from the ANOVA model. Panel A: cell line dataset. Panel B: MAQC dataset. Dashed line: smoothed histogram over all genes for
treatment effect size (absolute value of M-value), averaged over all treatment comparisons. Solid line: smoothed histogram over all genes for
average array effect size (absolute value of M-value). Note that both the treatment and array effects still include an unavoidable noise
component, hence one expects a partial overlap in the histograms because of genes that do not show a differential effect between treatments.
Still there is a clear proportion of genes for which the mean treatment effect is much larger than the array effect size.

absent. We observed a very strong linear correlation results as the ratio-based model (Figure 3). Furthermore,
between real and in silico reconstructed ratios (Addi- when using the p-value of the 1,000th most significant
tional file 3), and the ANOVA-derived array effect was  gene in the ratio dataset as a cutoff for the intensity
very small compared to the treatment effect (Figure 2B).  dataset, 89% (dataset C1) and 92% (dataset C2) of the
Ultimately, the reliable detection of differential gene 1,000 genes selected by the ratio model were also pre-
expression between treatments is the main interest of  sent in the set of intensity-selected genes. Interestingly,
the cell line experiment. We therefore, for the cell line the p-values generated by the intensity model are smal-
dataset, compared the ranking of genes by p-values gen-  ler than those generated by the ratio model, indicating
erated with two different ANOVA models: one includ- that the intensity model is more sensitive in detecting
ing the array effect (the ratio analysis), and one without differential gene expression.
the array effect (the intensity analysis). We observed a
substantial overlap of 64% (replicate dataset C1) and Intensity-based results reproduce better than ratio-based
66% (replicate dataset C2) between the ratio- and inten-  results
sity-based lists of the 1,000 most significant genes, sug- The detection of regulated genes should be reproduci-
gesting that the intensity-based model yields similar  ble; between two technically replicated experiments, one
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Figure 3 Ratio- and intensity-based analysis results in similar
sets of differentially expressed genes. For the cell line dataset
C1, p-values generated by the ratio and intensity ANOVA models
were ranked from low to high, and assigned to bins containing
1000 genes. The fraction of overlap represents the proportion of
genes occurring in both sets.

expects to find highly similar sets of differentially
expressed genes. To assess the reproducibility of the
ratio and intensity models, we separately calculated p-
values for both technical replicate datasets C1 and C2 of
the cell line experiment. We observed a strong correla-
tion (r = 0.75) between p-values generated by the ratio
model for the two datasets (Figure 4A). However, the
correlation between the p-values generated by the inten-
sity model was even more pronounced (r = 0.82, Figure
4B). Next, we compared, for increasing numbers of
genes, the overlap between the highest ranked genes
within the replicate datasets, based on p-values gener-
ated either by the ratio- or intensity based ANOVA
models (Figure 4C). Regardless of the size of the top-
ranked gene lists (n = 10-1,000, increments of 10), the
intensity model outperforms the ratio model: more
genes are reproduced by the intensity model.

The results from the p-value rank-based reproducibil-
ity experiments suggest that it is preferable to exclude
the array factor in the linear model. To provide further
evidence that the intensity model is indeed superior to
the ratio model, we applied the Bayesian information
criterion (BIC) for model selection on the ratio- and
intensity-based ANOVA models [8]. This test does not
directly compare the outcomes of the intensity- and
ratio-based analysis, but rather determines which of the
two analyses is most suitable to analyze the data. A BIC
calculation between the ratio and intensity models was
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performed for each gene. Indeed, for 94.5% of the genes,
the intensity model is favorable over the ratio model, as
determined by lower BIC values. For 5.5% of the genes,
the inclusion of an array effect in the linear model
resulted in lower BIC values (Table 1).

Analysis of an independent dataset confirms the gain in
reproducibility and sensitivity when using intensity-based
models

The cell line experiments demonstrated that intensity-
based analysis of dual-color data provide more reprodu-
cible results, and is more sensitive in the detection of
differentially expressed genes. It is however unknown
how these results translate to other types of experi-
ments, consisting of different sample types and experi-
mental setups. We therefore analyzed a separate dataset,
consisting of 49 human prefrontal cortex samples,
divided over 7 equally sized groups. Samples were
obtained from different human subjects, thus the biolo-
gical variance in this dataset is expected to be large (no
biological variation is present in the cell line dataset).
Consequently, samples were not pooled, but hybridized
individually. As each biological sample was hybridized
two times (Additional file 4), we expected the distribu-
tion of intensities from the two separate hybridizations
to be very similar. Indeed, as previously observed in the
cell line experiments, an unsupervised hierarchical clus-
tering of all single channels showed that the two inten-
sity measurements of the same biological sample
clustered together (Figure 5).

The human brain experiment was not designed with full
technical replication in mind. However, as we performed
duplicate measurements for each sample, it was possible
to divide the dataset into 2 identical biological datasets
B1 and B2 (see Additional file 4). To assess the reprodu-
cibility between these two replicate datasets, we again
compared the p-values generated both by the ratio and
the intensity models. We found a surprising lack of cor-
relation (r = 0.05) for p-values based on the ratio model
between replicates (Figure 6A). The p-values generated
by the intensity model however showed a far better cor-
relation (r = 0.46, Figure 6B). Indeed, when determining,
for increasing numbers of genes (10-1,000 genes, incre-
ments of 10), the overlap between the highest ranked
genes based on the p-values of the replicate measure-
ments of either the ratio- or intensity based ANOVA
models, we observed a substantial proportion of repro-
duced genes in the intensity model. Almost no genes
were reproduced between the two ratio-based analyses
(Figure 6C). Not surprisingly, model selection according
to the BIC showed that for 99.99% of the genes, the
intensity model outperforms the ratio model. For only 4
genes, the array component was large enough to justify
incorporation in the ANOVA model (Table 1). Thus,
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Figure 4 Intensity models provide more reproducible results than ratio models. A, B) Comparison between the reproducibility of p-values
between technically duplicated experiments, generated by the ratio model (A) and the intensity model (B). Note the higher correlation for the
intensity model. p-values are given as -log10(p-value): higher p-values are more significant. C) proportion of genes reproduced by either the ratio
on intensity model, for sets of equally ranked genes between the replicate datasets C1 and C2.

Table 1 The intensity model is favored over the ratio
model based on BIC model selection.

Ratio Intensity Total
Cell line dataset
Genes 2382 40976 43358
Percentage 549% 94.51% 100.00%
Brain dataset
Genes 4 39413 39417
Percentage 0.01% 99.99% 100.00%

Results of the per-gene BIC model selection for both the cell line and human
brain datasets. The column Ratio represents the number or percentage of
genes with lower BIC values as opposed to the intensity model. The Intensity
column represents the number or percentage of genes with lower BIC values
as opposed to the ratio model.

also in this second experimental dataset, there is clear
evidence that the intensity model is to be preferred over
the ratio model.

As the brain dataset is based on human subjects, the
biological variation is large, which is reflected in overall
less significant p-values than the cell line dataset. Conse-
quently, replication on the p-value level is less pro-
nounced than for the cell line dataset. We therefore also
analyzed replication in the human brain dataset on the
treatment effect level. For the two replicate datasets, the
size of the treatment effect between different pairwise
sample group comparisons (positioned at different dis-
tances in the loop design) was estimated using ANOVA
models with and without the array factor (Figure 7 and
Additional file 5). In all comparisons, the intensity-based
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Hierarchical clustering of intensities of brain dataset
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Figure 5 Single channel clustering of human brain dataset. Hierarchical clustering of log2-transformed single channel intensities of the
human brain experiment. Only genes with an average intensity A > 7 were used. Note that, for all 49 individuals, the two replicate
measurements cluster together.
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Figure 7 Reproducibility of between-group treatment effects based on ratio and intensity models. Reproducibility of ANOVA-derived
treatment effects between group 0 and group 6 in replicate brain datasets B1 and B2. Panel A: reproducibility of treatment effects derived from
the ratio model. Panel B: reproducibility of treatment effects derived from the intensity model. Note the enhanced reproducibility when using

M-values dataset B1

analysis resulted in better correlations between M-values
from the two replicate datasets.

A power perspective on intensity versus ratio-based
models

In both the cell line and human brain datasets, the fac-
tors treatment and array are partially confounded (since
one cannot assign every treatment to each array). In the
MAQC dataset, which consists of 10 technical replica-
tions of two commercially available RNA samples, these
factors are not confounded. A BIC analysis revealed that
the model without array effect is preferable for 71% of
the genes in the MAQC dataset. Thus, even though
dropping the array effect is beneficial for roughly 2 out
of every 3 genes, this percentage is lower than in the
other two data sets. This is however not unexpected:
BIC includes a penalty which is proportional to the sam-
ple size (number of arrays) for the model with array
effect while constant for the other model, and the sam-
ple size of the MAQC dataset is smaller than those of
the other two data sets. The simple repeated measure-
ments design of the MAQC data set allowed us to study
the trade-off between less degrees of freedom and var-
iance reduction caused by inclusion of the array effect
from a power perspective. Figure 8A-C shows the power
curves for probes A_32_P215304, A_23_P201338 and
A_32_P211558, assuming that the estimated treatment
effect sizes are real (the treatment effect sizes are the
same for both the ratio and intensity models). While
one analysis may dominate the other for all sample sizes
(Figure 8A and 8B), we observe the aforementioned
trade-off from the crossing curves in Figure 8C. In all
cases the power curve for the analysis including the

array effect is steeper, confirming our expectations that
when sample size increases, the loss of degrees of free-
dom is less harmful. We also considered the average
power (the expected number of genes declared signifi-
cant) over the entire MAQC dataset (Figure 8D). The
gene set was restricted to those with an estimated treat-
ment effect size larger than 0.25 to emulate a set that
contains differential signal. The average power was
higher for the model with array effect for total sample
size larger or equal to 12 while smaller otherwise. Dif-
ferences were small, though: a maximum difference of
1% was found. As expected the power curves converge
again when the sample size increases. As opposed to the
reproducibility results, these power calculations assumed
the array effects to be fixed, as implied by the model.
While this may be too optimistic, it is good to notice
that the aforementioned trade-off is visible from a
power perspective.

Discussion

Our results demonstrate that the analysis of dual-color
microarray gene expression experiments using intensity-
based linear models outperforms the standard ratio-
based analysis. Both reproducibility and sensitivity were
enhanced in detecting differential gene expression in
two independent datasets.

By analyzing technically replicated experiments we
determined the effect of both models on the reproduci-
bility of gene rankings. Our studies show that for both
the cell line and brain datasets the intensity-based analy-
sis provides more reproducible gene rankings than the
ratio-based analysis of the same dataset. For the cell line
dataset, 78% of the 1,000 most significant genes is
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reproduced between the two duplicate datasets C1 and
C2 when using the intensity analysis, whereas only 73%
of the genes is reproduced with the ratio analysis (see
Figure 4C). For the brain datasets B1 and B2, the differ-
ence between ratio- and intensity-based reproducibility
is far more pronounced: only 4% of the top 1,000 genes
are reproduced in the ratio analysis, while there is still a
substantial overlap of 51% between intensity-based gene
rankings (Figure 6C). The underlying reasons behind the
apparent discrepancy between the cell line and brain
datasets will be addressed later. An independent line of
evidence, based on model selection, also indicated that
intensity-based models are preferred over ratio-based
models for the analysis of dual-color microarray data.
When performing Bayesian Information Criterion model

selection calculations, we found that for 95% of the
transcripts in the cell line experiment, and virtually all
transcripts in the human brain experiment, the intensity
model was favored over the ratio model. Furthermore,
for both the cell line dataset and a publicly available
third dataset, a comparison between ANOVA-based
array and treatment effect sizes revealed that the treat-
ment effects are much larger.

Combining the gene ranking, relative effect size and
model selection results, we argue that simply by select-
ing the intensity model instead of the ratio model for
the analysis of the same set of gene expression measure-
ments, more reproducible results are obtained.

It should be noted that the relative advantage of drop-
ping the array effect depends on the complexity of the



Bossers et al. BMC Genomics 2010, 11:112
http://www.biomedcentral.com/1471-2164/11/112

design and the sample size (the number of arrays). For
the relatively simple MAQC data set BIC selects the
model with array effect for 29% of the genes, much
more frequently than for both the brain and cell line
data sets. The beneficial effect of dropping the array
effect from the model seems more pronounced in
experiments that employ direct designs to address com-
plex comparisons, such as time series and multifactorial
experiments.

Adding to the enhanced reproducibility, intensity-
based analysis is more sensitive in the detection of dif-
ferential gene expression, as derived from more signifi-
cant p-values. It is important to note that, by selecting
the ratio-based p-value of the 1000™ most significant
gene as a cutoff, almost all of the 1000 genes (89% for
dataset C1, 92% for dataset C2) are also significant in
the intensity-based analysis using the same cutoff. Inter-
estingly, this analysis also reveals that 3335 genes, not
selected by the ratio model, are reproducibly more sig-
nificant than the 1000™ gene in the ratio results. This
provides additional evidence for the enhanced sensitivity
of the intensity model over the ratio model. Due to the
poor reproducibility of the ratio-based results in the
brain dataset, such calculations were not meaningful for
that dataset.

Enhanced sensitivity due to ignoring the array effect in
the linear model

The observation that ratio-derived p-values can be
improved by intensity-based models can be attributed to
the inclusion of the array effect in the ratio-based linear
model. Pairing of data is a powerful concept for remov-
ing subject specific bias. In particular, when the quality
of the spot printing procedure is not constant (often the
case with in-house spotted arrays), it is essential to
account for an array effect in the ANOVA model [9].
But there is a price to pay: degrees of freedom [10]. The
total number of degrees of freedom equals the number
of samples. The array effect consumes almost half of the
degrees of freedom. However, due to the high quality of
commercially available dual-color oligonucleotide micro-
arrays, we and others observed that the ratios of the
same sample pair, measured on different arrays, are
strongly correlated [6], which means that the array effect
is likely to be very small. When using a ratio-based
model to analyze the data, many degrees of freedom are
used to estimate the array effect, explaining only a small
proportion of the variability. This ultimately results in
less significant p-values, a lower correlation between p-
values from the two replicate experiments, and a smaller
proportion of reproduced top-ranked genes. Indeed, the
results from the model selection experiments clearly
indicate that the model without array effect is the pre-
ferred model for both datasets. It should be noted that
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we do not state that the array effect is absent: our ana-
lyses in fact show that an array effect is present in mod-
ern dual color microarray experiment. Furthermore, the
results from the power calculations for the MAQC data-
set show that including the array effect can be slightly
beneficial for certain sample sizes. However, we con-
clude from our experiments that for both the brain and
cell line datasets, the array effect is too small in compar-
ison to the main factor of interest (treatment) to justify
incorporation into the ANOVA model.

A possible argument for the inclusion of the array
effect is the potential competition for spot binding
between the co-hybridized samples. However, our and
other studies suggest that competition is not an issue
[7,10]. This can be derived from the strong correlation
between the real and in silico reconstructed ratios (see
Additional files 2 and 3), and the hierarchical clustering
in Figures 1 and 5. Our study was however not con-
ducted to demonstrate that ratios can be reconstructed
in silico by using separate intensities. Indeed, this has
been demonstrated before [10]. Our specific aim was to
compare the performance of ratio- and intensity-based
methods based on the main outcome of comparative
gene expression experiments: a list of ranked genes. As
this gene ranking provides the basis for further research,
it needs to be robust and reproducible. We show here
that intensity-based methods provide more reproducible
results and is more sensitive in detecting differential
gene expression, and thus outperform the standard
ratio-based analysis.

Biological variation negatively affects ratio-based, but not
intensity-based, replication

As indicated earlier, in the human brain experiment, we
observed a striking lack of reproducibility (r = 0.05)
between p-values generated by the ratio model on the
replicate datasets B1 and B2, whereas the intensity-based
p-values reproduced quite well (r = 0.46). These findings
can be attributed to the following. First of all, the overall
p-values (both intensity- and ratio-based) are less signifi-
cant in the human brain experiment than in the cell line
experiment, due to the large biological variation between
individuals. Second, due to the relatively low level of bio-
logical replication, few degrees of freedom are left for
estimating the biological effect. Third, the brain experi-
ment was not designed with splitting the data into two
technical replicates in mind. While the two data sets are
biologically identical, the samples are paired differently
on the arrays between the two replicate datasets (see
Additional file 4). Since this pairing is more or less arbi-
trary, the results should be robust against this artifact,
but this is not necessarily the case for the ratio-based
analysis. When the biological variation is large, different
sample pairings may result in differences in measured
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ratios, a phenomenon we observed in the brain dataset
(Figure 7 and Additional file 5). The intensity-based ana-
lysis of brain datasets Bl and B2 does not suffer from
these drawbacks: no ratios are calculated, and more
degrees of freedom are left for estimating the biological
effect of interest, resulting in a substantial proportion of
reproducible findings (51% of the 1,000 most significant
genes), and a relatively high correlation between p-values
(r = 0.46). In a setting with many biological replicates per
level (e.g. comparison of two large groups) the differences
in correlation between the ratio-based and intensity-
based analysis are likely to be smaller.

Our studies indicate that the reliability of gene rank-
ings obtained from dual-color microarray experiments
can be improved by using intensity-based models. An
added benefit of the intensity-based analysis is that
intensity models do not suffer from the drawbacks of
ratio models in the analysis of complex direct dual-color
experiments. Designs such as the interwoven loop
design address the increased complexity of microarray
experiments, which have progressed from “simple” two-
group comparisons to multifactorial or time-course
experiments. The aforementioned direct designs are effi-
cient, but often bias certain comparisons over others
and lack the possibility to extend the experiment by
adding more groups or samples. There are no such lim-
itations when analyzing dual-color experiments with
intensity-based models [10]. Finally, the LIMMA soft-
ware package also uses intensity data from dual-color
experiments, but mainly as a solution to compare sam-
ples which are unconnected in the hybridization design
[11]. Here, we provide evidence that it is beneficial to
perform an intensity-based analysis for connected
designs as well. It should be noted that the observed
improvements may be limited to dual-color arrays and
that further experiments are needed to justify the gener-
ality of these results for other array designs.

Conclusions

In conclusion, our results indicate that intensity-based
models are very powerful in the analysis of dual-color
gene expression data when these are obtained from a
high-quality platform. Most importantly, intensity mod-
els yield more reproducible results, and are more sensi-
tive in the detection of differential gene expression than
standard ratio-based analysis methods on the same
microarray dataset. The gain in reproducibility and sen-
sitivity are most pronounced in complex designs such as
the interwoven loop design. We argue that the intensity-
based models outperform ratio-based models, and thus
are the preferred models for the analysis of dual-color
gene expression datasets derived from commercial
oligo-based array platforms.
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Methods

Human keratinocyte cell line dataset

The cell line sample set consisted of two immortalized
cell lines (cell lines 10 and 19) derived from a single pri-
mary keratinocyte culture. The two cell lines were sub-
jected to four different treatments (treatments T1, T2,
T3 and T4). After RNA isolation and labeling (labeling
performed with Agilent Low RNA Input Fluorescent
Linear Amplification Kit, Agilent Technologies), equal
amounts (1 pg) of Cy3-CTP and Cy5-CTP labeled sam-
ples were hybridized to Agilent 4 x 44K Whole Human
Genome arrays (Agilent Technologies, Part Number
G4112F), according to the manufacturer’s instructions.
The hybridization set-up on the 4 x 44K array was cho-
sen in such a way that for each cell line, both Cy3- and
Cy5-labeled samples for all treatments were hybridized
on a single slide (containing 4 arrays). The entire experi-
ment was technically replicated. The hybridization setup
can be found in Additional file 1. Microarrays were
scanned using the Agilent DNA Microarray Scanner
(Agilent Technologies, Part Number G2505B), and scans
were quantified using the Agilent Feature Extraction
software (version 8.5.1). Raw expression data generated
by the Feature Extraction software were imported into
the R statistical environment using the LIMMA package
[12] in Bioconductor http://www.bioconductor.org. No
background correction was performed, as overall back-
ground levels were very low. The intensity distributions
within and between arrays were normalized using the
quantile scaling algorithm [13] in LIMMA. After nor-
malization, the separate intensity channels were
extracted from the ratio measurements. The log2-trans-
formed intensity measurements were used in all follow-
ing analyses. The microarray data have been deposited
in the Gene Express Omnibus (GEO) database http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
token=djkxjoomeyecqja&acc=GSE12553.

MAQC dataset

Microarray hybridization data were extracted from the
Gene Expression Omnibus (GEO accession number
GSE5350, file MAQC_AGL_123_60TXTs.zip, series “C":
arrays AGL_3_Cl1.txt, AGL_3_C2.txt, AGL_3_C3.txt,
AGL_3 C4.txt and AGL_3_C5.txt, series “D": AGL_3 D1.
txt, AGL_3_D2.txt, AGL_3_D3.txt, AGL_3_D4.txt and
AGL_3_D5.txt). This dataset consists of 10 technical repli-
cations of a hybridization of Stratagene Universal Human
Reference RNA (Cy3 in series “C”, Cy5 in series “D”) and
Ambion Human Brain Reference RNA (Cy3 in series “D”,
Cy5 in series “C”) as described in [6]. Microarray normali-
zation procedures were performed as described for the cell
line experiment. Power curves were computed from the
non-central t-distribution.
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Human brain dataset

Fresh-frozen human brain tissue samples were obtained
from the Netherlands Brain Bank, Amsterdam (NBB).
Written informed consent for a brain autopsy and the
use of the material and clinical information for research
purposes was obtained by the NBB from the donor or
next of kin. Gray matter was isolated from the prefron-
tal cortex of 49 individuals (matched for age, sex, post-
mortem interval and brain pH) with increasing levels of
AD-related neuropathology, as defined by the Braak sta-
ging for neurofibrillary tangles [14]. For each of the 7
Braak stages, 7 individuals were included. Tissue dissec-
tion was performed using a cryostat. For each sample,
between 20 and 30 sections of 50 um were cut. Grey
matter areas were identified by eye and dissected out
using pre-chilled scalpels. Tissue yields were typically
around 50 mg. Total RNA was isolated using a combi-
nation of Trizol-based and RNeasy Mini Kit RNA isola-
tion methods. Briefly, samples were homogenized in ice-
cold Trizol (Life Technologies, Grand Island, New York,
3 ml Trizol per 100 mg tissue). After phase separation
by addition of chloroform, the aqueous phase was
mixed with an equal volume of 70% RNAse-free ethanol.
Samples were then applied to an RNeasy Mini column
(Qiagen, Valencia, California), and processed according
to the RNeasy Mini Protocol for RNA Cleanup. Overall,
the isolated RNA was of high integrity (average RNA
integrity number of of 8.3, range 6.5-9.6, as determined
by Agilent 2100 Bioanalyzer analysis).

After RNA isolation, for each sample, two 500 ng ali-
quots of RNA were linearly amplified and fluorescently
labeled with either Cy3-CTP or Cy5-CTP (Perkin
Elmer) with the Agilent Low RNA Input Fluorescent
Linear Amplification Kit (Agilent Technologies). The
most efficient hybridization scheme was calculated with
the od function of the SMIDA package (version 0.1) in
R. The resulting hybridization setup can be found in
Additional files 4 and 6. Equal amounts (1 pg) of Cy3-
CTP and Cy5-CTP labeled samples were hybridized to
Agilent 44K Whole Human Genome arrays (Part Num-
ber G4112A) according to manufacturer’s instructions.
Microarray scanning, feature extraction and normaliza-
tion procedures were performed as described for the cell
line experiment. The full set of normalized expression
values is publicly available at http://www.vumc.nl/brain-
dataset and as supplementary information to this manu-
script (see Additional file 7).

Clustering and ANOVA models

Clustering of the intensity channels was performed
using complete linkage hierarchical clustering. Only
probes for which the average log2-transformed intensity
(A, as derived from the separate Cy3 or Cy5 channels)
was above A = 7 were included. As this procedure
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removes data from all arrays for a particular probe, the
sample sizes are the same for each probe in the final
dataset. For the cell-line data, p-values for differential
expression between treatments were generated as fol-
lows. First, the entire data set was split into two biologi-
cally identical parts by simply distinguishing the
technical replicates A and B (Additional file 1). The split
resulted in cell line data sets C1 and C2. Next, two
types of ANOVA models were used per array element.
Model 1 represents the ratio-based analysis:

Yig = 0 +7; +1; + 0p(j) + Eije- (1)

Here, p captures the average gene intensity, t; is the
treatment specific effect, 77; is the cell line (10 or 19) effect,
O is the array effect, and ¢ is the error component.
Dye effects have not been incorporated, because the design
was balanced for dyes and the data were normalized to
remove dye-specific bias. Model 2 lacks the factor o) and
hence represents the intensity-based model. The treatment
effect is the factor of biological interest, to which an F-test
was applied to compute p-values. This resulted in four
lists of p-values: ratio-based and intensity-based p-values
for technical replicate C1, and ratio-based and intensity-
based p-values for technical replicate C2.

A similar approach was taken for the human brain
data. Each patient was hybridized twice. The resulting
set of arrays was split in such a manner that each
patient was represented exactly once in both data sets
(brain datasets B1 and B2, see Additional file 4). It is
noteworthy that the obtained datasets are indeed techni-
cal replicates, but not on the level of the experimental
design, as is the case for cell line datasets C1 and C2.
The cell line effect 17; was dropped from the model, and
the treatment effect t; now represented the Braak stage.
The F-test was performed on the Braak stage factor.
Again, two ANOVA models were used: the ratio model
which included the array effect oy;, and the intensity
model without array effect. Consequently, four lists of
p-values were generated: ratio-based and intensity-based
p-values for dataset B1, and ratio-based and intensity-
based p-values for dataset B2.

We did not apply any multiple testing corrections for
our purpose, since a criterion like False Discovery Rate
(FDR) might distort the comparison between the models
somewhat. Also, since both splits contain an equal num-
bers of samples, sample size ‘bias’ is absent.

Comparison ratio and intensity data, reproducibility
calculations and model selection

For the cell line dataset, direct ratio measurements
between co-hybridized sample pairs were compared
with in silico reconstructed ratios of the two intensity
measurements of the same sample pair, as measured on
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separate arrays, and against different samples. For exam-
ple, in dataset C1, the directly measured ratios between
samples T1 and T2 on array 1, were compared with the
reconstructed ratios between T1 on array 4, and T2 on
array 2 (Additional file 1). To eliminate possible con-
founding effects of noise introduced by genes expressed
at very low levels, only genes with an average log-trans-
formed intensity levels greater than 7 were used. To
compare the overlap between gene rankings based on
the ratio and intensity models, genes were ordered by p-
value and assigned to bins containing 1,000 genes. The
fraction of overlap then was defined as the amount of
genes ranked in the same bin by both models, divided
by the size of the bin.

Both for the cell line datasets C1 and C2, and the
human brain datasets Bl and B2, reproducibility
between the replicated datasets was determined as fol-
lows. First, the correlation between sets of p-values was
calculated using Spearman’s rho. Second, to assess the
proportion of genes with similar ranks between repli-
cates, genes were ordered by p-value. For bins of
increasing size (10 to 1,000 genes, by increments of 10
genes), the proportion of overlap was defined as the
fraction of genes, occurring in both sets. Third, Bayesian
information criterion (BIC) model selection was used to
score the ratio- and intensity-based linear models for
each array feature. Information criterion methods, which
aim to determine which set of model parameters the
data support best, penalize models with more unknown
parameters in order to select a model with a lower gen-
eralization error and hence more reproducible results
[15]. The preferred model was defined by the model
with the lowest BIC value. BIC calculations were per-
formed using the nime package in R.

Additional file 1: Hybdridization setup cell line experiment. DN =
P53DN mutant, SH= shRNA, Ml = MIR372, E6 = HPV16 E6. The array
numbers are given in the top left corner of each array.

Additional file 2: Correlation real and in silico reconstructed ratios.
Correlation between ratios, as measured on the array, and the in silico
reconstructed ratios of the same sample pair, as measured on different
arrays and against different co-hybridized samples. Only genes with an
average log2-transformed expression > 7 were included.

Additional file 3: Correlation real versus virtual hybridizations.
Correlation between M-values derived from real hybridizations versus M-
values derived from virtual hybridizations for the MAQC dataset. Main
title: hybridization number. X-axis: directly measured ratio between
sample A and B. Y-axis: mean M-value between 9 virtual comparisons
sample A versus sample B, where sample A and B where measured on
different arrays. Correlation: Pearson’s correlation coefficient.

Additional file 4: Hybridization setup human brain experiment. The
column dataset denotes in which replicate dataset (B1 or B2) the
intensity measurement was used.

Additional file 5: Reproducibility of between-group treatment
effects based on ratio and intensity models. Reproducibility of
ANOVA-derived treatment effects between group 2 and group 4, and
group 1 and group 5, in replicate brain datasets B1 and B2.
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Reproducibility is enhanced when using intensity-based models instead
of ratio-based models.

Additional file 6: Hybdridization setup brain experiment. BR = Braak
stage.

Additional file 7: Human brain dataset. Normalized expression values
(log2) for all human brain hybridizations. Due to intellectual property
restrictions, probe information has been anonymized.
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