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Abstract
Background: Obesity and phenotypic traits associated with this condition exhibit significant heritability in natural 
populations of most organisms. While a number of genes and genetic pathways have been implicated to play a role in 
obesity associated traits, the genetic architecture that underlies the natural variation in these traits is largely unknown. 
Here, we used 40 wild-derived inbred lines of Drosophila melanogaster to quantify genetic variation in body weight, the 
content of three major metabolites (glycogen, triacylglycerol, and glycerol) associated with obesity, and metabolic rate 
in young flies. We chose these lines because they were previously screened for variation in whole-genome transcript 
abundance and in several adult life-history traits, including longevity, resistance to starvation stress, chill-coma 
recovery, mating behavior, and competitive fitness. This enabled us not only to identify candidate genes and 
transcriptional networks that might explain variation for energy metabolism traits, but also to investigate the genetic 
interrelationships among energy metabolism, behavioral, and life-history traits that have evolved in natural 
populations.

Results: We found significant genetically based variation in all traits. Using a genome-wide association screen for 
single feature polymorphisms and quantitative trait transcripts, we identified 337, 211, 237, 553, and 152 novel 
candidate genes associated with body weight, glycogen content, triacylglycerol storage, glycerol levels, and metabolic 
rate, respectively. Weighted gene co-expression analyses grouped transcripts associated with each trait in significant 
modules of co-expressed genes and we interpreted these modules in terms of their gene enrichment based on Gene 
Ontology analysis. Comparison of gene co-expression modules for traits in this study with previously determined 
modules for life-history traits identified significant modular pleiotropy between glycogen content, body weight, 
competitive fitness, and starvation resistance.

Conclusions: Combining a large phenotypic dataset with information on variation in genome wide transcriptional 
profiles has provided insight into the complex genetic architecture underlying natural variation in traits that have been 
associated with obesity. Our findings suggest that understanding the maintenance of genetic variation in metabolic 
traits in natural populations may require that we understand more fully the degree to which these traits are genetically 
correlated with other traits, especially those directly affecting fitness.

Background
Obesity is a condition characterized by an excess of adi-
pose tissue that adversely affects human health [1]. The

clinical problem of excessive adipose tissue resides in its
strong association with a number of chronic diseases,
such as insulin resistance, type 2 diabetes mellitus
(T2DM), coronary artery disease and stroke [1]. In 2003-
2004, 32.2% of the adults in the United States were obese
[2]. This estimate represents a significant increase in obe-
sity prevalence over the past 20 years, and similar trends
are being observed worldwide [3]. As the rise in the inci-
dence of obesity and related health problems continues,
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there is a considerable need to gain a better understand-
ing of the etiology of obesity.

In humans, large twin, adoption, and family studies
have firmly established that obesity-related traits, such as
body mass index and measures of body composition (e.g.,
fat mass, lean mass, and percentage fat mass), are highly
heritable [4-6]. Segregating variation in obesity-related
traits has also been observed in natural populations of
most other organisms, including invertebrates [7-9]. The
general conclusion from these studies is that the genetic
architecture of these traits is complex and affected by
many loci, with numerous gene-by-gene interactions (e.g.
epistasis) and extensive genotype-by-environment inter-
actions reported in a diverse group of organisms [10-13].
In light of this complexity a growing body of research in
humans and animal models has begun to take a more sys-
tems genetic approach with focus on identifying genetic
networks that control body composition and energy
metabolism traits [14-16]. Preliminary findings of such
studies suggest an intricate interplay between body
weight control, stress, and immune response [14,15].
They also highlight a need for studying energy metabo-
lism traits within a broader organismal context, integrat-
ing information on variation in traits influencing energy
metabolism with information on variation in life history
and other energetically demanding traits. This knowledge
could help to explain the origin of trade-offs among these
traits in natural populations. Organisms partition dietary
resources acquired from the environment among the
competing demands of growth, development, reproduc-
tion, maintenance and storage [17]. Since these resources
are limited, the way in which they are acquired and parti-
tioned is critical to the fitness of the individual and often
result in trade-offs between energetically demanding
physiological functions [17]. There is extensive empirical
data on biochemical and physiological correlates of life-
history variation and trade-offs within species [18,19]. Yet
little is known about genes and genetic networks respon-
sible for generating correlations between energy metabo-
lism and life history traits in natural populations [19].
Such knowledge is not only important for understanding
many central issues in life-history evolution [19], but
could also elucidate the genetic basis of natural variation
in human obesity.

In the present study we quantified genetic variation in
wet body weight (BW), the content of three metabolites
[glycogen (GLY), triacylglycerol (TAG), and glycerol
(GLYC)], and metabolic rate (MR) in 40 wild-derived
lines of D. melanogaster. We chose D. melanogaster as a
model system because many of the genetic mechanisms
controlling lipid metabolism and energy homeostasis are
evolutionarily conserved between invertebrates and
mammals (reviewed in [20-22]). Thus, insights about the
genetics of body weight and energy metabolism gained

from Drosophila may also apply to mammals. Addition-
ally, D. melanogaster has long been a model for under-
standing the genetic basis of life history variation [17,23-
25]. The Drosophila lines used in this study were previ-
ously evaluated for several ecologically relevant traits,
including longevity, resistance to starvation stress, chill-
coma recovery, mating behavior, and competitive fitness,
as well as for transcript abundance [26]. This provided us
with the opportunity to gain invaluable insights into the
molecular mechanisms underlying the interrelationships
among energy metabolism, behavioral, and life-history
traits that have evolved in natural populations.

Results and Discussion
Natural variation in body weight and energy metabolism 
traits
We found significant genetic variation among the lines
for all traits analyzed (Figure 1A-F and Additional file 1:
Quantitative genetic analyses of body weight and energy
metabolism traits), with broad-sense heritabilities, H2,
ranging from 25% to 65% in the combined sex analyses.
These estimates are comparable to those found by several
studies in humans [4,5,27] as well as various reports on
mammalian [28,29] and non-mammalian models
[7,10,30]. We also found that all traits exhibited signifi-
cant sex-by-line interactions (Additional file 1: Quantita-
tive genetic analyses of body weight and energy
metabolism traits). These results, however, are most
likely caused by differences in one sex in one line for
some of the traits. Indeed, the genetic correlation coeffi-
cients across sexes among lines, rMF (± SEM), were very
high for BW (0.94 ± 0.05; P < 0.0001), TAG (0.72 ± 0.11; P
< 0.0001), and GLYC (0.97 ± 0.04; P < 0.0001) indicating
that the same loci affect these traits in the two sexes. In
contrast, moderate cross sex correlations were observed
for GLY (0.44 ± 0.14; P = 0.0032) and MR (0.39 ± 0.15; P =
0.0116), suggesting that some of the variation in these
traits is due to loci with sex-specific effects.

Candidate genes for body weight and energy metabolism 
traits
Previously, we assessed variation in gene expression pro-
files among these wild-derived lines of D. melanogaster
and identified 3,136 probes containing single feature
polymorphisms (SFPs) and a total of 10,096 quantitative
trait transcripts (QTTs) [26]. To identify candidate genes
that might regulate variability in each of the traits quanti-
fied in this study, we performed a genome-wide associa-
tion screen to search for significant associations between
SFPs or QTTs with each trait [31]. At a P-value of 0.01, we
found 93, 98, 131, 213, and 71 SFPs (see Additional file
2A: List of SFPs significantly correlated with body weight
and energy metabolism traits) associated with BW, GLY,
TAG, GLYC, and MR, respectively, in the analysis aver-
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aged across sexes. Because some genes were represented
by 2 or more different SFPs, this analysis identified 65
independent genes for BW, 81 for GLY, 115 for TAG, 176
for GLYC, and 61 for MR. Given 3,136 SFPs, only 31 sig-
nificant associations would be expected by chance at a P
value of 0.01, thus the number of SFPs associated with
each trait exceeded that expected by chance.

Based on the results of the quantitative genetic analyses
described above, we also tested for association between
SFPs and each trait using the data stratified by sex. The
stratified analysis detected a reduced number of signifi-
cant associations at a P-value of 0.01 (see Additional file
2B: List of SFPs significantly correlated with body weight
and energy metabolism traits). The majority of these
associations overlapped those identified by the analysis
that used the average trait values across sexes for BW,
GLYC, and TAG. However, several SFPs with sex-specific
effects were detected for GLY and MR and this agrees
with the moderate cross-sex correlations we observed for
these traits reported above.

Our regression analyses identified 275, 130, 125, 389,
and 93 QTTs significantly associated with variation in
BW, GLY, TAG, GLYC, and MR, respectively, at a P value
of 0.01 (see Additional file 3: List of transcripts signifi-

cantly correlated with body weight and energy metabo-
lism traits). In this case the number of transcripts
associated with MR did not exceed chance expectation
(100 significant associations would be expected); how-
ever the QTTs grouped into biologically meaningful
modules as detailed below. Only few QTTs were also
found as candidate genes by the SFP analyses.

To independently validate the finding that some of the
genes identified by our analysis affect the traits, we
focused on candidates associated with variation in GLY,
TAG, and GLYC for which homozygous P-element and
PiggyBac mutations have been generated in an isogenic
background. This approach has been highly effective in
validating candidate genes affecting complex traits that
were previously identified by expression profiling [26,32-
34]. We selected five candidate genes for GLY: β amyloid
protein precursor-like (Appl), Calbindin 53E (Cbp53E),
transferrin 1 (Tsf1), sevenless (sev), and junctophilin (jp).
We then tested for phenotypic differences between
homozygous mutants of these genes and their controls.
After Bonferroni correction for multiple tests, we found
that four of the mutant alleles showed a significant differ-
ence in GLY compared to the control (see Additional file
4: Results of the screen of P-element insert lines for alter-

Figure 1 Variation in body weight and energy metabolism traits in D. melanogaster. Distribution of trait means among 40 wild-derived inbred 
lines of D. melanogaster. Data represent means ± SEM for n = 10 independent replicates. The pink and blue bars in panels A-E depict females and males, 
respectively.
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ations in energy metabolites). Flies with mutations in all
four genes have more GLY than the control strain (Figure
2A). Appl encodes an amyloid precursor-like protein that
is involved in axonal transport and neuronal viability [35].
Cbp53E encodes a calcium-binding protein that modu-
lates the activation of many intracellular effector proteins
[35]. Sev encodes a tyrosine kinase receptor required for
photoreceptor fate specification in the developing eye
[35]. Notably, components of the sev signaling pathway
have been previously linked to the regulation of glucose
and lipid homeostasis via insulin signaling [36]. Finally, jp
encodes a protein belonging to a novel group of highly
conserved transmembrane proteins mediating optimal
ionic signaling among excitable cells [35].

We selected six candidate genes for TAG: rutabaga
(rut), dead-box-1 (Ddx1), sugarless (sgl), Sirt7,
RhoGAP71E, and GXIVsPLA. We found that four of the
mutant alleles showed a significant difference in TAG
compared to the control (see Additional file 4: Results of

the screen of P-element insert lines for alterations in
energy metabolites). While flies with a mutation in rut
have more TAG than the control strain, flies with muta-
tions in sgl, Sirt7, and GXIVsPLA have all less TAG than
the controls (Figure 2B). rut encodes a Ca2+/calmodulin-
responsive adenylyl cyclase that is involved in learning
and memory [35] and also has a role in food choice
behavior [37]. Sgl encodes a homolog of mammalian
UDP-glucose dehydrogenase, which is implicated in pro-
teoglycan synthesis [35]. P-element insertions within the
sgl coding region have been previously reported to signif-
icantly impact fly energy stores [38]. Sirt7 is a member of
the Sirtuins or Sir2 (silent information regulator 2) his-
tone deacetylase enzyme family, which has been shown to
play a role in energy homeostasis and lifespan [39].
Finally, GXIVsPLA2 encodes an enzyme involved in phos-
pholipid metabolism [35].

Figure 2 Metabolites with significantly different levels in P[GT1] and PiggyBac transposon insertional mutations as compared to control 
strains. Data represent least square means ± SEM of GLY (panel A), TAG (panel B), and GLYC (panel C) calculated using total protein content as a co-
variate in the analysis averaged across sexes (n = 20 independent replicates). Black and white bars represent mutant and control flies, respectively.
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We selected six candidate genes for GLYC:
b4GalNAcTA, CG5946, CG8920, Gliotactin (gli), Gluta-
mate dehydrogenase (Gdh), and tweety (tty). We found
that four of the mutant alleles showed a significant differ-
ence in GLYC compared to the control (see Additional
file 4: Results of the screen of P-element insert lines for
alterations in energy metabolites). Flies with mutations in
all four genes have more GLYC than the control strain
(Figure 2C). CG8920 is predicted to encode a protein
belonging to the Tudor domain family [35], which binds
to RNA and single-strand DNA-associated complexes in
the nucleus [40]. Gdh encodes a nuclear-encoded mito-
chondrial enzyme with a role in utilization of metabolite
pools for energy production [35]. gli encodes a trans-
membrane protein transiently expressed in peripheral
glia whose loss of function has been implicated in defects
in axonal guidance and synaptogenesis [35]. Finally, tty
encodes a highly conserved calcium-activated chloride
channel associated to flight behavioral abnormalities [35].

Together with our expression data, the findings using
mutant and control stocks imply that the genes described
above are candidates in the control of energy metabolites
and motivate future studies to elucidate the mechanisms
by which they influence metabolism.

Transcriptional networks associated with body weight and 
energy metabolism traits
To provide insight into how variation in the QTTs can
give rise to variation in the associated traits, we used a
weighted gene co-expression network analysis [26]. Based
on the fact that the transcriptome exhibits high rates of
correlation between transcripts [26], this analysis groups
the QTTs associated with each trait into clusters (mod-
ules) of genetically correlated transcripts. The results of
the analysis are viewed in Figure 3A as a network heat
map plot (interconnectivity plot) of correlated probe sets
after module formation. The correlated transcript mod-
ules can also be represented as an interaction network,
with edges between transcripts in the network deter-
mined by genetic correlations in transcript abundance
exceeding a threshold value. This structure allows one to
visualize the most highly connected genes or intramodu-
lar hub genes, which become immediate candidates for
future studies. Examples of such interaction networks are
reported in Figure 3 and described below.
Body weight
We identified 13 modules of correlated transcripts asso-
ciated with BW, ranging from 2 to 97 probe sets (see
Additional file 5: Modules of correlated transcripts asso-
ciated with body weight and energy metabolism traits).
We used the EASE (Expression Analysis Systematic
Explorer) analysis implemented in DAVID functional
annotation tool http://david.niaid.nih.gov/david/

ease.htm[41,42] to analyze the candidate genes contained
within each module for functional enrichment. Addi-
tional file 6 (see Additional file 6: Over-representation of
Gene Ontology Categories, KEGG Pathways and Key-
words for transcripts associated with body weight and
energy metabolism traits) reports significant Gene
Ontology categories. Two interesting patterns emerged
from our analysis. First, after correction for multiple
comparisons, we found that module 1 (P = 2.2E-2), mod-
ule 2 (P = 2.3E-7), and module 13 (P = 1.2E-4) were
enriched for genes involved in defense response catego-
ries. These results add to previous findings from systems
genetics studies in mice showing that genes involved in
immune function are involved in body weight regulation
[15]. Evidence for this link is also found in the evolution-
arily conserved role that the Toll signaling pathway plays
in mediating the insulin/insulin-like growth factor (IGF)
signaling. Activation of the Toll-like receptors by adi-
pose-derived inflammatory signals, such as free fatty
acids and tumor necrosis factor-α, is critical in the devel-
opment of systemic insulin resistance in obese rodents
and humans [43]. Recently, Diangelo et al. [44] reported
that the activation of the immune Toll signaling pathway
selectively in the fat body of D. melanogaster also sup-
presses insulin/IGF signaling leading to a decrease in
both nutrient stores and growth. A major difference
between flies and mammals is that while the effects on
the insulin signaling in the latter are mediated by the c-
Jun NH2 terminal kinase (JNK) branch of the mitogen-
activated protein (MAPK) kinase signaling [43], this
appears to not be the case in flies [44]. Yet, JNK is a
potent antagonist of insulin/IGF signaling in both Droso-
phila and mammals [45] and is required for the immune
response to gram negative bacteria in Drosophila [46].

The second pattern observed in our analysis is that
module 10 was enriched in genes involved in cell commu-
nication (P = 6.9E-7) and signal transduction (P = 2.5E-6)
and two of its hub genes, g protein γ 1 (Ggamma1) and
klingon (klg) (Figure 3B), are known to be involved in neu-
ronal development [47,48]. Tissue-specific expression
patterns, based on data from FlyAtlas [49], showed that
transcripts in this module are enriched in the adult brain,
head, and the thoracicoabdominal ganglion, as well as in
the larval central nervous system (CNS) (Figure 3C). Col-
lectively, these findings suggest that the CNS plays a
major part in regulating variation in BW in D. melano-
gaster. This is consistent with earlier reports on the
genetic basis of rare monogenic forms of obesity in
humans [50] and single-gene approaches in mammalian
models [51,52], which have long suggested involvement
of the CNS in the regulation of mammalian body weight
[53]. Furthermore, recent genome-wide association stud-
ies (GWAS) in humans have mapped body weight-associ-
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ated loci near genes that are highly expressed in the brain,
particularly in the hypothalamus, and are involved in
neuronal development and activity [54]. Our results also
corroborate emerging evidence showing that, as in mam-
mals, the CNS of Drosophila integrates information
regarding nutrient status and stores with visual, olfactory,
and taste stimuli to elicit appropriate feeding behavior
responses [22,55-57]. For example, the hugin neuronal
circuit modulates feeding behavior by interconnecting
the gustatory sensillae to the protocerebrum, the ventral
nerve cord, the ring gland, and the pharynx via the
subesophageal ganglion [56]. Consistent with this find-
ing, we identified the hugin (hug) gene as a candidate reg-
ulating variation in BW among the Drosophila Raleigh
lines. We also found that hug transcript abundance is
highly correlated with Activating transcription factor-2
(Atf-2), which encodes a member of the ATF/cAMP

response element-binding protein family of transcription
factors and has been shown to regulate fat metabolism in
the fat body [58], the fly equivalent of mammalian adi-
pose/liver tissue.
Glycogen
We identified 9 modules of correlated transcripts associ-
ated with GLY, ranging from 2 to 80 probe sets (see Addi-
tional file 5: Modules of correlated transcripts associated
with body weight and energy metabolism traits). We
found that modules 2 and 4 were enriched for genes
involved in photoreceptor activity (P = 1.1E-3), and phos-
pholipase A1 activity (P = 1.4E-3), respectively (see Addi-
tional file 6: Over-representation of Gene Ontology
Categories, KEGG Pathways and Keywords for tran-
scripts associated with body weight and energy metabo-
lism traits).

Figure 3 Modules of correlated transcripts associated with variation in body weight and energy metabolism traits. (A) Heat map of correlated 
probe sets after module formation for BW (13 modules), GLY (9 modules), TAG (5 modules), GLYC (13 modules), and MR (6 modules). Each point rep-
resents the correlation between two genes. The color scale bar indicates the value of the correlation. (B) Interaction network of correlated (|r| ≥ 0.7) 
transcripts for BW module 10. Each node represents a gene and each edge a significant correlation between a pair of genes. (C) Distribution of tissue-
specific expression of transcripts in BW module 10 based on data from FlyAtlas http://www.flyatlas.org/[49]. (D) Interaction network of correlated (|r| 
≥ 0.6) transcripts for GLY module 7. (E) Network of correlated (|r| ≥ 0.7) transcripts for TAG module 4. (F) Interaction network of correlated (|r| ≥ 0.9) 
transcripts for GLYC module 11. (G) Distribution of tissue-specific expression of all transcripts associated with MR. Nodes showed as pink in the inter-
action networks represent those candidate genes for which homozygous mutants were tested. The visualization of interaction networks was per-
formed using Cytoscape 2.6.3. [84].
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Module 7 was enriched in genes mediating transmis-
sion of nerve impulse (P = 2.0E-4) and one of its major
hub genes is Cbp53E (Figure 3D). Notably, Cbp53E had
the highest correlation with CG10830, which is predicted
to encode a homolog of the human potassium channel
tetramerisation domain containing 12 (KCTD12) gene
[35]. A recent GWAS showed that a single nucleotide
polymorphism in the human KCTD12 gene was associ-
ated with T2DM in a French population [59]. Taken
together with our findings, this proposes KCTD12 as a
strong candidate for T2DM in humans.

Finally, it is worth mentioning that two of the genes in
GLY module 6, puckered (puc) and hemipterous (hep),
encode a MAP kinase phosphatase and a MAP kinase,
respectively, that regulate the JNK signaling pathway [35].
The mechanism by which changes in these genes regulate
variation in GLY levels is not known, however, previous
studies have shown that JNK represses Drosophila insu-
lin-like peptide transcription in the neurosecretory cells
of the brain that produce them [60]. Thus, a plausible
mechanism is that variation in puc and hep modulates
GLY by regulating insulin-like peptide secretion via the
JNK pathway. This hypothesis however needs to be tested
in future studies.
Triacylglycerol
We identified 5 modules of correlated transcripts associ-
ated with TAG, ranging from 1 to 71 probe sets (see
Additional file 5: Modules of correlated transcripts asso-
ciated with body weight and energy metabolism traits).
Notably, seven of the genes in TAG module 4, death exe-
cutioner Bcl-2 homologue (debcl), sex combs extra (Sce),
viral iap-associated factor (viaf), Sirt7, CG7516,
GXIVsPLA2, and Srp54, have human homologs, BOK,
RING1, Pdcl3, SIRT7, NOL10, PLA2G12A, and SFRS12,
respectively, whose transcript abundance has been asso-
ciated with obesity in mice using a systems genetics anal-
ysis [15]. Visualization of module 4 illustrates that two of
these genes, Sirt7 and debcl, are hubs (Figure 3E). As dis-
cussed above, Sirt7 is involved in chromatin silencing and
its mouse ortholog has been recently reported to play a
role in the regulation of stress response of cardiomyo-
cytes and to prevent apoptosis and inflammatory cardio-
myopathy [61]. debcl is a member of the evolutionarily
conserved Bcl-2 family of protooncogenes that is com-
posed of both pro- (e. g. bax and bak) and anti-apoptotic
(e. g. bcl-2 and bcl-xL) proteins [62]. Collectively, these
data argue that variation in genes involved in apoptosis
control TAG accumulation. As fatty acids destined for
oxidation are in part derived from stored TAGs, our data
are consistent with studies in mammals reporting that
oxidation of fatty acids is inhibited by several mitogenic
stimuli and increased by various agents of growth arrest
and/or apoptosis [63]. Our results not only suggest that
the link between TAG accumulation and apoptosis is evo-

lutionarily conserved, but also indicate that it extends to
the transcriptional level.
Glycerol
We identified 13 modules associated with GLYC, ranging
from 2 to 101 probe sets (see Additional file 5: Analysis of
modules of correlated transcripts associated with body
weight and energy metabolism traits). None of the mod-
ules associated with GLYC were found to be significantly
enriched in specific functional categories after Benjamini
correction. However, two points are worthy of mention.
First, the most highly connected gene in module 11 was
E2F transcription factor 2 (E2f2) (Figure 3F) that is critical
for cell-cycle arrest [64]. Since glycerol is an important
intermediate in TAG metabolism, these latter findings
corroborate the hypothesis of a link between cellular pro-
gression, apoptosis, and fatty acids oxidation discussed
above. Second, among the genes included in module 12,
there is Glycerol 3 phosphate dehydrogenase (Gpdh) that
plays a major role in the metabolism of carbohydrates for
insect flight [65].
Metabolic rate
We identified 6 modules of correlated transcripts associ-
ated with MR, ranging from 3 to 58 probe sets (see Addi-
tional file 5: Modules of correlated transcripts associated
with body weight and energy metabolism traits). We
found that transcripts associated with variation in MR
were enriched for genes involved in hydrolase (module 2,
P = 2.6E-3) and alpha-glucosidase (module 5, P = 6.8E-
05) activities (see Additional file 6: Over-representation
of Gene Ontology Categories, KEGG Pathways and Key-
words for transcripts associated with body weight and
energy metabolism traits). Transcripts associated with
MR were also enriched for genes that are mainly
expressed in the midgut and the Malpighian tubules (Fig-
ure 3G). The Malphighian tubules in insects are part of
the excretory system responsible for absorbing water and
nitrogenous wastes from the haemolymph and so critical
for maintaining proper internal osmotic conditions.
Because of their small size, insects and other terrestrial
arthropods are susceptible to water loss by evaporation
through the cuticle. One process that also promotes
water loss in insects and thus increases the danger of des-
iccation is the respiratory gas exchange [66]. Reduction in
metabolic rate and the demand for oxygen has been pro-
posed as a mechanism that can help the fly to conserve
water [67]. In addition, insect renal tubules constitute a
cell-autonomous immune system that protects the organ-
ism against bacterial infection [68] and detoxification of
xenobiotics [69]. Thus, variation in gene expression in the
gut and tubules could influence metabolic rate in a num-
ber of ways, through alterations in osmotic balance to
changes in digestive efficiency. It will be important for
future functional genetics studies to verify the phenotypic
effects of variation in gene regulatory networks in these
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organs to elucidate their contribution to determining
whole-body metabolic rates.

Genetic correlations between energy metabolism and life-
history traits
Next, we asked whether there were significant genetic
correlations between the BW and the metabolic traits.
While we did not find any significant correlation using all
data pooled across sexes, when we analyzed the data
stratified by sex we observed a correlation significant at P
< 0.05 between MR and TAG (rG = 0.45, P = 0.004) in
females. Additionally, we observed correlations between
BW and GLY (rG = 0.32, P = 0.042) and BW and MR (rG =
0.38, P = 0.014) in males. These correlations however are
not significant after correction for multiple tests based on
sequential Bonferroni [70]. Although the relationships
among BW and energy metabolism traits in this study are
fairly weak, similar relationships have been found in
other studies using Drosophila. For example, several labo-
ratory selection studies in D. melanogaster have shown
that both female and male adult flies selected for resis-
tance to desiccation and starvation are significantly
heavier and have higher GLY than unselected controls
[71]. Based on these observations, we speculate that the
genetic correlation between BW and GLY identified in
our study may reflect the influence of these traits on the
fly's ability to tolerate abiotic stresses, such as desiccation
and starvation, in the wild. No data is currently available
for desiccation resistance in these wild-derived flies,
however, the lines were previously assessed for starvation
resistance as well as other life-history traits, including
competitive fitness, chill-coma recovery, copulation
latency, and longevity [26]. Thus, we sought to test for
genetic correlations between these life-history traits and
the traits measured in this study. The results of the analy-
sis are shown in Table 1. In accord with the selection
studies discussed above, we found a significant positive
correlation between BW and starvation resistance in both
male and female flies (Table 1). Consistently, a weak cor-
relation was also observed between GLY and starvation
resistance in both sexes. Interestingly, we did not find any
correlation between TAG and starvation resistance
(Table 1). This is in contrast to selection studies that have
long suggested that an increase in lipid stores may be an
important mechanism underlying evolution of greater
starvation resistance [72]. A possible explanation for this
result is that the relationship between fat reserves and
starvation may be a consequence of laboratory selection.
This idea is supported by the fact that previous studies
performed by Hoffmann et al. [73], who used isofemale
lines derived from wild populations, also did not observe
any correlation between lipid storage and starvation
resistance. Finally, we showed negative correlations
between BW or GLY and competitive fitness (Table 1),

suggesting that the ability to access glycogen resources
may be a mechanism responsible for the life history
trade-off between growth and fitness.

To gain insight into the molecular basis of the observed
genetic correlations, we tested whether there was signifi-
cant overlap of common transcripts between modules for
the energy metabolism traits and life-history traits. We
found substantial modular pleiotropy between BW, com-
petitive fitness, and starvation resistance (see Additional
file 7: Modular pleiotropy between energy metabolism
and life history traits). In particular, we observed that
transcript abundance of genes involved in innate immune
response, such as Attacin-C (AttC), Cecropin C (CecC),
and PGRP-SB1, were associated with variation in all three
traits. Large energy investments are necessary for an ade-
quate immune system to fight infections [74]. As life-his-
tory theory predicts that the amount of energy available is
finite [17], maintaining the cellular and molecular capa-
bilities of mounting an efficient immune response may
not be possible without cost to other energy demanding
physiological functions. Indeed, trade-offs between
immune function and other traits involving competition,
specifically larval competitive ability in Drosophila, have
been extensively reported [75,76]. Based on these obser-
vations, we speculate that genotypic differences in the
efficiency of the immune response among wild-derived
lines of D. melanogaster may reflect differences in alloca-
tion of resources between traits associated with survival
in a way that maximizes fitness. This view is consistent
with evidence of an evolutionarily conserved link
between immune function and the insulin/IGF signaling
discussed above. These Drosophila lines are currently
being assessed for variation in the efficacy of their
immune response to infection which will allow us to test
this hypothesis.

Our analysis also showed significant modular pleiot-
ropy between BW, GLY, and competitive fitness (see
Additional file 7: Modular pleiotropy between energy
metabolism and life history traits). Three genes, nicotinic
Acetylcholine Receptor beta 64B (nAcRβ-64B), Diuretic
hormone 31 receptor 1 (Dh31-R1), and cAMP-dependent
protein kinase 3 (Pka-C3) were associated with variation
in all the traits. nAcRβ-64B and Dh31-R1 encode pre-
dicted G-protein coupled receptors that bind to the neu-
rotransmitter acetylcholine and a diuretic hormone,
respectively [35]. Pka-C3 encodes a cAMP-dependent
protein kinase [35] whose transcription is regulated by
light [77]. Furthermore, we found that two photosensory
opsins, rhodopsin 4 (Rh4) and rhodopsin 6 (Rh6), were
associated with variation in GLY and competitive fitness.
In insects, the transcriptional coordination of circadian
clocks has been implicated in affecting life-history traits
by regulating physiological and behavioral rhythms [77],
including feeding rhythms [78]. Daily light/dark cycles
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may affect circadian rhythms by either entraining the
clocks or via clock-independent molecular pathways and
Drosophila circadian photoreception is mediated by
cryptochrome in clock neurons and by rhodopsins in
photic organs [79]. Based on these observations, our find-
ings confirm the interrelations among circadian photore-
ception, life-history traits, and energy metabolism and
identify a key set of transcripts involved in this process.

Conclusions
The present study identified a large number of genes that
varied both at the level of DNA sequence and at the level
of gene expression to produce natural variation in BW,
the content of GLY, TAG and GLYC, and MR among 40
wild-derived lines of D. melanogaster. Candidate genes
identified based on sequence polymorphism generally
differed from those identified based on variation in gene
expression among lines. This suggests that phenotypic
variation is the product of both alterations in gene
expression as well as allelic variation at the sequence

level. The relative importance of these two processes in
producing phenotypic variation remains to be deter-
mined, but may vary depending on the trait and sampled
population. Our gene expression data identified a num-
ber of modules of co-expressed genes affecting these
traits with surprisingly little overlap. As these modules
contain many genes of unknown function, their co-
occurrence with genes with known function related to
specific traits may be useful for annotation purposes. We
did identify significant modular pleiotropy between BW,
GLY, and competitive fitness and future studies will need
to explore and validate the functional genetic basis of
these interrelationships. Such knowledge would be useful
not only in a practical sense to predict correlated changes
in related traits given medical interventions to control
body weight, but also from an evolutionary standpoint to
elucidate the extent to which such pleiotropic modules
might guide and constrain the evolution of the affected
traits.

Table 1: Genetic correlations between energy metabolism and life-history traits averaged across sexes (A), for females (B), 
and for males (C).

FT CL SR CC LS

A

BW -0.48 ± 0.14** 0.21 ± 0.16 0.52 ± 0.14*** 0.32 ± 0.15 0.01 ± 0.16

GLY -0.38 ± 0.15** 0.08 ± 0.16 0.29 ± 0.15 0.02 ± 0.16 0.17 ± 0.16

TAG -0.14 ± 0.16 0.08 ± 0.16 0.12 ± 0.16 0.18 ± 0.16 -0.15 ± 0.16

GLYC 0.05 ± 0.16 0.22 ± 0.16 0.06 ± 0.16 0.01 ± 0.16 -0.07 ± 0.16

MR 0.14 ± 0.16 -0.11 ± 0.16 -0.04 ± 0.16 0.01 ± 0.16 -0.26 ± 0.16

B

BW -0.52 ± 0.14*** 0.38 ± 0.15* 0.53 ± 0.14*** 0.26 ± 0.16 -0.01 ± 0.16

GLY -0.27 ± 0.16 0.10 ± 0.16 0.36 ± 0.15* -0.07 ± 0.16 0.10 ± 0.16

TAG -0.10 ± 0.16 0.20 ± 0.16 0.14 ± 0.16 0.05 ± 0.16 0.01 ± 0.16

GLYC 0.04 ± 0.16 0.22 ± 0.16 0.00 ± 0.16 0.11 ± 0.16 -0.08 ± 0.16

MR 0.06 ± 0.16 -0.11 ± 0.16 0.00 ± 0.16 -0.10 ± 0.16 -0.16 ± 0.16

C

BW -0.42 ± 0.15** -0.06 ± 0.16 0.67 ± 0.12**** 0.27 ± 0.16 0.07 ± 0.16

GLY -0.59 ± 0.13**** 0.04 ± 0.16 0.42 ± 0.15** 0.20 ± 0.16 0.24 ± 0.16

TAG -0.17 ± 0.16 -0.04 ± 0.16 0.14 ± 0.16 0.38 ± 0.15** -0.29 ± 0.16

GLYC 0.06 ± 0.16 0.22 ± 0.16 0.13 ± 0.16 -0.05 ± 0.16 -0.06 ± 0.16

MR 0.25 ± 0.16 -0.10 ± 0.16 -0.04 ± 0.16 -0.15 ± 0.16 -0.41 ± 0.15**

BW: body weight; GLY: glycogen; TAG: triacylglycerol; GLYC: glycerol; MR: metabolic rate; FT: competitive fitness; CL: copulation latency; SR: 
starvation resistance; CC: chill-coma recovery; LS: lifespan. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P < 0.0001. Values in bold indicate 
correlations that remain significant after Bonferroni correction based on sequential Bonferroni tests.
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Methods
Drosophila stocks
The 40 unrelated wild-type inbred lines of D. melano-
gaster were established from a sample of isofemale lines
collected in the Raleigh Farmer's market (NC) and inbred
to near-homozygosity by 20 generations of full-sib
inbreeding [26]. Mutants and their co-isogenic control
lines were obtained from the Bloomington Drosophila
Stock Center http://www.flybase.org.

We maintained each stock at constant parental density
for at least two generations to minimize environmental
effects. To control for larval density, we allowed the par-
ents of the experimental flies to mate for 3 hours to gen-
erate egg collections on apple juice/agar medium in
laying plates. After 24 hours, we picked groups of 100
first-instar larvae from the surface of the medium and put
into replicate vials. For all assays, we used ten replicate
vials per line, with each vial containing a group of 10 sin-
gle-sexed individuals aged 3-5 days. We reared flies under
the same experimental conditions described in Ayroles et
al. [26], i.e. standard cornmeal, agar, molasses, and yeast
medium, 25°C, 60-75% humidity, and 12 hr/12 hr light/
dark cycle.

Body weight and metabolite measurements
We first starved the flies for one hour under non-dehy-
drating conditions to reduce the food-derived TAG and
GLY present in the gut [80]. We then weighed each group
of flies to 0.1 mg accuracy with an analytical balance and
stored them at -70°C. Finally, we homogenized each
group using the protocol described in [7,81] and mea-
sured TAG and GLYC spectrophotometrically using a
commercially available kit (Sigma-Triglyceride Assay Kit)
following the manufacturer's suggested protocol.

GLY was measured from the same homogenates using a
modification of the protocol described in Clark et al. [81].
Briefly, aliquots of 1.67 μl of homogenate were added to
250 μl of a reagent containing 0.1 U/ml of amyloglucosi-
dase, 5 U/ml of glucose oxidase, 1 U/ml of peroxidase,
and 0.04 mg/ml of O-dianisidine dihydrochloride. After
30-minute incubation period at 37°C, OD540 was mea-
sured. Concentration of GLY was determined from glu-
cose and glycogen standards run with each replicate.
Each sample was assayed twice and the mean used in the
analysis. Previous studies have shown that this protocol
accurately reflects glycogen concentration and that
endogenous glucose present in the flies contributes only
negligibly to the results [81].

Metabolic rate measurements
We measured MR as CO2 production using a flow-
through respirometry system (Qubit System Research,
Kingston, Ontario, Canada) and a modification of the
method described in Van Voorhies et al. [82]. Briefly, a

pump is used to push air through a CO2 scrubber there-
fore providing CO2-free air to the system. The airstream
is saturated with H2O by passing through a series of gas
syringes filled with sterile H2O and cotton wool. Pressure
in the line is controlled by a precision pressure regulator
that sets the input pressure to the 4-channel mass flow
meter/controller where the flow is divided into 4 gas
streams and provided to the sample chambers. The flow
rate entering the chamber was 30 ml/min. After leaving
the sample chambers, air enriched in CO2 enters into the
4-channel gas switcher that directs the flow to either the
analysis system or to waste (vented). For the determina-
tion of CO2, sample air was pulled through a drying col-
umn to remove H2O, a mass flow meter, and then the
CO2 analyzer that has a range of 0-2000 ppm CO2 with a
resolution of better than 1 ppm. We measured CO2 for 10
minutes/chamber with a 30 second flush period between
measurements. The amount of CO2 produced by each
group of flies was calculated using C950 Data Acquisition
software (Qubit System Research, Kingston, Ontario,
Canada).

Quantitative genetic analyses
All statistical analyses were performed using SAS version
9.1. We used a mixed model ANOVA to partition varia-
tion in each trait among the inbred lines according to the
model, Y = μ + L + S + L × S + E, where μ is the overall
mean; L and S are the main effects of Line (Random) and
Sex (Fixed); LxS is the random effect of sex-by-line inter-
action; and E is the within-vial error variance. Reduced
models by sex were also run. Broad-sense heritabilities
(H2) were computed as H2 = (σL

2 + σLS
2)/(σL

2 + σLS
2 + σE

2)
for the analyses pooled across sexes, where σL

2, σLS
2, and

σE
2 are the among line, sex-by-line and within line vari-

ance components, respectively. Cross-sex genetic correla-
tions (rMF) were also estimated as rMF = cov��/(σ�σ�),
where cov�� is the covariance of line means between
females and males, and σ� and σ� are the square roots of
the among line variance components for females and
males, respectively. Genetic correlations between traits
were calculated as rGT = covG12 /(σG1σG2), where covG12 is
the covariance between traits among line means from the
joint analysis, and σG1 and σG2 are the square roots of the
variances among lines from the analyses of each trait sep-
arately. We used sequential Bonferroni procedure to cor-
rect for multiple tests of significance of correlation
coefficients among traits [70]. The coefficients of genetic
(CVG) and environmental (CVE) variances were calcu-
lated as CVG = 100σG/μ and CVE = 100σE/μ, respectively,
where σG and σE are the square roots of the line and
within line variance components, respectively.

http://www.flybase.org
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Transcript-trait and SFP-trait associations
To identify transcripts associated (P < 0.01) with varia-
tion in each trait we performed a regression analysis as
previously described [24]. Briefly, regression models of
the form Y = μ + S + T + S × T + ε, where S is sex, T is the
trait, and ε is the error term were computed for each
probe set. Similarly, SFPs associated (P < 0.01) with each
trait were identified using the ANOVA model Y = μ + M
+ S + S × M + ε, where M is the presence or absence of the
SFP, S is sex, and ε is the error term. Reduced models by
sex were also run.

Transcriptional network
The genetic correlations between all transcripts signifi-
cantly associated with each trait were computed after
removing the correlation between these transcripts and
the trait. This was achieved by fitting the model Y = μ + E
+ S + E × S + ε (Y is the trait, E is the covariate median
log2 expression level, S is the sex effect and ε the residual
error) and extracting the residuals to compute pair-wise
transcript correlations for module construction [26].
Modules of transcripts associated with each trait with
coordinated patterns of expression across the 40 lines
were then quantified as described previously [83] by
transforming the pairwise genetic correlations among
transcripts into Euclidean-like distances, which were
used to construct an affinity matrix. The transcripts were
partitioned into modules using a graph-theoretical
approach that envisions the transcripts as nodes in an
undirected graph whose edges are weighted by the entries
of the affinity matrix. Transcriptional modules common
to a metabolic trait as well as to other traits measured on
the 40 wild-derived inbred lines [26] were identified by
comparing the transcripts in each metabolic module to
the transcripts in each module from the other traits and
comparing whether the overlap between the modules
exceed what is expected by chance using a Fischer's exact
test.
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