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Abstract
Background: Hookworm infection is one of the most important neglected diseases in developing countries, with 
approximately 1 billion people infected worldwide. To better understand hookworm biology and nematode 
parasitism, the present study generated a near complete transcriptome of the canine hookworm Ancylostoma caninum 
to a very high coverage using high throughput technology, and compared it to those of the free-living nematode 
Caenorhabditis elegans and the parasite Brugia malayi.

Results: The generated transcripts from four developmental stages, infective L3, serum stimulated L3, adult male and 
adult female, covered 93% of the A. caninum transcriptome. The broad diversity among nematode transcriptomes was 
confirmed, and an impact of parasitic adaptation on transcriptome diversity was inferred. Intra-population analysis 
showed that A. caninum has higher coding sequence diversity than humans. Examining the developmental expression 
profiles of A. caninum revealed major transitions in gene expression from larval stages to adult. Adult males expressed 
the highest number of selectively expressed genes, but adult female expressed the highest number of selective 
parasitism-related genes. Genes related to parasitism adaptation and A. caninum specific genes exhibited more 
expression selectivity while those conserved in nematodes tend to be consistently expressed. Parasitism related genes 
were expressed more selectively in adult male and female worms. The comprehensive analysis of digital expression 
profiles along with transcriptome comparisons enabled identification of a set of parasitism genes encoding secretory 
proteins in animal parasitic nematode.

Conclusions: This study validated the usage of deep sequencing for gene expression profiling. Parasitic adaptation of 
the canine hookworm is related to its diversity and developmental dynamics. This comprehensive comparative 
genomic and expression study substantially improves our understanding of the basic biology and parasitism of 
hookworms and, is expected, in the long run, to accelerate research toward development of vaccines and novel 
anthelmintics.

Background
Genomic data is revolutionizing molecular parasitology
and has been used to prioritize drug targets in parasites at
a genomic level [1]. Similarly, pan-phylum genomic stud-
ies in parasitic nematodes have identified both highly
conserved nematode-specific proteins [2], which are
attractive as drug candidates as their targeting will not
affect the host, and nematode-specific indels in essential
proteins [3], which could also be good candidates for

"indel-based" drug design in nematodes. Complementing
the genomic data, expression data reflects the dynamics
of genetic information. Analysis of digital expression
data, obtained by sequencing cDNAs, is crucial for study-
ing and understanding organism's development, physiol-
ogy, and environmental adaptation. Knowledge of these
mechanisms in parasites is essential to substantially
accelerate research toward the development of both new
therapies to prevent parasite infections and vaccines (or
novel anthelmintics) needed to control them.

Infection of humans by parasitic nematodes results in
substantial human mortality and morbidity, especially in
tropical regions of Africa, Asia, and the Americas. Hook-
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worms, probably the most significant public health threat
of these nematodes, are the second largest contributor to
the 26.7 million annual DALYs (Disability Adjusted Life
Years) from iron-deficiency anemia due to blood feeding
by adult worms. Chronic anemia from hookworm infec-
tion is particularly devastating to children, who suffer
from stunted growth and impaired intellectual develop-
ment, to mothers who are at increased risk for anemia
during pregnancy and childbirth, and to the elderly [4-6].
Current hookworm control strategies are limited to
deworming of infected people using anthelmintic drugs.
However, rapid re-infection in endemic areas and the lack
of sterile immunity necessitates repeated treatments,
which will in turn result in resistance. The high rates of
re-infection after drug therapy mean that vaccines
remain the best hope for worm control in humans in the
future. No vaccine is yet available, despite substantial
support from The Bill and Melinda Gates Foundation
specifically for the development of a hookworm vaccine
[7]. Until safe and effective vaccines are developed,
anthelmintics will continue to be used for treatment and
control of nematode infections in humans. Thus, there is
a critical need for further research to identify new vac-
cine and drug targets which requires better understand-
ing of the biology and parasitism of these devastating
parasites.

Ancylostoma caninum, a canine hookworm closely
related to the human parasites Ancylostoma duodenale
and Necator americanus [8], is the most widely used
model for human hookworm infections [9]. Similar to
other hookworms, adult A. caninum inhabit the small
intestine and produce eggs that pass in the feces and
hatch in the soil. The first stage larva feeds on bacteria
and molts twice to form the non-feeding, infective third
stage (iL3). iL3 enters the host by penetrating the skin,
molts twice, and matures in to the adult (Ad) stage in the
small intestine. A. caninum iL3 can also infect a host,
temporarily abort maturation and enter an arrested state
(hypobiosis) within the host's somatic tissues [10], reacti-
vating in response to host physiological changes such as
pregnancy [11].

A. caninum is a Clade V nematode [12] that also
includes the well-studied free-living model nematode
Caenorhabditis elegans. C. elegans was the first multicel-
lular genome to be sequenced [13] and it remains the only
metazoan for which the sequence of every nucleotide is
known to high confidence. Recently, the genome of the
human parasite Brugia malayi, has been sequenced and
analyzed [14]. Brugia malayi is phylogenetically classified
in Clade III [15]. The distant phylogenetic relationship
between A. caninum and B. malayi (compared to A. cani-
num and C. elegans) makes investigation of nematode
adaptation to parasitism easier, as similarities shared by
A. caninum and B. malayi (but not by C. elegans) are

likely to be associated with adaptation to parasitism. Our
previous studies based on limited coverage of A. caninum
revealed the existence of genes unique to hookworm and
the different selective pressures on these genes [16,17].
Another study using microarray technology [18] found
several hundred genes in A. caninum changed their
expression during the worm's transition from a free living
to a parasitic larva. However, because of the limitation of
the data and/or methods of these studies, many ques-
tions, especially those related to parasitism, remain to be
fully explored.

To better understand the biology of parasitism and
facilitate prioritization of potential vaccine and drug tar-
gets, the present study deeply sequenced the A. caninum
transcriptome with a combination of two distinct
sequencing technologies, ABI Sanger capillary and 454/
Roche massively parallel sequencing platforms. Over 1.5
million cDNAs were generated from different cDNA
libraries constructed from pre-parasitic, parasitic larval
and adult stages. These reads covered over 90% of the A.
caninum transcriptome with an average depth of 10×.
This dataset was also used to perform comprehensive
comparative analysis among A. caninum, B.malayi and
C. elegans, and the unprecedented depth of coverage
enabled comparison of digital expression profiles leading
to reliable identification of differentially expressed genes
during development. This study provides the first nearly
complete transcriptome from a parasitic nematode and
provides valuable information about nematode adapta-
tions to parasitism, in addition to revealing several candi-
dates for further study as drug target or vaccine
components.

Results
Sequence acquisition, organization and transcriptome 
coverage
Over 1.5 million ESTs were generated from 4 stages,
infective L3 larva (iL3), activated L3 larva (ssL3), adult
male (M), and female (F), of A. caninum (Table 1). These
1,567,105 reads include 1,483,002 pyrosequencing reads
(Roche/454 reads, average length 232 bases) and 84,103
Sanger reads (average length 748 bases). The larval stages
were represented by nearly half a million reads, and the
adult stages with nearly 300,000 reads (Table 1).

Assembly, which was performed to reduce data redun-
dancy and improve sequence quality and length, grouped
the sequences into 48,326 transcripts longer than 90 bp,
for a total of 23 Mb. The transcript consensus sequences
are available at http://nematode.net[19]. The average
transcript length was 477 bp and average coverage was
10×. Using the core eukaryotic genes as a reference, we
estimated that 93% of the A. caninum transcriptome is
identified (See additional file 1), making this the first par-
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asitic nematode with a near complete sequenced tran-
scriptome.

Nematode transcriptome diversity and parasitism related 
genes
Even though A. caninum and C. elegans fall in the same
phylogenetic Clade (Clade V)[12], only about 20% of A.
caninum transcripts are homologous to C. elegans coding
genes, and even lower number (14%) to B. malayi coding
genes (Figure 1A). However, when only considering the
highly expressed transcripts (those sequenced deeply
enough to provide confident stage selectivity in this case)
about 43% of A.caninum transcripts are homologous to
C. elegans. When all the transcripts were considered, the
vast majority (77%) of the A. caninum transcripts were
species-specific. This indicates high transcriptome diver-
sity among nematodes. However, this diversity did not
correspond to a drastic difference on functional level.
The total unique number of KOs associated to the A.
caninum and C. elegans genes were very similar (Table 2),
with only one (amino acid metabolism pathway; P <
0.001) out of the 33 identified pathways having a statisti-
cally significant increased number of unique KOs (359 vs.
315) in A. caninum.

There were 1,643 transcripts with B. malayi homologs
(1,365 genes) but no C. elegans homologs (Figure 1A)
despite A. caninum being more closely related phyloge-
netically to C. elegans. The majority of these transcripts
(1,093 out of 1,643) failed to find any GO annotations.
Nevertheless, functions of the 550 transcripts having GO
annotation are enriched in 3 GO terms, prolyl oligopepti-
dase activity (GO:0004287, P = 3.5e-6), nucleic acid bind-
ing (GO: 0003676, P = 5.1e-5), and DNA binding (GO:
0003677, P = 1.7e-3), with the most enriched category
being prolyl oligopeptidase activity. In addition, malic
enzyme activity was enriched (P = 5.2e-3) though it failed
our FDR cutoff because of the small number of entries in
this activity. As a comparison, no GO term enrichment
was detected when considering the B. malayi genes with
homology to C. elegans but not A. caninum. Meanwhile,
homology comparison among the free-living C. elegans
and the parasites A. caninum and B. malayi found that

more B. malayi genes share homology with A. caninum
(5,991) than with C. elegans (5,532) (Figure 1B). The
higher number of homologous genes among parasites
was statistically significant (P < 1.0e-4, Chi-square test).
Since B. malayi (Clade III) is phylogentically more distant
from A. caninum than C. elegans (both are in Clade V)
[12], B. malayi would share a similar level of homology
with both C. elegans and A. caninum if parasitism had no
effect on gene evolution. Therefore, we hypothesize that
the 1,643 transcripts represent putative parasitism
related genes.

Figure 1 Venn diagram showing distribution of BLAST matches. 
Amino acid level homologies with bitscore of 50 or better were consid-
ered. (A) A. caninum transcripts homologous to B. malayi and C. elegans. 
Only 23% of the transcripts (11,025/48,326) shared homology, leaving 
37,301 transcripts to be specific to A. caninum. (B) B. malayi genes ho-
mologous to A. caninum and C. elegans. About 62% of the 11,609 B. ma-
layi genes shared homology. Higher number of B. malayi genes had 
homologs to the parasitic A. caninum compared to the free-living C. el-
egans, and 4,406 B. malayi genes did not share homology.

B. malayi C. elegans

5,110 4,2721,643

A

A. caninum C. elegans

4,320 1,2121,671

B

Table 1: Sequence characteristics

Reads (#)

infective L3 serum 
stimulated L3

Female Male Total reads Mean Length 
(bp)

Roche/454FLX 474,766 458,249 277,319 272,668 1,483,002 232

ABI Sanger 23,429 21,722 18,960 19,992 84,103 748

Total 498,195 479,971 296,279 292,660 1,567,105 -
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Comparative genomics of gene expression during 
development of A. caninum
The deep sequencing of this study allowed us to examine
differential expression of inferred transcripts and shed
light on their functions due to the association of the gene
expression with molecular function. Figure 2 summarizes
the expression selectivity of the 16,359 transcripts that
have sequencing depth for confident estimation of
expression selectivity, and Table 3 contains the ten most
abundant transcripts selectively expressed in different

stages (The list of the top 20 most abundant transcripts is
available as additional file 2). Only half of the transcripts
are expressed through all the stages. The most dramatic
change observed between the developmental stages stud-
ied was the transition from larvae to adult: more than
3,000 transcripts were turned off and nearly 1,500 turned
on. This is not unexpected, especially since the develop-
ing L4 stage was not examined. The serum stimulation
turned off 78 transcripts, and turned on 401 transcripts.
More than one third of the turned-on genes were turned

Table 2: KEGG pathway mappings for A. caninum and C. elegans orthologs

Major 
Category

Pathway A.caninum KOs C.elegans KOs Total KO in the
pathway

1. Metabolism 1467 1386 2230

1.1 Carbohydrate Metabolism 357 327 547

1.2 Energy Metabolism 255 247 406

1.3 Lipid Metabolism 234 237 332

1.4 Nucleotide Metabolism 118 122 165

1.5 Amino Acid Metabolism 359 315 474

1.6 Metabolism of Other Amino Acids 86 85 125

1.7 Glycan Biosynthesis and Metabolism 113 119 158

1.8 Biosynthesis of Polyketides and 
Nonribosomal Peptides

4 4 4

1.9 Metabolism of Cofactors and Vitamins 180 173 297

1.10 Biosynthesis of Secondary Metabolites 47 46 57

1.11 Xenobiotics Biodegradation and 
Metabolism

122 115 180

2. Genetic Information Processing 489 513 793

2.1 Transcription 70 77 85

2.2 Translation 149 145 175

2.3 Folding, Sorting and Degradation 191 213 368

2.4 Replication and Repair 84 83 174

3. Environmental Information Processing 1049 1106 1846

3.1 Membrane Transport 120 140 391

3.2 Signal Transduction 555 571 919

3.3 Signaling Molecules and Interaction 462 483 713

4. Cellular Processes 886 912 1176

4.1 Cell Motility 162 165 203

4.2 Cell Growth and Death 172 181 246

4.3 Cell Communication 231 234 250

4.4 Endocrine System 239 247 281

4.5 Immune System 260 267 393

4.6 Nervous System 62 62 66

4.7 Sensory System 31 34 38

4.8 Development 99 99 102

4.9 Behavior 7 8 10
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off again in M, F, or M and F. Consistent with these
expression changes, comparison of the preparasitic to
parasitic (iL3 vs. ssL3) and parasitic larval to adult stages
(ssL3 vs. M + F) revealed that nearly twice the number of
transcripts have significant expression changes in the lat-
ter transition than the former (See additional file 3).

Among the 401 transcripts turned on by serum stimu-
lation, 13 of them are parasitism related (Figure 2). Given
that there are a total of 562 parasitism related transcripts
among all the 16,359 transcripts (whose expression selec-
tivity could be confidently ascertained), there is no evi-
dence to support that serum stimulation triggers an
extensive expression of parasitism related genes. How-
ever, parasitism related genes are more selective
expressed in adults. Nearly 18% of these genes (99 out of
562) exhibit M, F, or M and F selectivity, which is signifi-
cant (P s < 1.0e-4, Chi-square test) when compared to the
overall of 9% (1,505 out of 16,359; Figure 2). Interesting,
compared to the small fraction of male specific tran-
scripts related to parasitism (17/604), a large fraction of
female specific transcripts (35 out of 213) are parasitism
related.

The majority of nematode conserved transcripts (2,789
of 4,056) exhibited constant expression over all stages,
while less than 40% (3,446 of 8,783) of the A. caninum
specific transcripts exhibited the same expression pattern
(Figure 2). This difference is highly significant statistically
(P < 1.0E-10, Chi-square test). More than 80% of iL3
selective transcripts (66 out of 78) are A. caninum spe-
cific. The different expression pattern of conserved tran-

scripts and A. caninum specific transcripts suggests
caution in using cDNA data to estimate transcriptome
diversity. Using limited number of cDNA reads can
underestimate the diversity. For example, the homolog
rate between A. caninum and C. elegans would be 54%
((8074-3446-304)/8074) if only the transcripts expressed
constantly across the life cycle were considered while that
is 20% when all transcripts are included.

The expression profiles defined by our sequencing were
compared to the data published by Datu et al., [18]. Datu
et al. studied transcriptional changes in the hookworm,
A. caninum, during the transition from a free-living to a
parasitic larva using suppression subtractive hybridiza-
tion (SSH) and custom oligonucleotide microarray
printed with the SSH expressed sequence tags. Compari-
son of the two expression profiles of the most highly up-
regulated mRNAs associated with serum stimulation
obtained by different orthogonal approaches confirmed
consistency in expression of 9 out of the 10 up-regulated
mRNA associated with serum stimulation. The only one
not consistent is cDNA that has been broken into several
transcripts in our assembly, therefore giving rise to this
discrepancy (additional file 3).

Functional profile of transcripts with different expression 
selectivity
Examining the function of transcripts with different
expression patterns using GO terms revealed that
enriched and depleted GO terms correlate to the biology
of the corresponding stages. The heatmaps of molecular
function GO terms (Figure 3 and Figure 4; See additional
file 4) shows that transcripts with different expression
selectivity exhibit different functional profiles, although
that of the transcripts selectively expressed in both iL3
and ssL3 is closer to that of those constantly expressed,
and those of the transcripts selectively expressed in F, M,
and both F and M look more similar. Significantly
enriched GO terms in the category of molecular func-
tions are shown in Table 4. The top three enriched GO
terms of transcripts expressed constantly over all stages
are zinc ion binding (GO:0008270, P = 7.4e-12), protein
binding (GO:0005515, P = 1.8e-11), and nucleic acid
binding (GO:0003676, P = 9.3e-11). The top three tran-
scripts selectively expressed in both F and M are astacin
activity (GO:0008533, P = 8.8e-17), a structural constitu-
ent of cuticle (GO:0042302, P = 3.5e-8), and cysteine-type
endopeptidase activity (GO:0004197, P = 4.0e-11). These
terms have all been previously associated with genes
involved in parasitism [20-22]. The three most significant
enriched GO terms of the selectively expressed tran-
scripts in both iL3 and ssL3 are rhodopsin-like receptor
activity (GO:0001584, P = 3.1e-9), N-acetyltransferase
activity (GO:0008080, P = 6.6e-6), and sugar hydrogen

Figure 2 Distribution of A. caninum transcripts based on stage or 
origin of each read. iL3: infective L3; ssL3: serum stimulated L3.
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Table 3: The most abundantly represented transcripts in the A. caninum cDNA library expressed genes

Stage Contig id Female Male iL3 ssL3 Total GO id

Female specific

contig00905 168 0 0 0 168

contig03165 118 0 0 0 118 GO:0004252

contig05541 103 0 0 0 103 GO:0005529

contig02012 94 0 0 0 94 GO:0005529

contig05749 93 0 0 0 93

contig05507 87 0 0 0 87

contig05999 86 0 0 0 86

contig06009 84 0 0 0 84

contig02190 84 0 0 0 84

contig06122 84 0 0 0 84

Male specific

contig43465 0 408 0 0 408 GO:0003676

contig01761 0 301 0 0 301

contig53299 0 294 0 0 294

contig39375 0 247 0 0 247 GO:0003723

contig50336 0 227 0 0 227

contig54027 0 213 0 0 213 GO:0006879

contig53611 0 191 0 0 191

contig40384 0 190 0 0 190

contig45190 0 190 0 0 190

contig51482 0 182 0 0 182

Adult specific (M and F)

contig49608 71 189 0 0 260 GO:0004531

contig47068 101 144 0 0 245 GO:0004531

contig51608 96 133 0 0 229 GO:0006508

contig49469 76 141 0 0 217 GO:0006508

contig41687 76 124 0 0 200 GO:0006508
W
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w
w contig52673 129 69 0 0 198 -

contig45734 176 22 0 0 198 GO:0008289 alipid binding
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contig41787 105 92 0 0 197 GO:0005576

contig45747 39 157 0 0 196 GO:0005576

contig09753 68 120 0 0 188 GO:0006508

IL3 specific

contig20982 0 0 88 0 88

contig53045 0 0 84 0 84 GO:0004129

contig46922 0 0 82 0 82

contig48104 0 0 76 0 76

contig54731 0 0 75 0 75 GO:0004129

contig20212 0 0 73 0 73

contig52851 0 0 60 0 60 GO:0004129

contig01666 0 0 54 0 54 GO:0005506

contig22515 0 0 46 0 46

contig41986 0 0 43 0 43

ssL3 specific

contig43707 0 0 0 59 59

contig54118 0 0 0 57 57

contig21715 0 0 0 55 55

contig42564 0 0 0 53 53

contig47041 0 0 0 29 29 GO:0008152

contig29443 0 0 0 25 25 GO:0005525

contig33913 0 0 0 24 24 GO:0005576

contig43357 0 0 0 24 24 GO:0005576

contig43120 0 0 0 23 23 GO:0005576

contig17582 0 0 0 23 23

Larval specific (iL3 and ssL3)

contig03786 0 0 465 200 665

contig22000 0 0 331 119 450 GO:0004289

contig00904 0 0 211 237 448

contig20229 0 0 207 224 431 GO:0003723

contig46936 0 0 232 175 407 GO:0003779

Table 3: The most abundantly represented transcripts in the A. caninum cDNA library expressed genes (Continued)
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contig52848 0 0 234 148 382

contig02679 0 0 138 232 370 GO:0004190

contig50665 0 0 221 146 367

Constant expression

contig54178 3 1148 13 11 1175

contig53913 22 837 35 66 960 GO:0008137

contig50938 362 7 382 191 942 GO:0005215

contig26411 105 359 166 200 830 GO:0003824

contig51127 174 385 154 94 807 GO:0005622

contig44592 170 36 264 286 756 GO:0005515

contig49300 138 222 241 154 755 GO:0004365

contig43896 257 64 199 229 749 GO:0004013

contig40294 195 197 171 139 702 GO:0004611

contig40430 135 144 225 190 694 GO:0031419

a Molecular Function; b Biological Processes; c Cellular Component

Table 3: The most abundantly represented transcripts in the A. caninum cDNA library expressed genes (Continued)
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Figure 3 Enriched A. caninum GO terms of differentially expressed transcripts. F: female; M: male; iL3: infective L3; ssL3: serum stimulated L3.

GO id GO descriptor
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Figure 4 Depleted A. caninum GO terms of differentially expressed transcripts. F: female; M: male; iL3: infective L3; ssL3: serum stimulated L3.

GO id GO descriptor
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Table 4: Enriched GO terms associated with transcripts with differential expression patterns

Stage GO id* GO descriptor A. caninum trancripts

Female & Male

GO:0003674 Molecular Function 198

GO:0004194 pepsin A activity 7

GO:0004197 cysteine-type endopeptidase activity 16

GO:0004245 neprilysin activity 6

GO:0004365 glyceraldehyde-3-phosphate dehydrogenase 
(phosphorylating) activity

4

GO:0004415 hyalurononglucosaminidase activity 2

GO:0004531 deoxyribonuclease II activity 4

GO:0004623 phospholipase A2 activity 3

GO:0004806 triacylglycerol lipase activity 8

GO:0005529 sugar binding 7

GO:0008270 zinc ion binding 22

GO:0008533 astacin activity 19

GO:0042302 structural constituent of cuticle 7

GO:0051287 NAD binding 6

Female

GO:0003674 Molecular Function 52

GO:0004252 serine-type endopeptidase activity 4

GO:0004348 glucosylceramidase activity 5

Male

GO:0003674 Molecular Function 168

GO:0003735 structural constituent of ribosome 27

GO:0004396 hexokinase activity 4

GO:0004672 protein kinase activity 23

GO:0004674 protein serine/threonine kinase activity 15

GO:0004867 serine-type endopeptidase inhibitor activity 13

GO:0005198 structural molecule activity 35

Infective L3 & serum stimulated L3

GO:0003674 Molecular Function 1388

GO:0001584 rhodopsin-like receptor activity 43

GO:0003735 structural constituent of ribosome 89

GO:0003849 3-deoxy-7-phosphoheptulonate synthase 
activity

4

GO:0003924 GTPase activity 23

GO:0004377 glycolipid 2-alpha-mannosyltransferase 
activity

4

GO:0004673 protein histidine kinase activity 5

GO:0005249 voltage-gated potassium channel activity 8

GO:0005351 sugar:hydrogen symporter activity 14

GO:0005525 GTP binding 57

GO:0008080 N-acetyltransferase activity 14

GO:0015035 protein disulfide oxidoreductase activity 7

GO:0016491 oxidoreductase activity 206
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GO:0016564 transcription repressor activity 4

GO:0016616 oxidoreductase activity, acting on the CH-OH 
group of donors, NAD or NADP as acceptor

27

GO:0016829 lyase activity 43

GO:0020037 heme binding 35

GO:0050662 coenzyme binding 44

Infective L3

GO:0003674 Molecular Function 20

GO:0004129 cytochrome-c oxidase activity 3

GO:0005507 copper ion binding 3

GO:0020037 heme binding 3

Serum stimulated L3

GO:0003674 Molecular Function 8

GO:0004806 triacylglycerol lipase activity 2

All stages

GO:0003674 Molecular Function 3052

GO:0003676 nucleic acid binding 558

GO:0003700 transcription factor activity 85

GO:0003707 steroid hormone receptor activity 30

GO:0003723 RNA binding 96

GO:0003924 GTPase activity 44

GO:0004000 adenosine deaminase activity 6

GO:0004674 protein serine/threonine kinase activity 95

GO:0004713 protein tyrosine kinase activity 77

GO:0005515 protein binding 381

GO:0008026 ATP-dependent helicase activity 33

GO:0008138 protein tyrosine/serine/threonine 
phosphatase activity

12

GO:0008270 zinc ion binding 258

GO:0008508 bile acid:sodium symporter activity 4

GO:0008705 methionine synthase activity 4

GO:0017111 nucleoside-triphosphatase activity 188

GO:0019787 small conjugating protein ligase activity 39

GO:0031072 heat shock protein binding 23

GO:0046983 protein dimerization activity 19

* Only Go terms with more than 50 hits to Mol. Function are presented.
Cut-offs: FRD < 0.1; hypogeometrics test P < 0.05.

Table 4: Enriched GO terms associated with transcripts with differential expression patterns (Continued)

symporter activity (GO:0005351, P = 4.5e-5). We were Secretory parasitism related genes in A. caninum

only able to detect 2 significant terms from the tran-
scripts exclusively expressed in F: serine-type endopepti-
dase activity (GO:0004252, P = 3.8e-4) and
glucosylceramidase activity (GO:0004348, P = 6.6e-11).
Interesting, the most significant enriched GO term of the
transcripts exclusively expressed in M is serine-type
endopeptidase inhibitor activity (GO:0004867, P = 2.6e-
8).

Next we attempted to identify transcripts encoding
secreted proteins associated with parasitism. Of the 562
transcripts whose differential expression we were able to
define (the top 60 differentially expressed A. caninum
transcript with homology to B. malayi but not C. elegans
are available as additional file 5), 112 were not expressed
in the preparasitic iL3 stage but expressed in other stages
(Figure 2), suggesting a potential role in parasitism. How-
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ever, we were only able to detect a secretory signal pep-
tide in 9 transcripts (See additional file 6). This low
number might underestimate the true number due to the
fragmented nature of our data. Another possibility is that
some secretory proteins are released by alternate, poorly
characterized secretory pathways, and would therefore be
missed by searching for secretory peptide sequences, as
was shown recently for B. malayi secreted proteins [23].
In addition, we found more than 700 transcripts with sig-
nal peptides from the transcripts that have neither B.
malai nor C. elegans homologs (data not shown).

Intra-population polymorphism, Synonymous/non-
synonymous Single Nucleotide Polymorphism and positive 
selection
Due to their high evolutionary rates [24,25], nematodes
are believed to have a significant number of single nucle-
otide polymorphisms (SNPs). A large number of sites
with SNP (76,568) were detected over the total
23,038,913 assembled bases (total length of the 48,326
transcripts). Since the average coverage of our transcripts
is about 10×, we estimated θ (= 4Nμ) for A. caninum as
1.2 × 10-3. Among the SNP sites only 345 sites have more
than two alleles. We obtained confident translations for
6,502 cDNAs containing 20,715 of the 76,568 SNPs. Of
these, 10,848 were non-synonymous, and 9,867 were syn-
onymous, with an average dN/dS ratio of 0.3. Among the
518 transcripts possessing more than 9 polymorphic
sites, 39 were under positive selection (dN/dS > 1.0), and
there were two functional categories identified by the
associated GO terms: GO:0004298 (threonine endopepti-
dase activity and GO:0006511 (ubiquitin-dependent pro-
tein catabolic activity). Of these, one parasitism related
transcript (contig43771 encoding a protein histidine
kinase) exhibited more than 9 polymorphic sites and was
under positive selection.

Discussion
The A. caninum transcriptome was sequenced with
unprecedented coverage in the present study. While frag-
mentation is still an issue, the non-biased cloning-free
transcript sampling using the Roche/454 technology
combined with the conventional Sanger technology in
this study enabled an in depth sampling of over 93% of
the A. caninum transcriptome. Comparing the A. cani-
num transcriptome with the coding sequences of C. ele-
gans and B. malayi confirmed the high diversity of
nematode transcriptomes. Intra-species studies revealed
high expression dynamics of the nematode transcrip-
tome, and suggested an impact of the adaptation to para-
sitism on A. caninum genes and gene expression.

Nematodes have higher evolutionary rate than most
other eukaryotes [24,25]. Only 20% of our A. caninum
transcripts shared homology to C. elegans genes. Since A.

caninum and C. elegans are from the same phylogenetic
clade [12], this lowly shared homology clearly illustrates a
high evolutionary rate. The high rate can lead to high
polymorphism within species. Our estimation of θ for A.
caninum is 1.2 × 10-3, which is about 2 times higher than
that of human coding regions [26]. We may have signifi-
cantly underestimated θ because each final transcript is
probably derived from multiple individuals rather than
single worms. This high DNA polymorphism is in agree-
ment with the high evolutionary rate of A. caninum. Most
SNPs are di-allelic just as detected in human, which sug-
gest a similar mechanism shaping SNPs in both human
and nematodes. High mutation rate and diversity are fea-
tures of the phylum Nematoda. A previous survey of
more than 30 nematode species distributed over four
nematode clades found that only about 15% of sequenced
ESTs could be found in all four nematode clades [27]. The
same study suggested that about 30-50% of nematode
genes are species specific. Interestingly, our previous
studies [16,17], based on limited number of A. caninum
genes (9,000 and 4,000 genes respectively), found that
about 50% of the A. caninum genes had homologs in
Caenorhabditis species. This discrepancy is likely
because the conserved genes tend to be expressed at
higher levels and therefore are sequenced more deeply.
The previous transcriptome studies analyzed transcripts
generated using conventional cDNA libraries (cloning
based with capillary sequencing), therefore only the most
abundant transcripts were represented in those studies.
In fact, when only considering the highly expressed tran-
scripts (at least 10 reads sequenced), the homologous rate
between A.caninum and C. elegans is 43%.

The high evolutionary rate and diversity of nematodes
may contribute to their ability to adapt to nearly every
habitat on earth [28]. In addition, parasitism has evolved
independently at least nine times in nematodes [29], and
the evolution of parasitism plays a role in shaping the
nematode transcriptome. The comparative genomic anal-
ysis showed that significantly more B. malayi coding
genes share homology with A. caninum than with C. ele-
gans. B. malayi is in clade III and both A. caninum and C.
elegans are in clade V, thus it is expected that B. malayi
share similar homologs with A. caninum and C. elegans
without parasitism adaptation. Parasitic nematodes origi-
nated from non-parasites, with subsequent adaptation to
the host environment. One major difference between
free-living and host environments is the availability and
abundance of oxygen. Intestinal parasites like hookworms
must adapt to the low oxygen levels in their host by using
alternative energy and metabolism pathways. They also
need to develop systems to evade the host defense mech-
anisms. The enriched GO terms of the A. caninum tran-
scripts that have homology with B. malayi genes but not
with C. elegans reveal the effect of these adaptations. The
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most significantly enriched GO term is prolyl oligopepti-
dase activity. Prolyl oligopeptidase is a family of serine-
type endopeptidases [30]. One of its members in the par-
asitic kinetoplastid, Trypanosoma cruzi, is critical for the
parasite to invade mammalian host cells [31]. Another
highly represented transcript is malic enzyme. Malic
enzyme converts malate to pyruvate in the mitochon-
drion, and is important for adaptation to low oxygen
environment in the host [32]. In addition, transcripts
encoding nucleic acid binding and DNA binding proteins
were also significantly enriched. It is possible that para-
sitic nematodes interfere with the host's transcription
and translation system during invasion, or these tran-
scripts encode endogenous enzymes required for further
development and morphological changes that occur in
the host. In contrast to the GO term enrichment of these
A. caninum transcripts, the B. malayi genes sharing
homology with C. elegans only did not exhibit any GO
term enrichment.

Despite the strong adaptive capability of nematodes, we
failed to find evidence of strong positive selection in A.
caninum. Only 7.5% of transcripts are under possible
positive selection by the dN/dS test. We also failed to
detect an extensive positive selection for the parasitism
related genes. The lack of extensive positive selection in
nematodes could suggest that these organisms have a
high mutation rate. We expect our on-going nematode
genomic projects to provide additional information about
nematode evolution http://www.genome.gov/10002154.

Gene expression in A. caninum is highly dynamic, with
only half of the genes being constantly expressed over all
four stages. This 50% is actually a conservative estimation
because we excluded the transcripts that lacked sequenc-
ing depth. The most drastic difference is found among
expression profiles of larvae and adults, indicating the
strong effect of adaptation to the host environment. This
is confirmed by the functional GO term enrichments.
Genes selectively expressed in parasitic adults (both in F
and M) are enriched in functions important for parasit-
ism. In fact, 10 out of the 14 GO terms enriched in para-
sitic adults are related to parasitism. Cysteine
endopeptidase is indispensable for parasites, and its
numerous functions enabling parasites to defend against
their hosts are well-documented [20,21]. Cysteine pro-
teases are also important for digestion of protein and
hemoglobin in the blood meal [33]. Astacin plays a cru-
cial role in A. caninum tissue migration [22]. The cuticle
is a protective external layer of nematodes that provides
the primary defense for parasitic nematodes. Several cuti-
clar changes associated with parasitism have been docu-
mented [34]. The glyceraldehyde-3-phosphate
dehydrogenase enzyme is necessary for parasites to uti-
lize host glucose as an energy source. In contrast, genes
selectively expressed in larvae tend to be enriched in

functions related to basic cellular functions such as oxi-
doreductase activity, signal transduction, and ribosome
structure. The most significant term (based on P-value of
GO enrichment test) is rhodopsin-like receptor activity,
which are chemosensory receptors in C. elegans and may
be required for larval nematodes to interact with their
free-living environment.

Surprisingly, only a small number of genes were turned
on by serum stimulation, which indicate that exposure to
host-like conditions in vitro does not trigger immediate
gene expression changes. Also, serum stimulation did not
turn on expression of an increased number of parasitism
related genes in our study. This suggests that hookworms
do not drastically change gene expression during the
transition to parasitism upon entering their hosts, i.e.
many of the molecules that are released during infections
are already synthesized in the iL3 and stored for rapid
release during infection [35-37]. However, using differen-
tial subtractive hybrization, Datu et al [18] found that the
genes expressed in serum stimulated A. caninum L3 did
not overlap with genes associated with developmental
changes during recovery of C. elegans dauers, and sug-
gested that genes expressed in response to activation with
serum were involved in parasitism rather than develop-
ment [18]. One transcript selectively expressed in ssL3
stage in our study encoded triacylglycerol lipase, which is
known to play a role during dauer recovery in C. elegans
[38]. Invading hookworm L3 have been compared to
recovering dauer larvae [39]. Another group of tran-
scripts expressed selectively in ssL3 versus iL3 are the
allergen V5/Tpx-1 related proteins or Ancylostoma
secreted proteins (ASPs), originally isolated from excre-
tory/secretory products of A. caninum L3 [35], and sub-
sequently from numerous other nematodes. While its
function is unknown, a second, related set of ASPs have
been described from the adult stages [40], and were
among the most abundant transcripts in adult M and F in
this study (Table 3). Overall, expression dynamics corre-
lated with progression through the stages of the life cycle.

Genes with different evolutionary conservation exhibit
different expression pattern. Genes conserved among
nematodes tend to be expressed consistently in all stages,
and A. caninum specific genes tend to be expressed more
selectively. These expression patterns can be associated
with their corresponding functions. Conserved genes are
involved in basic cellular activities and thus are required
for all stages. Species-specific genes are functionally
more closely related to the specific life cycle stage and
niche. For example, the iL3 selective transcripts are
mainly A. caninum specific and are depleted of primary
metabolic process (GO:0044238) and macromolecule
metabolic process (GO:0043170) (data not shown). In
addition, the parasitism related genes are more like to be
selectively expressed in adult stages. One would expect

http://www.genome.gov/10002154
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this since the adults are parasitic whereas the infective
larvae are usually free-living. We found that the male
adult differentially expressed transcripts are enriched in
serine-type endopeptidase inhibitor activity. The male
reproductive tract of mammals is enriched in peptidase
inhibitors that function in protection and regulation of
fertilization [41], suggesting a similar mechanism may be
at work in nematodes.

Conclusion
In summary, this study allowed generation and cataloging
of all genes expressed in four transcriptomes of A. cani-
num. Our analysis segregated those genes in multiple
dimensions including functional, developmental and phy-
logenetic categories. The observations agreed with, but
also extended, information on previously described
genes, suggesting that the newly discovered genes will
provide additional unique value. This information identi-
fied sets of stage-specific genes, as well as pre-parasitic
and parasitic genes that defined differences in metabolic
and cellular processes between stages. Furthermore, par-
asitic adaptation has been shown to be related to tran-
scriptome diversity and developmental dynamics. This
dataset is a resource for more complete microarrays, RT-
PCR, RNA interference and proteomics. The latter can
identify parasite proteins that occur in specific develop-
mental stages, parasite excretory-secretory products, and
the external cuticular surface. In addition, the cDNAs
generated will enable better annotation of the upcoming
genome sequence http://www.genome.gov/10002154.
Such extended genomic studies will aid in the identifica-
tion of genes involved in host recognition, infection,
migration and immune invasion as well as the categoriza-
tion of targets for vaccine and anthelmintic drugs. Finally,
the methodology developed in this study illustrates the
effectiveness of deep sequencing as a means for analyzing
differential gene expression.

Methods
Nematode extraction
The Baltimore strain of A. caninum (U.S. National Para-
site Collection accession 100655.00) was maintained in
beagles as described [42]. Animals were housed and
treated in accordance with George Washington Univer-
sity Institutional Care and Use Committee guidelines.
Infective L3 (iL3) were recovered from 7-10 day old
coprocultures using a modified Baermann technique,
washed clean of debris with BU buffer (50 mM Na2PO4/
22 mM KH2PO4/70 mM NaCl, pH 6.8; Hawdon et al.,
1991), and treated with 1% HCl in BU for 30 min at 22°C.
The larvae were washed twice with sterile BU and snap-
frozen by immersion in liquid N2. Frozen larvae were
stored at -80°C until used for library construction. Acti-

vated (serum stimulated) larvae were generated as
described previously (Brand et al, 2004). Briefly, approxi-
mately 5,000 A. caninum L3 were incubated in a 500 μl
volume of RPMI1640 medium supplemented with 25 mM
HEPES (pH 7.0) and antibiotics (RPMI-complete) con-
taining 10% canine serum filtrate (<10 kDa ultrafiltrate)
and 15 mm S-methyl-glutathione (Sigma Chemical).
Negative-control (non-activated) L3 were incubated in
RPMI-c alone. L3 were incubated in 10% CO2 at 37°C for
24 hours. Following incubation, the medium containing
the L3 was collected, transferred to microcentrifuge
tubes and centrifuged for 5 minutes at 14,000 rpm. The
supernatant was removed, and an aliquot of L3 was tested
for activation as described previously [43]. L3 pellets
showing greater than 85% feeding were pooled and used
to isolate nucleic acids. Adult male and female were col-
lected from intestines of infected dogs following euthana-
sia, and frozen at -80 C until nucleic acids were isolated.

Preparation of A. caninum staged RNA and cDNA libraries
Frozen worm pellets were pulverized using an Alloy Tool
Steel Set (Fisher Scientific International). Total RNA
from adult and larval parasites was prepared using TRIzol
Reagent (GibcoBRL, Life Technologies or Invitrogen,
Carlsbad, CA). cDNA libraries from four stages, infective
L3 larva (iL3), activated L3 larva (ssL3), adult male (M),
and female (F), were generated as previously described
[17,44].

Capillary and high throughput sequencing
The cDNA libraries from the four stages were sequenced
using the Roche/454 FLX platform [44] and capillary
based Sanger sequencing using ABI 3730 and 3700 plat-
forms [17]. All sequences were deposited to GenBank:
accession numbers of the Sanger sequences are
BM077300 - BM077991; EW741128 - EW744730;
EX534506 - EX567272; EX827505 - EX828593; EY458148
- EY473938; FC539038 - FC555743; the Roche/454 SFF
files can be found in SRA, libraries SRX000115-
SRX000118. The sequences from different platforms
underwent different methods for base calling and detec-
tion of high quality regions, trimming of linkers, screen-
ing for low complexity regions and contaminants, and
returning high-quality sequences. Raw cDNA sequences
were processed i.e. quality trimmed and screened for vec-
tor sequences using SeqClean http://compbio.dfci.har-
vard.edu/tgi/. The hybrid assembly was dominated by
FLX reads (sff format files), therefore we used the 454
Life Sciences' Newbler assembler v1.1.03.21 followed by
addition of the ABI reads. All subsequent analyses were
based on these contigs, hereafter referred as transcripts,
and their constituent reads.

http://www.genome.gov/10002154
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BM077300
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=BM077991
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EW741128
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EW744730
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EX534506
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EX567272
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EX827505
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EX828593
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EY458148
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EY473938
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FC539038
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FC555743
http://compbio.dfci.harvard.edu/tgi/
http://compbio.dfci.harvard.edu/tgi/
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Comparative analysis and functional assignments
The core eukaryotic genes (CEGs)[45] were used to esti-
mate the completeness of the A. caninum transcriptome.
A hidden Markov model profile search of the 48,326 tran-
scripts against the 248 CEG profiles of C. elegans genes
was carried out using the HMMER [46]. Significant hits
were identified according to the suggested cutoffs [45].

C. elegans and B. malayi coding genes were down-
loaded from Biomart [47]. The A. caninum transcripts
were compared against these coding genes using WU-
BLAST to identify homologs and matches with a raw
BLAST bitscore larger than 50 were considered signifi-
cant homologs [27]. By this way, A. caninum transcripts
could be classified in 4 groups: those sharing homology
with both C.elegans and B. malayi genes, those sharing
homology with only C. elegans genes or only B. malayi
genes, and those sharing no homology with any other
species. We defined the first group as nematode con-
served, the last group as A. caninum specific, and those
sharing homology only with B. malayi genes as parasit-
ism related. KEGG orthology (KO)[48] of the transcripts
were identified through BLAST searching against the
KEGG database. As with the homologs, bitscores larger
than 50 were used as a cut-off. The recorded KOs were
mapped to the cellular and biochemical pathways using
the KEGG reference maps [48]. The number of shared
and unique KOs for each pathway was compared and sta-
tistically evaluated by Chi-square test with Bonferroni
correction.

Gene Ontology (GO) associations of the parasitism
related transcripts were performed using Interproscan
[49], and significant enrichment of GO terms were com-
puted based on the hypergeometric distribution using
FUNC [50]. A probability refinement was done to remove
the GO terms identified as significant due to their chil-
dren terms. GO term enrichment analysis is vulnerable to
false discovery. We used the false discovery rate (FDR)
computed by FUNC to reduce false discovery. Therefore,
unless specified otherwise, the GO term enrichment was
selected based on both p-value < 0.05 (after refinement)
and FDR <0.1.

Expression pattern examination
Expression patterns were defined by stage specificity and
stage bias of the transcript's constituent reads. After
assembly, transcripts with length greater than 90 base
pairs (bp) were subjected to expression pattern examina-
tion as follows: the numbers of reads originating from the
different cDNA libraries for each transcript was
recorded, and transcripts with reads originating from
only one stage (or a set of stages) were designated to be
specific to that stage (or that set of stages). To increase
the confidence with which specificity was assigned, we

required the transcripts to be sequenced deeply enough
to ensure that an observed stage absence (i.e. 0 reads
from a specific stage) have a confidence interval above
95%. It turned out that this required the transcript be
sequenced at least 10 times (i.e. transcripts have at least
10 constituent reads). Specifically, for each transcript, its
observed absence from a stage (if any) was compared to
its expected number of stage-specific reads (calculated by
multiplying the marginal read frequency of the four
stages by the total number of reads in that transcript). If
the probability of the observed absence (to a Poisson dis-
tribution with the mean as the expected number of reads)
was higher than 0.05, the transcript was considered to
lack depth of coverage and was excluded from the analy-
sis (including the function-related analyses). This
requirement excluded 32,099 transcripts, leaving 16,359
transcripts with defined stage-specificity (with high con-
fidence).

Stage-specific expression implies that a specific gene is
expressed during one developmental stage (or one set of
development stages) but not in the other. However, gene
expression does not always follow the on/off model. Its
expression dynamics also includes the expression fluctua-
tion in different stages. In some stages one gene may have
enhanced expression while it may have depleted expres-
sion in other stages. Such transcripts were designated as
stage-biased in our analysis. These transcripts that were
biased in expression towards a certain stage were selected
by comparing the numbers of reads in different stages
(iL3, ssL3, and Adult) using a statistical approach defined
by Audic et al. [51] with a significance of P < 1e-05. We
focused on the comparisons of iL3 vs ssL3 and ssL3 vs
Adult (male and females were treated together as adult
stage).

Functional examination of transcripts with different 
expression pattern
The predicted functions of the transcripts with different
expression patterns were examined with GO association
as described previously. In consideration of the amount
of data and parasitism, we focused on 5 groups of tran-
scripts: those constantly expressed in all four stages;
those selectively expressed in both iL3 and ssL3; those
exclusively expressed in F, those exclusively expressed in
M; and those selectively expressed in both F and M. To
visualize the functional profile of these groups, we used
heatmap to illustrate the enrichment and depletion of GO
terms related to molecular function. To increase the visi-
bility, we included only the GO terms that are enriched or
depleted in at least one of the 5 groups. Meanwhile, sig-
nificantly enriched GO terms in molecular function of
these groups were recorded and manually examined to
explore the functional association of selective expression.
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Identification of secretory parasitism related genes
Upon the identification of parasitism related genes, sev-
eral criteria were required to further identify parasitism
genes encoding secretory proteins [52] that the parasite
might use to interfere with the host cellular functions and
enable successful parasitism. These criteria require the
genes i) to share homology to B. malayi genes but not C.
elegans (are in the subset of parasitism related genes iden-
tified above), ii) are expressed in the parasitic stages
(ssL3, M, F) but should not be expressed in the prepara-
sitic iL3 stage; iii) to have signal peptide for secretion (sig-
nal peptides for secretions and trans-membrane domains
were identified using PHOBIUS [53], with an additional
requirement that the SP is within the first 70 amino
acids). Hence, the transcripts expressed in parasitic
stages, without homologs in C. elegans but with a signifi-
cant homology to B. malayi genes and with a signal pep-
tide for secretion but without membrane containing
domains were classified as putative secretory parasitism
genes. The functions of these transcripts were assigned
based on homology found by InterProScan [49].

Intra-population polymorphism and synonymous and non-
synonymous Single Nucleotide Polymorphisms (SNPs)

The cDNAs generated in this study originate from RNA

isolated from a population of individuals, enabling us to

estimate the rate of population polymorphism of the

transcriptomic reads. We used Polybayes [54] to detect

the SNPs by using the transcript (i.e. contigs) as refer-

ence. Based on the detected SNPs, we estimated the θ, a

representation of DNA sequence polymorphism which is

related to the mutation rate and effective population size,

by  following Watterson [55], where n = 10 (the

estimated coverage depth) and S is the fraction of sites

with polymorphism. By treating the estimated coverage

depth as n, we have likely underestimated θ. To identify if

the SNPs contribute to synonymous or non-synonymous

changes the transcripts were translated using Prot4Est

[56]. The dN and dS were calculated using the method of

Nei and Gojobori [57]. To improve reliability of the esti-

mation, only transcripts with more than 9 polymorphic

sites were analyzed. Functions of transcripts under posi-

tive selection (dN/dS > 1.0) were further investigated for

GO term enrichment (as stated above).
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