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Abstract
Background: Human tissue displays a remarkable diversity in structure and function. To understand how such diversity 
emerges from the same DNA, systematic measurements of gene expression across different tissues in the human body 
are essential. Several recent studies addressed this formidable task using microarray technologies. These large tissue 
expression data sets have provided us an important basis for biomedical research. However, it is well known that 
microarray data can be compromised by high noise level and various experimental artefacts. Critical comparison of 
different data sets can help to reveal such errors and to avoid pitfalls in their application.

Results: We present here the first comparison and integration of four freely available tissue expression data sets 
generated using three different microarray platforms and containing a total of 377 microarray hybridizations. When 
assessing the tissue expression of genes, we found that the results considerably depend on the chosen data set. 
Nevertheless, the comparison also revealed statistically significant similarity of gene expression profiles across different 
platforms. This enabled us to construct consolidated lists of platform-independent tissue-specific genes using a set of 
complementary measures. Follow-up analyses showed that results based on consolidated data tend to be more 
reliable.

Conclusions: Our study strongly indicates that the consolidation of the four different tissue expression data sets can 
increase data quality and can lead to biologically more meaningful results. The provided compendium of platform-
independent gene lists should facilitate the identification of novel tissue-specific marker genes.

Background
Tissue in the human body shows a fascinating variety of
structures and functions ranging from simple protection
by the epidermis to complex information processing in
the cortex. All these different types of tissues have in
common that they are highly adapted to their specific
task. How such variety can emerge from the same genetic
code is not only scientifically an intriguing question, but
also of fundamental medical relevance. To address this
question, a necessary step is the generation of compre-
hensive catalogs of gene expression in different tissues.

Microarrays have become highly suitable tools for such
an ambitious endeavour as they allow the genome-wide
measurement of transcription abundance. Most early
gene expression studies of human tissues were disease-

orientated, i.e. the expression profiles of pathogenic tis-
sues were compared to corresponding normal tissues. For
instance, microarrays have extensively been used to
detect previously unrecognized cancer subtypes [1,2] and
to predict clinical outcome [3,4]. Yet, it is also crucial to
create a comprehensive gene expression atlas for normal
human tissues to facilitate rapid identification of new
marker genes for improved diagnosis and of target genes
for medical interventions. Furthermore, such atlas would
undoubtedly increase our general understanding in phys-
iology and would give us new insights into functions of
genes. Indeed, large-scale microarray experiments have
recently been used to construct such powerful expression
repositories [5-8].

However, general concerns about the reliability of
microarray data have been raised by several studies show-
ing poor congruence of different microarray platforms [9-
12]. Moreover, there are many experimental factors such
as array platform, tissue handling, RNA isolation method
and hybridization procedure which strongly influence the
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results of expression studies. As a consequence, results
derived using a single microarray experiment may be
seriously compromised by experimental bias. In contrast,
the use of multiple independent data sets can be benefi-
cial for the data reliability [13,14].

This motivated us to critically compare and to consoli-
date four major microarray data sets of human tissue
expression due to their outstanding importance for func-
tional genomics and large-scale systems biology. Notably,
although these data sets have rapidly become popular
resources in biomedical research [15-19], this is the first
study which systematically compares them. The ultimate
aim of our investigations was to construct a compendium
of platform-independent gene lists assessing the expres-
sion in normal human tissues by various means. Such a
compendium can not only dispense biomedical research-
ers from cumbersome manual querying of multiple data
sets, but also help to avoid potential pitfalls caused by
platform-dependent artefacts.

The outline of the study was the following: After com-
pilation of the tissue expression data sets, we first exam-
ined their overall similarity. For the assessment of tissue
specific expression, we generated multiple gene lists uti-
lizing complementary measures to detect distinct fea-
tures of tissue expression. These lists were subsequently
used for a critical comparison of results derived from the
different experiments. Finally, we assembled lists of plat-
form-independent tissue-specific genes. The assessment
of the consolidated data indicated that they can provide a
more reliable basis for the study of tissue expression.

Results and Discussion
Compilation of tissue expression from different 
experiments
In this study, we compared and analyzed four different
microarray data sets comprising predominately gene
expression of normal human tissues. Detailed informa-
tion for the data sets is given in Table 1 and in the Meth-
ods section. The four data sets were produced using three
different microarray platforms: Agilent spotted oligonu-
cleotide microarrays (here referred to as Rosetta1 [5] and
Rosetta2 [20]), Affymetrix GeneChips (referred to as
Geneatlas [8]), and cDNA microarrays (referred to as
Stanford [21]). Table 1 shows that the four data sets differ
considerably in the number of samples, ranging from 50
to 158, and in the number of analyzed tissues, ranging
from 35 to 79.

For comparative analysis, the microarray probes were
mapped to their corresponding Entrez Gene identifiers to
obtain a common index system. Expression values of rep-
licated probes were averaged. To facilitate the compari-
son, the samples were assigned to 19 main tissue classes
based on their physiology and histology. Subsequently,
the expression values were averaged over samples belong-

ing to the same tissue class. Further details of the applied
data pre-processing and the assignments of samples to
tissue classes can be found in the Methods section and the
Additional file 1 (Supplementary Materials).

Comparison of tissue expression data sets
First, we examined whether the four different data sets
show similar gene expression profiles. This comparison
was based on 6685 non-redundant genes that were com-
mon to all data sets. To assess their global similarity, we
calculated the correlations for all pairs of genes within a
data set and correlated them between different data sets.
This so-called correlation of correlation measure was
previously proposed to examine the overall similarity of
expression patterns in two different microarray data sets
[22]. Large correlation of correlations indicates similar
overall co-expression of genes in two data sets. Their sig-
nificance was assessed by comparing the results of the
corresponding randomized expression matrices. Table 2
displays the results of this analysis. The correlations of
correlations of the original data sets are considerably
larger than those calculated for random correlation
matrices. Thus, all data sets are more similar in their gene
expression patterns than expected by chance. However,
the observed similarities are not equally distributed
across all pairs of data sets. To examine this issue further,
relationships between the data sets were analyzed by
hierarchical clustering and were visualized as cluster
image map in Figure 1. Notably, the data sets Rosetta1
and Rosetta2 show the largest similarity which might
have been expected as both are based on the same
microarray platform. In contrast, the clustering indicates
that the Stanford data set is least similar to the other data
sets. Notably, we obtained comparable results when we
analyzed the global pair-wise correlation of tissue classes
in the four data sets (Additional file 1 - Table S1).

These results are supported by the analysis of the dif-
ferential gene expression for specific tissue types. Figure 2
illustrates this comparison for brain-specific expression.
The differential expression found in the data sets by
Rosetta1 and Rosetta2 were highly correlated whereas the
Stanford data set showed more distinct results compared
to the other data sets. Nevertheless, a prominent similar-
ity in differential expression across all data sets exists.
Statistical assessment of the pair-wise Pearson correla-
tion coefficients demonstrated their high significance (p
< 10 -16).

Assessment of tissue specificity
A main purpose of the four tissue expression data sets has
been the identification of tissue-specific and housekeep-
ing genes. Does the observed divergence influence the
detection of such genes? To address this question we used
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two different measures to capture distinct features of tis-
sue-specific expression.

First, we scrutinized the expression data with respect to
tissue-specific over- or under-expression. For this task,
we used the Preferential Expression Measure (PEM) orig-
inally proposed by Huminiecki and co-workers [13]. The
PEM scores the expression of a gene in a given tissue in
relation to its average expression in all tissues. It reports a
positive value for genes over-expressed and a negative
value for genes under-expressed in the specific tissue,
respectively. Mathematically, it is defined as the logged
(with base 2) ratio of the expression in a chosen tissue
and the mean expression in all tissues. Calculation of the
PEM score for the different tissue classes and data sets
shows that the majority of genes have a score close to
zero, as shown in Figure 3 for liver tissue, indicating that
only a subset of genes are differentially expressed in tis-
sues. The significance of PEM scores was assessed using a
permutation-based procedure. First, we generated back-
ground distributions of PEM scores for each tissue class
based on repeated randomization of the association
between arrays and tissue classes. These distributions
represent the set of PEM scores which we would expect
to observe by chance for the corresponding tissue class.

Subsequently, the observed PEM scores were compared
with the generated background distribution and the sta-
tistical significance in terms of false discovery rates were
calculated. Details of the calculation can be found in the
Methods section. Since the data distributions differ con-
siderably between the compared microarray experiments,
the permutation procedure was applied to each microar-
ray set separately. Figure 3 illustrates the approach dis-
playing the distributions of observed and generated PEM
scores for liver tissue. Note that this approach allowed us
to compare tissue-specific expression across different
microarray experiments.

Since PEM is defined with respect to the average
expression, a gene can obtain high PEM scores for multi-
ple tissues. However, researchers are frequently inter-
ested in genes that are over-expressed in a unique tissue
type as they can serve as suitable candidates for marker
genes. Thus, we introduced an alternative measure which
addresses this aspect: First, we determined the tissue for
which the gene is maximally over-expressed. Subse-
quently, the difference between the largest and second
largest value for expression was calculated. This differ-
ence was termed MAX. A gene with a large MAX value
displays high gene expression in one tissue but not in the

Table 1: Summary of analyzed tissue expression data sets.

Data set Publication Technology Number of genes Number of 
samples

Number of 
tissues

Rosetta1 Johnson et al., Science 
2003

Agilent oligonucleotide 
exon microarrays

9,394 50 50

Rosetta2 Schadt et al., Genome 
Biology 2004

Agilent oligonucleotide 
microarrays

13,367 54 54

Stanford Shyamsundar et al., 
Genome Biology 2005

Dual-channel cDNA 
microarrays

13,984 115 35

Geneatlas Su et al., PNAS 2004 Affymetrix HG-U133A 
and GNF1H arrays

16,499 158 79

The number of genes refers to the probes on the arrays that could be mapped to corresponding Entrez Gene identifiers.

Table 2: Gene-wise correlation of correlations.

Rosetta1 Rosetta2 Geneatlas Stanford

Rosetta1 Original 1 0.61 0.41 0.21

Random 0.0026 0.0033 0.0036 0.0044

Rosetta2 Original 0.61 1 0.35 0.24

Random 0.0033 0.0021 0.0028 0.0037

Geneatlas Original 0.41 0.35 1 0.16

Random 0.0036 0.0028 0.0036 0.0051

Stanford Original 0.21 0.24 0.16 1

Random 0.0044 0.0037 0.0051 0.0048

Correlation of gene-wise correlations between the four data sets and between corresponding randomized gene expression matrices.
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other tissues, i.e. it is uniquely over-expressed in a single
tissue. The corresponding MAX scores for remaining tis-
sues (for which this gene is not maximally expressed)
were set to zero. We determined the significance of the
MAX scores using the same permutation-based proce-
dure as described for the PEM scores. Figure 4 displays
the observed distribution of MAX scores and the gener-
ated background distributions derived for brain tissue in
the four data sets.

Identification and comparison of tissue-specific genes
To examine in more detail the similarity of tissue-specific
expression in different data sets, we created separate gene
lists for each data set and tissue type using the described
measures. Genes with positive PEM score and FDR < 0.25
were defined here as tissue-specifically over-expressed
and with negative PEM score and FDR < 0.25 as tissue-
specifically under-expressed. For assessing the unique-
ness of tissue expression, we defined a gene as uniquely
over-expressed in a given tissue if it is maximal expressed
in this tissue and FDR < 0.25 holds for the corresponding
MAX score. Note that we have chosen a rather high FDR,
but the main conclusions of our comparison also hold for
more stringent values (see also Additional file 1 - Figure
S1).

For gene lists based on the PEM score, we found that
the absolute number of over-expressed genes varies
greatly between the 19 tissues type (Figure 5). Due to
missing or low number of replicates, only for 4 tissue
classes (brain, kidney, liver and lung) include significantly
over-expressed genes in all 4 data sets. This finding is also
reflected in the numbers of tissue-specific genes common
to the different data sets, which is generally small (Addi-
tional file 1 - Figure S2). For brain tissue, for instance, we
found that in average only about 40% of over-expressed
genes in one data set are also over-expressed in all the
other data sets.

A similar divergence in the set of tissue-specific genes
was obtained, when we compared the lists of uniquely
over-expressed genes which were generated using the
MAX measure (Figure 6). Altogether, we detected 3389
genes as uniquely over-expressed in a tissue-specific
manner. However, the majority (62%) of those genes were
detected in only one data set, whereas about one sixth
(15%) was supported by two experiments. The number of
genes consistently determined as uniquely over-
expressed was strikingly small: Only 232 genes (i.e. 7%)
fulfilled the criterion in all datasets.

Notably, the number of genes detected as tissue specific
appeared to depend on the numbers of available samples
in a tissue class (Additional file 1 - Table S2). Tissue
classes with fewer samples seemed to be associated with
fewer tissue-specific genes. To elucidate this statistical
dependency in more detail, we simulated the effect of a
reduction in samples on the detection of tissue-specifi-
cally over-expressed genes. Here, we chose the brain tis-
sue class as reference, since it comprised the largest
numbers of samples in all four data sets (Additional file 1
- Table S2) and also yielded large numbers of over-
expressed genes (Figure 5). Based on random sampling,
the number of brain samples in a data set was reduced
while the samples in all other tissue classes were con-
served. Subsequently, the number of brain specific genes
in the modified data set was calculated. Generally, a
strong decrease in the number of significant genes was
observed for a reduced number of included brain samples
confirming the suspected interference. For instance, less
than 500 genes were on average classified as brain specific
in the Geneatlas data set if only 6 brain samples were
included. This contrasts the 1123 genes detected using
the full set of 44 brain samples (Additional file 1 - Figure
S5).

To enable a less biased comparison between tissues, we
sought to reduce the influence of the number of samples
on the number of detected genes by a tissue-specific
adjustment of the FDR threshold for significance. Again,
brain tissue was used for calibration. The underlying idea
was to select a modified FDR threshold, so that the num-
ber of brain-specific genes found for a reduced data set

Figure 1 Cluster image map of gene-based correlation of correla-
tion matrix. Hierarchical clustering was performed for the assessment 
of the pair-wise similarities of the data sets. The numerical correlation 
of correlation values (from Table 2) are represented according to the 
displayed colour-bar.
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(i.e. with a smaller number of brain samples) remains the
same as for the full data set with the original FDR thresh-
old. As before, we selected randomly brain samples, con-
structed reduced data sets and calculated the significance
of genes. For calibration, the number of selected brain
samples was set equal to the number of samples found in
the other tissue classes. As result, we observed that the
FDR threshold had generally to be increased for tissue
classes including fewer samples (Additional file 1 - Table
S5). For example, the adjusted FDR threshold of 0.08 for
liver tissue, which comprises of 5 samples in the Stanford
set, corresponds to a FDR threshold of 0.05 for brain tis-
sue, which comprises of 8 samples in the same data set.
For muscle tissue with only 3 samples, the equivalent
threshold is considerably larger with FDR < 0.18. Notably,
the application of the adjusted FDR thresholds resulted in
drastic changes in the distribution of tissue-specially

over-expressed genes (Additional file 1 - Figure S7A-D).
In particular, tissue classes with few samples showed a
strong relative increase in tissue-specific genes.

For our comparison, we utilized the pre-processed data
as provided by the authors of the microarray experiments
(except for the Stanford data set which was additionally
normalized), as most other previous studies employing
these resources have also used the readily available pre-
processed data and our analyses should be applicable for
the interpretation of these studies. However, it is well
known that normalization and pre-processing procedure
can have considerable influence on the results of microar-
ray data analyses. Also, it has been shown that re-annota-
tion of Affymetrix GeneChips can improve the quality of
derived transcriptional data. Thus, we examined whether
alternative data pre-processing procedures may improve
the concordance of the microarray data sets. For the

Figure 2 Comparison of gene expression in brain and non-brain tissues. Differential expression between brain and non-brain tissues was as-
sessed by performing a gene-wise unpaired Student's t-test. To compare the results from different data sets, t-scores derived from each data set were 
plotted versus those from the other data sets for the corresponding genes. Additionally, the Pearson correlation coefficient is given.
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Geneatlas dataset, we used an alternative annotation and
normalization scheme as described in the Methods sec-
tion. The Rosetta1 and Rosetta2 datasets were addition-

ally log-transformed. Finally, between-array
normalization was applied to all four data sets. For com-
parison, we applied the same procedures as for the origi-
nal datasets, i.e. correlation of correlation and correlation
of brain-specific expression, and calculated the overlap
for uniquely over-expressed genes. Notably, we did not
observe a general increase in the similarity. While the
measured correlation values tend to decrease (Additional
file 1 - Table S3, Figure S3), the overlap slightly increased
(Additional file 1 - Figure S4). Nevertheless, the overlap
of all 4 alternatively pre-proceeded data sets remained
small with 240 genes compared to 232 for the original
data sets. As a general improvement of similarity was not
observed using alternative pre- processing and annota-
tion schemes, we chose to use the original data sets for
the subsequent analyses. This choice also facilitates the
assessment of previous studies which were generally
based on the original data sets. Notably, the comparison
of alternative processing schemes for the Geneatlas data
set revealed a strong similarity of expression changes as
well as a highly significant overlap of detected tissue-spe-
cific genes (Additional file 1 - Table S4, Figure S5).

Uniquely over-expressed genes in brain and liver
The conducted comparison revealed a substantial influ-
ence of the microarray platform on the composition of
the constructed gene lists. As such platform-dependent
bias can compromise the data quality; we reasoned that a
consolidated list of common tissue-specific genes might
yield more reliable results. This list could be simply gen-
erated by direct intersection of lists derived from the dif-
ferent experiments. However, Figures 6 and S2 show that
such procedure would result in a very limited number of
genes. We therefore chose the alternative scheme
(described in the following section) to merge the evi-
dence from different data sets.

Genes obtaining large MAX scores in all four data sets
should be strong candidates for reliably being tissue-spe-
cifically over-expressed. We assessed this hypothesis by
examining in detail brain- and liver-specifically over-
expressed genes. For integrative scoring, we first ranked
the genes in the four data sets according to their MAX
values and calculated their mean ranks, which was subse-
quently used for generated consolidated lists. The follow-
up analysis of the resulting gene lists demonstrated that
this simple scheme is remarkably efficient for a reliable
identification of tissue-specific genes.

For brain tissue, the 20 top-ranking genes were individ-
ually inspected and the vast majority proved to be previ-
ously known as brain-specifically or preferentially in
brain expressed genes (Table 3). Most of the genes were
important structural proteins in neuronal and glial cells
or involved in neuronal signalling. The top-ranking gene
encodes one of the major filament proteins in astrocytes,
the glial fibrillary acidic protein (GFAP). This protein is

Figure 3 Distribution of PEM scores for liver tissue. The displayed 
distributions (shown in red) are based on the scores calculated for liver 
tissue in the compared data sets. To determine the significance of PEM 
scores, background distributions (shown in black) were generated. The 
threshold for PEM scores corresponding to FDR < 0.25 is shown. The 
displayed distributions are based on Gaussian kernel estimates.

Figure 4 Distribution of MAX scores for brain tissue. The displayed 
distributions (shown in red) are based on the scores derived for brain 
tissue in compared data sets. To determine the significance of MAX 
scores, background distributions (shown in black) were generated. The 
threshold for significant MAX scores obtaining FDR < 0.25 is shown. 
The displayed distributions are based on Gaussian kernel estimates.



Russ and Futschik BMC Genomics 2010, 11:305
http://www.biomedcentral.com/1471-2164/11/305

Page 7 of 17
already employed as a maker for astrocytes and, in its
mutated form, is associated with Alexander disease, a
rare fatal neurodegenerative disease [23]. Although many
of the top-scoring genes obtained a high rank in all data
sets, there were notable exceptions. Myelin basic protein,

ranked 14th in the consolidated list, is a crucial protein for
the myelination of axons in the central nervous systems.
In contrast, it was ranked relatively low (as 100th) in the
Stanford dataset. Similarly, enolase 2 is a neuron-specific

Figure 5 Number of tissue-specifically over-expressed genes in the single data sets. For each data set and tissue type, genes were identified as 
specifically over-expressed if the corresponding PEM score is positive and achieves FDR < 0.25. Note that tissue-specific over-expressed genes could 
not be identified for several tissue classes in the Rosetta1, Rosetta2 and Stanford data sets due to the missing replicates. Only genes included in all 
four data sets were considered here.

Figure 6 Concordance of assayed and uniquely over-expressed genes. Gene lists were derived for all four experiments and examined for com-
mon genes. The concordance of all assayed genes in the different microarray experiments is shown on the left side. The obtained concordance of 
uniquely over-expressed genes (with MAX value > 0 and FDR < 0.25) in adrenal gland, brain, kidney, liver, and lung is depicted on the right side. The 
largest overlap was detected between Rosetta 1 and Rosetta 2 sharing on average 21% of the detected genes. In contrast, Stanford and Rosetta2 dis-
play the smallest overlap sharing only 14% of the detected genes.



Locuslink Symbol Description

GFAP Glial fibrillary acidic protein, a 
major intermediate filament 
proteins of astrocytes

STMN2 Stathmin-like 2, a neuronal 
growth-associated protein

GAP43 Growth associated protein 43, 
regulates growth of axons during 
development and regeneration

NEFL Neurofilament, light polypeptide, 
a major constituent of the 
axoskeleton

PLP1 Proteolipid protein 1, predominant 
myelin protein present in CNS

PMP2 Peripheral myelin protein 2

GABBR2 Gamma-aminobutyric acid (GABA) 
B receptor 2

INA Internexin neuronal intermediate 
filament protein alpha

DNM1 Dynamin 1, involved in clathrin-
mediated endocytosis

SH3GL2 SH3-domain GRB2-like 2, 
Endophilin 1, mediator of synaptic 
vesicle formation

SNAP25 Synaptosomal-associated protein 
25 kDa, a SNARE protein required 
for neuronal exocytosis

NP22 Neural protein 22

MBP Myelin basic protein, major 
constituent of myelin sheath of 
oligodendrocytes and Schwann

TPPP Tubulin polymerization promoting 
protein

S100B S100 calcium binding protein B, 
glial-derived protein serving as 
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Table 3: Top 20 brain-specific genes.

Entrez GeneID Consolidated Rank Rosetta1 MAX Rosetta2 MAX Stanford MAX Genealtas MAX

2670 1 5.25 4.90 5.02 3.48

11075 2 4.57 4.45 4.53 5.04

2596 3 6.38 5.69 4.16 2.75

4747 4 4.86 3.47 3.33 3.75

5354 5 5.13 2.72 4.30 4.45

5375 6 4.47 4.95 2.97 2.09

9568 7 3.41 3.89 4.25 2.19

9118 8 4.06 4.02 3.24 1.79

1759 9 3.24 3.35 2.93 2.69

6456 10 3.57 3.45 2.46 2.51

6616 11 5.54 3.25 1.52 4.17

29114 12 4.10 3.09 3.80 2.00

4155 13 5.10 3.46 1.30 4.79

11076 14 2.67 3.43 2.84 2.27

6285 15 2.87 2.21 3.54 3.64
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neurotrophic factor and neuronal 
survival protein



NEFM Neurofilament, medium 
polypeptide 150 kDa

NCAN Neurocan, involved in the 
modulation of cell adhesion and 
migration.

KIF3C Neurospecific KIF3C kinesin family 
member 3

SCG3 Secretogranin III, a 
neuroendocrine secretory protein

STMN4 Stathmin-like 4, regulation of the 
microtubule cytoskeleton

 data sets are also presented.
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4741 16 2.97 2.78 2.55 2.52

1463 17 3.25 5.22 1.54 1.97

3797 18 3.86 2.98 2.56 1.56

29106 19 4.83 2.81 2.50 1.51

81551 20 3.44 2.41 1.85 2.67

The top twenty genes based on the integrative MAX scoring are displayed. Besides the consolidated rank, the MAX values for the single

Table 3: Top 20 brain-specific genes. (Continued)
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enzyme in the glycolytic pathway and is used as marker
[24]. In the consolidated list, it was ranked 26th, whereas
it was ranked considerably lower in two datasets
(Rosetta1: 133, Stanford: 111). This suggests that bona
fide markers can be detected by consolidation despite
having a less prominent position in single data sets.

For liver tissue, the top-ranking genes are listed in Table
4. Closer inspection supports the conjecture that the inte-
grative scoring can achieve successful identification of
tissue-specific genes. Many of the 20 top genes encode
for plasma proteins known to be synthesized by the liver.
An example is the top-scoring gene, hemopexin that
encodes for a plasma protein that binds to heme with
high affinity and serves as a diagnostic feature of hemo-
lytic anemia [25]. Other highly ranked genes correspond
to liver-specific enzymes involved in lipid synthesis (e.g.
FABP1) or drug metabolism (e.g. Cytochrome P450
enzymes). Altogether, the composition of the integrated
gene list reflects well the multiple functions of the liver.
Therefore, we may conclude that the performed consoli-
dation can provide tissue-specific gene lists of high confi-
dence.

Assessment of reliability of derived gene lists
The inspection of the derived consolidated lists for brain
and liver indicated that multiple confirmations led to
accurate identification of tissue-specific genes. Since the
comparison of tissue-specific genes pointed to a consid-
erable platform dependency, another positive aspect of
the proposed integration method would be a reduced
dependency, or respectively, an increased reliability of the
detected gene lists. Clearly, the derived consolidated gene
lists show reduced platform dependence. But is this sim-
ply the consequence that the MAX scores from all com-
pared platforms were merged, or can the proposed
integration method still reduce the platform dependency
of gene lists when compared to data which were not
included in the integration? To assess whether the latter
is the case, we conducted a cross-validation. We exam-
ined whether the consolidated MAX scores for brain tis-
sue derived from three integrated data sets show a higher
correlation with the MAX scores of the fourth data set
than with the MAX scores of the three individual data
sets. This procedure was performed for all four microar-
ray experiments.

Strikingly, the consolidated gene lists showed consider-
able larger correlation with the independent gene list
than expected based on the observed correlation between
the single data sets (Figure 7). For instance, the average
Spearman correlation of MAX scores for brain tissue
between the Geneatlas data set and the remaining sets is
0.51. In contrast, the corresponding correlation with the
integrated MAX score derived from the other three data
sets is 0.65. Similar results were observed for the other

data sets in the cross-validation demonstrating that the
proposed integration can indeed lead to increased reli-
ability of the deducted tissue-specific gene lists.

Gene ontology analysis of single data sets and integrated 
data
Besides enhancing the data reliability, do the consolidated
gene lists also improve the functional characterization of
tissue types? To address this question, each tissue type
was represented by their corresponding specifically
expressed genes. Subsequently, these lists were associated
to biological processes described in Gene ontology (GO).
Using Fisher's exact test, the significance of enrichment
of the over-expressed genes in a biological process was
derived for each tissue type. To facilitate its evaluation,
we restricted the GO analysis to 18 so-called informative
GO categories. For functional characterization, tissues
types and GO categories were hierarchically clustered
based on the significance of enrichment as similarity
measure. This functional characterization allowed us to
compare the reliability of the consolidated gene list with
the gene lists obtained from single data sets. In Figure 8,
the results are displayed for the consolidated gene lists
and contrasted to the clustering obtained if only one data
set (e.g. Geneatlas here) was used.

Assessment of the results showed that we obtained bio-
logically more reasonable results for consolidated lists.
For example, pancreas tissue was strongly associated with
the GO category "proteolysis", which corresponds to its
exocrine function. Similarly, liver tissue was strongly
associated with "metabolism", which is known to be the
most prominent function of the liver (Figure 8A). In con-
trast, we do not obtain such a strong association for the
gene lists based solely on the Geneatlas data set (Figure
8B). Moreover, tissues based predominantly (or to a high
grade) on muscle cells such as (skeletal) muscle, heart (i.e.
cardiac muscle) and trachea (which contains smooth
muscular fibres) form a cluster based on the consolidated
gene lists. Likewise, the lymphoid tissues, i.e. lymph node
and tonsil, showed a similar GO annotation profile and
were grouped together. This was not the case for the clus-
tering based on tissue-specific genes that were derived
using Geneatlas data only. Notably, similar short-comings
were observed for corresponding clustering analyses of
the other three single data sets (Additional file 1 - Figure
S8). These findings support the conjecture that the con-
solidated gene lists lead to more reliable and biologically
more meaningful results.

Conclusions
Microarrays have become widely used tools to measure
gene expression for the prediction of disease outcome,
the profiling of new disease subtypes and the identifica-
tion of disease-specific markers [1-4]. To achieve these
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Table 4: Top 20 liver-specific genes.

Entrez GeneID Consolidated Rank Rosetta1 MAX Rosetta2 MAX Stanford MAX Genealtas MAX Locuslink Symbol Description

3263 1 5.25 4.90 5.02 3.48 HPX Hemopexin, heme-binding plasma protein 
synthesized by the liver

3053 2 4.57 4.45 4.53 5.04 SERPIND1 Serpin peptidase inhibitor, clade D, member 
1, cofactor of heparin in plasma

6580 3 6.38 5.69 4.16 2.75 SLC22A1 Solute carrier family 22 member 1, main 
organic cation uptake system in hepatocyte

462 4 4.86 3.47 3.33 3.75 SERPINC1 Serpin peptidase inhibitor, clade C 
(antithrombin), member 1

8608 5 5.13 2.72 4.30 4.45 RDH16 Retinol dehydrogenase 16, involved in lipid 
metabolism in liver

344 6 4.47 4.95 2.97 2.09 APOC2 Apolipoprotein C-II, component of very low 
density lipoprotein

1571 7 3.41 3.89 4.25 2.19 CYP2E1 Cytochrome P450, family 2, subfamily E, 
polypeptide 1. cytochrome oxidase system

6906 8 4.06 4.02 3.24 1.79 SERPINA7 Serpin peptidase inhibitor, clade A 
(antitrypsin), member 7

1559 9 3.24 3.35 2.93 2.69 CYP2C9 Cytochrome P450, family 2, subfamily 2, 
polypeptide 9 -

1551 10 3.57 3.45 2.46 2.51 CYP3A7 Cytochrome P450, family 3, subfamily A, 
polypeptide 7

732 11 5.54 3.25 1.52 4.17 C8B Complement component 8, beta 
polypeptide

731 12 4.10 3.09 3.80 2.00 C8A Complement component 8, alpha 
polypeptide

7448 13 5.10 3.46 1.30 4.79 VTN Vitronectin - plasma protein promoting cell 
adhesion

350 14 2.67 3.43 2.84 2.27 APOH Apolipoprotein H (beta-2-glycoprotein I)

1373 15 2.87 2.21 3.54 3.64 CPS1 CPS1 carbamoyl-phosphate synthetase 1, 
enzyme in the hepatic urea cycle

1361 16 2.97 2.78 2.55 2.52 CPB2 Carboxypeptidase B2 plasma protein 
regulating fibrinolyses,

3273 17 3.25 5.22 1.54 1.97 HRG Histidine-rich glycoprotein, plasma protein

338 18 3.86 2.98 2.56 1.56 APOB Apolipoprotein B, isoform apoB-100, 
exclusively synthesized in the liver

2168 19 4.83 2.81 2.50 1.51 FABP1 Fatty acid binding protein 1 found in the liver

10998 20 3.44 2.41 1.85 2.67 SLC27A5 Solute carrier family 27 (fatty acid 
transporter), member 5, involved in lipid 
synthesis

The top twenty genes based on the integrative MAX scoring are displayed.
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goals, it is crucial to acquire detailed knowledge about
expression levels in normal tissue. Several microarray
studies have therefore aimed to profile human tissue
expression and have rapidly become important resources
for biomedical investigations [15-19]. However, the vast
majority of the subsequent analyses (including our own
[16]) have relied on only one of these data sets. Any bias
inflicted by the chosen data set may severely compromise
the reliability of results. Due to their increasing impor-
tance, we re-analysed four large tissue expression data
sets. Our aim was to examine whether a platform-depen-
dency is prominent or rather neglectable compared to the
biological variability monitored in these data sets.

Remarkably, we found that the detected tissue-specific
expression is strongly influenced by the choice of
microarray platform. The observed divergence could
have multiple reasons. Foremost, the set of tissue samples
was not the same for the compared experiments. Thus,
differences would be caused by biological variation. Fur-
thermore, experimental factors such as difference in
probe sequences, RNA handling, hybridization protocols,
scanning, and image analysis are likely to contribute to
the observed divergence. In our study, we applied some
alternative pre-processing schemes to improve the con-
currency of the data sets. Although these schemes did not
yield a larger overlap of tissue-specific genes, we antici-
pate that improved pre-processing procedures can sup-
port the consolidation of the data generated by different
microarray data sets. Especially, a more accurate annota-
tion of probes (i.e. their mapping of corresponding genes)
will help to improve the comparability of microarray plat-
forms [26,27]. Thus, ongoing efforts in this direction
remain important for the re-utilization of existing
microarray data.

Despite the differences, however, all four data sets show
a larger similarity than expected by chance. This similar-

ity provided us the basis for the consolidation of the dif-
ferent expression experiments. In fact, dissimilarity of
expression patterns can be used to eliminate spurious
expression patterns. It has recently been demonstrated
that the expression of genes displaying a similar pattern
for different platforms tends to have an increased repro-
ducibility with respect to external validation by qRT-PCR
[28]. Thus, cross-platform comparison can be employed
as powerful means to eliminate unreliable gene expres-
sion measurements.

Therefore, we propose the integration of multiple tissue
expression data sets. We generated lists of tissue-specific
genes for each single data set and integrated them to a
single consolidated list. Naturally, data integration would
not be beneficial if any of the data sets to be integrated is
unreliable. However, the re-analyses as well as the origi-
nal studies strongly demonstrated that each of the data
sets shows convincible overall reproducibility. Neverthe-
less, we observed biologically more accurate results for
the integrated list in contrast to lists derived by one
experiment only in an exemplary GO analysis. Addition-
ally, we constructed a compendium including tissue
expression data for 18909 non-redundant genes and
scores for tissue specificity to allow researchers their own
analysis. The consolidation is based on simple, but yet
effective scoring methods. We would like to note that the
rather stringent requirements can be relaxed using the
compendium. For example, we would find a considerably
larger overlap of tissue-specific genes if we only require
that they are shared between two or three data sets.
Therefore, researchers using the compendium are
encouraged to adjust the thresholds to their own require-
ments. To facilitate such further analysis our compen-
dium provides the complete data sets with the specificity
scores. The compendium will be particularly beneficial
for analyses involving a large number of genes. A possible
application might be the construction of tissue-specific
networks which have attracted increased attention in sys-
tems biology [29,30]. Using the compiled data, potential
platform-dependency can easily be eliminated in order to
avoid severe artefacts in the analyses.

In conclusion: Although various studies have compared
disease-related microarray experiments, this analysis
constitutes the first systematic comparison of large-scale
microarray data sets of normal human tissues. We
detected a prominent platform bias, which however can
be overcome by data integration. Thus, an important
contribution of this study is in the compilation of plat-
form-independent tissue-specific lists which will be pro-
vided freely. We anticipate that they will be of great asset
for biomedical scientists. Finally, we hope that our study
provides a solid basis for the future wide-spread use of
microarray tissue expression data in genomic research.

Figure 7 Spearman correlation of MAX scores for brain tissue. To 
assess the reliability of the consolidated gene lists we performed a 
cross validation. The number of genes in each data set was reduced to 
the genes found in all four data sets with positive MAX score in brain 
tissue. The diagram shows the average Spearman correlation of each 
data set vs. the other data sets and of three consolidated data sets vs. 
the data set that was left out.
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Figure 8 Cluster image map for the GO analysis of the consolidated gene lists and of the Geneatlas data set. Genes of the consolidated lists 
and of the lists derived solely from the Geneatlas data were mapped to the biological processes to which the genes are assigned in Gene Ontology 
(GO). The significance of enrichment in informative GO categories was derived by using Fisher's exact test and adjusted for multiple testing. Hierar-
chical clustering was subsequently performed based on the derived false discovery rates (FDR). The cluster image maps display the FDR of the GO 
enrichment according to the colour-bar at the bottom.
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Methods
Data collection and pre-processing
The data sets Rosetta1 [5] and Rosetta2 [20] were pro-
vided directly by the authors. Both data sets were gener-
ated using Agilent spotted oligonucleotide microarrays.
The provided data sets comprised expression patterns for
10,000 and 50,000 transcripts in 50 and 54 different tis-
sues, respectively. The data sets provided have been back-
ground corrected (due to spatial variation and sequence-
specific effects) and normalized using dye-swap normal-
ization (i.e. based on reverse labelling of target and refer-
ence samples) by the authors. For the assessment of the
influence of preprocessing on the comparison, we addi-
tionally log-transformed and subsequently normalized
the data across arrays using the quantile normalization
which is based on the transformation of the original value
to the corresponding quantile's value of a reference chip
[31]

Shyamsundar et al. [21] measured gene expression in
115 tissue samples on dual-channel cDNA microarrays
containing 39,711 human cDNAs. The raw data was
downloaded from the Stanford Microarray Database. We
normalized the raw data using optimized local intensity-
dependent normalization (OLIN) which is based on itera-
tive local regression and optimization of model parame-
ters by internal cross-validation. It has been
demonstrated that it can correct favourably for potential
dye and spatial biases in two-channel microarray data
[32,33]. Optionally, quantile normalization was applied.

Su et al. [8] created a gene expression profile of 79
human tissues using Affymetrix HG-U133A and custom-
ized GNF1H arrays comprising 45,953 probe sets. Alto-
gether, 16499 non-redundant genes were profiled by
replicated hybridizations.

Expression summaries had been derived using the
Affymetrix Microarray Suite 5 (MAS5) algorithm with
global median scaling. The MAS5-processed data were
downloaded from the Geneatlas webpage. To improve the
concordance with the other data sets, we also calculated
expression levels using an alternative annotation and nor-
malization scheme. Starting from the CEL files (down-
loaded from NCBI GEO repository - Series GSE1133), we
used an customized CDF annotation file for the U133A
GeneChip (downloaded from http://www.xlab.unimo.it/
GA_CDF/) and the GC-RMA normalization method for
the calculation [34]. After quantile normalization, the
data were merged with the GNF1H-derived and GC-
RMA normalized data (downloaded from Geneatlas web-
site).

Notably, Rosetta1 and Rosetta2 does not include repli-
cates of samples, whereas Stanford contains biological
replicates and Geneatlas includes technical replicates by
hybridizing the same tissue samples to two different
Affymetrix chips. For comparative analysis, microarray

probes were mapped to a common index system, in our
case Entrez Gene Ids using the annotation provided by
the authors or the SOURCE database http://smd.stan-
ford.edu/cgi-bin/source/sourceSearch. Probes which
could not be mapped were excluded from the analysis.
Signals from probes linked to the same gene were aver-
aged. In order to assess and to compare the tissue expres-
sion, the samples were assigned based on their physiology
and histology to 19 main tissue classes found in all four
data sets. The 19 main tissue classes are adrenal gland,
brain, heart, kidney, liver, lung, lymph node, muscle,
prostate, pancreas, placenta, salivary gland, thymus, thy-
roid, tonsil, testis, trachea, uterus, and uterine corpus.
Expression values of tissues samples assigned to the same
class were averaged to facilitate the comparison. Tables
including the averaged expression values for the analysed
data sets can be found as Additional files 2, 3, 4 and 5.
Detailed information about the performed classification
of tissues and the distribution of tissue across the differ-
ent microarray experiments can be found in the Addi-
tional file 1 - Table S2.

Correlation of correlations
Global similarity of expression patterns in different
expression data sets can be assessed using 'correlation of
correlations' [22]. This recently introduced measure is
based on the comparison of pair-wise correlations of
genes (or tissue samples, respectively) in the two data
sets. For the gene-based comparison, Spearman correla-
tion coefficients for each of the possible pairs of genes are
calculated first for each data set (using only those genes
found in the both data sets). The correlation coefficients
obtained for the two data sets are subsequently corre-
lated. Mathematically, this procedure can be defined as:

where Uij is the Spearman rank correlation of genes i
and j in data set U, Vij is the Spearman rank correlation of
genes i and j in data set V, and the sums are over all dis-
tinct pairs of genes i and j. Large correlation of correla-
tions signifies similar co-expression of genes in two data
sets. Similarly, we can proceed for tissue-based compari-
sons. The same steps as for the gene-based comparison
were applied, but the Spearman correlation coefficients
were calculated across all genes for all possible pairs of
tissue types. For the tissue-based comparison, large cor-
relation of correlations indicates similar tissue expression
patterns.
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The obtained results were used for hierarchical cluster-
ing to evaluate the similarity of expression patterns in the
compared data sets. As distance measure, we chose 1-rUV.
Clustering was conducted using Ward's minimum vari-
ance method and visualized with clustered image maps
(heatmaps).

Measures for tissue specific expression
We used the previously introduced Preferential Expres-
sion Measure (PEM) to identify genes that are over- or
under-expressed in a specific tissue [13]. PEM describes
the expression of a gene in a given tissue in relation to its
average expression across all tissues. PEM reports a posi-
tive value for over-expressed genes and a negative value
for under-expressed genes. For microarray experiments,
the PEM for a tissue class ti can be defined as:

where S is the average expression of a gene in the spe-
cific tissue class ti and A is the arithmetic mean expres-
sion of the gene in all tissues (starting from log2-
transformed expression values). To derive the signifi-
cance of observed PEM scores, a permutation-based pro-
cedure was employed. Background distributions of PEM
scores were generated based on repeated (N = 100) ran-
dom association of the same number of arrays to a tissue
class as observed for the original data set. Notably, this
procedure conserves the number of arrays included in a
specific tissue class. Subsequently, PEM scores were cal-
culated separately for each tissue class and each data set.
As measure for statistical significance, we used the false
discovery rate (FDR). It is defined here as the expected
proportion of false positives among all genes detected as
tissue-specifically expressed. We can derive an empirical
false discovery rate for a chosen PEM score s:

where PEMo and PEMb are the scores calculated for the
original and randomized data sets, N is the number of
randomization (N = 100) and δ(x) = 1 for x ≥ 0, respec-
tively δ(x) = 0 for x < 0. Thus, the significance of the
observed PEM scores can be derived by comparison with
the generated background distributions [35]. For our
analysis, genes with a positive PEM score achieving FDR
< 0.25 were defined as tissue-specifically over-expressed
whereas genes with negative PEM score and a FDR < 0.25
were defined as under-expressed.

The uniqueness of tissue-specific over-expression was
evaluated by comparing the fold changes of the two tis-

sues with the highest gene expression for each gene. We
called this measure MAX, which can be defined as:

where fc(t) comprises the fold changes in all tissues t
compared to the mean expression and fc(t') comprises the
fold changes in all tissues except the one with the highest
fold change of this gene, respectively. Note that this MAX
score is assigned to a gene only for the tissue class with
the largest expression; all other MAX scores of the gene
are set to zero for the remaining tissue classes. A gene
with a large MAX value shows high gene expression in
one tissue but not in the other tissues, i.e. it is uniquely
over-expressed. To assess the significance, the same per-
mutation-based procedure as applied to PEM scores was
employed. In our study, genes with a FDR < 0.25 were
denoted as uniquely tissue-specifically over-expressed.
The derived MAX and PEM scores as well as their corre-
sponding FDR for different tissues and data sets can be
found in Additional file 6 and 7. For the Geneatlas data
set, we additionally provide the corresponding results for
the alternative pre-processing and annotation scheme in
Additional file 8.

The detected dependence between the number of tis-
sue-specific genes and the number of samples included in
a tissue class may interfere with a comparison among tis-
sues. In order to reduce such interference, an adjustment
of FDR thresholds for tissue-specific over-expression was
performed for each data set independently. First, we cal-
culated the number of genes N which were significantly
over-expressed in brain in a chosen data set based on a
FDR threshold of α (with α = 0.01, 0.05, 0.10 and 0.25).
Second, a sub-set of s brain samples were randomly
selected and the remaining non-selected brain samples
were subsequently excluded from the data set. PEM
scores for brain-specific over-expression and correspond-
ing FDR were derived as previously described for this
reduced data set. The FDR threshold for significant
brain-specific over-expression was adjusted to a level α'
so that the number of significant genes was the same as
detected number N for the full set using a FDR threshold
of α. The procedure was repeatedly performed (n = 103)
generating a distribution of adjusted thresholds. As a
conserved estimate for adjustment of the FDR threshold,
the 5th percentile was chosen. The size s of the sub-set
was set to values that reflected the number of observed
samples in different tissue classes (given by Additional
file 1 - table S2).

Assessment of reliability by cross-validation
To assess the reliability of the consolidated gene lists we
employed a cross-validation method. First of all, we
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reduced the number of genes to 6685, i.e. all the genes
analyzed in all four data sets. Next, only those genes with
MAX score > 0 for brain in all four data sets were selected
(140 genes). For those genes we calculated the Spearman
rank correlation between each of the four data sets. For
cross-validation we consolidated three of the four data
sets for each of the four possible combinations. For
assessment of reliability we calculated the Spearman rank
correlation of the consolidated gene lists and the gene list
set not included in the consolidation and compared this
value to the mean of the correlation values for the gene
lists set based on individual data sets.

GO analysis of over-expressed genes
We utilized gene annotation by Gene Ontology to assign
tissue types to biological processes. Here, we assessed
whether over-expressed genes in a given tissue type tend
to be associated with specific biological processes. First,
we calculated the enrichment of tissue-specific genes
based with a PEM > 0.8 in biological process categories.
The obtained scores for enrichment can subsequently be
used to assign weighted profiles of biological processes to
the given tissue type. A well-known difficulty, however, is
the selection of the suitable set of GO categories, as many
of categories are highly specific. Here, we aimed to select
only those categories that include enough genes for ade-
quate statistical validation but not too many genes to
ensure the functional homogeneity of member genes.
Following a previously proposed scheme, we chose there-
fore so-called informative GO categories: Each GO cate-
gory should contain more than 300 genes and each of
their child categories should contain less than 300 genes
[36]. The significance of association between tissue type
and GO category was calculated using Fisher's exact test
assessing the accumulation of over-expressed genes in a
tested category. P-values obtained were adjusted and
converted to false discovery rates (FDRs) using the Benja-
mini-Hochberg method [37]. A small FDR signifies
enrichment of tissue-specifically over-expressed genes in
a GO category. To examine the similarities of enrichment
profiles of the different tissue types, the results were visu-
alized as cluster image maps.
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