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Abstract
Background: Digital gene expression profiling was used to characterize the assembly of genes expressed in equine 
skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of 
exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal 
muscle biopsies were collected at rest from the gluteus medius at two time points: T1 - untrained, (9 ± 0.5 months old) 
and T2 - trained (20 ± 0.7 months old).

Results: The most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, 
aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA 
processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed 
of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, 
MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a 
negative regulator of muscle growth, had the greatest decrease.

Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology
(GO) groups and 18 KEGG pathways. Functional groups displaying highly significant (P < 0.0001) increased expression
included mitochondrion, oxidative phosphorylation and fatty acid metabolism while functional groups with decreased
expression were mainly associated with structural genes and included the sarcoplasm, laminin complex and
cytoskeleton.

Conclusion: Exercise training in Thoroughbred racehorses results in coordinate changes in the gene expression of 
functional groups of genes related to metabolism, oxidative phosphorylation and muscle structure.

Background
The phenotypic and biochemical changes occurring in
response to exercise training have been extensively stud-
ied in humans and mammals, the results mainly being of
a descriptive nature. The adaptive response to training is
dependent on variations in exercise-induced changes in
muscle load, energy requirements and calcium flux.
Endurance training results in increased aerobic capacity
[1], mitochondrial biogenesis [2] and a shift from carbo-

hydrate to fat metabolism [3] whereas resistance training
promotes protein synthesis [4,5], muscle hypertrophy [6]
and a switch from slow to fast twitch muscle. Numerous
equine studies have also confirmed an increase in VO2max
and an increase in oxidative enzyme activity [7-12] fol-
lowing endurance training. An increase in type II and a
concurrent decrease in type IIX fibres is observed in
Thoroughbreds in response to high intensity training
[13,14]. Also, anerobic capacity and speed and strength
have been observed to increase following short duration
high intensity (~100-150% VO2max) exercise [14-16].

In contrast, much less is known regarding the tran-
scriptional reprogramming underlying the highly specific
adaptive responses to endurance and resistance exercise.

* Correspondence: emmeline.hill@ucd.ie
1 Animal Genomics Laboratory, UCD School of Agriculture, Food Science and 
Veterinary Medicine, College of Life Sciences, University College Dublin, 
Belfield, Dublin 4, Ireland
Full list of author information is available at the end of the article
© 2010 McGivney et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20573200


McGivney et al. BMC Genomics 2010, 11:398
http://www.biomedcentral.com/1471-2164/11/398

Page 2 of 17
Exercise studies using human subjects and animal models
have demonstrated that changes in the expression of a
wide range of mRNA transcripts play a major role in the
recovery of muscle following exercise with the expression
levels of most genes returning to baseline within 24 hours
[17-23]. However, it appears that repeated bouts of exer-
cise lead to new basal levels of gene expression in resting
muscle. Higher levels of mitochondrial genes and genes
involved in energy metabolism were observed in endur-
ance trained athletes compared to sedentary subjects
[24]. Further evidence for a new steady state level of exer-
cise related genes comes from a recent study in which dif-
ferential levels of gene expression were observed in
resting skeletal muscle from sedentary, endurance trained
and resistance trained subjects. However the use of intra
rather than inter-individual genetic comparisons as well
as different training stimuli may have contributed to the
observed differences in gene expression between the
groups. The majority of differentially expressed genes
were common to both trained states [25]. A surprisingly
small number of genes were differentially expressed
between endurance trained and resistance trained sub-
jects given the very different phenotypic changes and dis-
tinct signalling pathways [26,27] associated with each
form of exercise. Studies have indicated that concurrent
endurance and resistance training results in impaired
strength development and aerobic capacity when com-
pared to a training regime with a single exercise mode
[28-31] a phenomenon described as the interference
effect. However, conflicting studies have found little or no
effect of a combined training regime on strength and aer-
obic capacity [32-35]. The aim of this study was to inves-
tigate the global transcriptional response in skeletal
muscle to a training regime combining endurance and
high intensity sprint exercise in Thoroughbred race-
horses. We hypothesise that following training differen-
tial expression of genes related to both aerobic capacity
and muscle hypertrophy will be observed reflecting the
dual nature of the training regime.

The Thoroughbred is a novel and valuable model for
identifying molecular mechanisms basic to both endur-
ance and resistance adaptive responses. Competitive
horse racing dates to 4500 BC and Thoroughbreds have
been bred for speed and stamina since the 1700 s. This
intense selection has resulted in a highly adapted athlete
[36]. Thoroughbreds have a very high aerobic capacity or
maximal oxygen uptake (VO2max) [37] relative to their
body mass. For instance, VO2max can reach 180-200 mL
O2/min/kg, approximately 2.5 times higher than other
species of similar size[38]. This is achieved through a
large lung volume, high cardiac output, high haemoglo-
bin concentration, high muscle mitochondrial volume
and a high skeletal muscle mass [38-44]. During intense

exercise such as under racing conditions a Thoroughbred
may increase its metabolic rate from basal levels by up to
60-fold [45]. Furthermore, the Thoroughbred has a very
high skeletal muscle mass comprising over 55% of total
body mass [46].

A Thoroughbred racehorse trained for flat racing
undergoes a training regime comprising intermittent days
of sprint exercise to promote increased muscle mass
among periods of prolonged exercise at a slower pace to
enhance aerobic capacity. In a previous study we detected
molecular signatures of both endurance and resistance
exercise in untrained Thoroughbred skeletal muscle fol-
lowing a single bout of exhaustive exercise [47]. A further
advantage of using Thoroughbreds as an exercise model
is that inter-individual comparisons can be made
between subjects that come from a similar background
(genetic and environmental) and have undergone a simi-
lar exercise regime with relatively little variation in man-
agement. Variations in genetic and environmental
conditions cannot be controlled to the same extent in
human subjects.

To-date the main approach to investigating global tran-
scriptional changes has been the use of gene expression
microarray platforms [47-49]. In this study we have used
digital gene expression (DGE, Illumina) profiling to char-
acterize the assembly of genes expressed in equine skele-
tal muscle and to identify the subset of genes that were
differentially expressed following a ten month period of
exercise training. DGE is a recently developed alternative
to microarray gene expression profiling [50-52]. The
DGE method involves the generation of a cDNA library
with a 17 bp tag generated by restriction digestions for
each mRNA transcript. The tags are directly sequenced
using the Illumina Genome Analyzer creating millions of
short reads. In contrast to microarray technology which
is limited to the hybridisation of cDNA to probes printed
on the array platform, DGE is not dependent on currently
available genome sequence and thus provides a global,
hypothesis-free quantitative analysis of the transcrip-
tome. The technique is conceptually similar to serial anal-
ysis of gene expression (SAGE) [53] but substantially less
expensive, more general and capable of delivering more
information.

Using this technique we investigated 1) the overrepre-
sentation of functional groups in skeletal muscle relative
to the entire genome, 2) the genes differentially expressed
in trained relative to untrained skeletal muscle, and 3) the
overrepresentation of functional groups in genes differ-
entially expressed following training in skeletal muscle.

Results and discussion
Representation of genes by DGE tags
A limitation of genome wide gene expression analysis
using DGE is that it is not possible to evaluate the expres-
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sion of genes that do not contain a NlaIII restriction site
and in some cases there is ambiguity regarding the tag-
gene matches as a single tag may match to two or more
genes. 91% (n = 22,996) of equine genes with Ensembl
gene IDs (n = 25,180) have a NlaIII restriction site but
13% of these are not unique; therefore, 78% (n = 19,271)
of currently annotated equine genes are quantifiable
using DGE.

As poor quality sequence was obtained for one of the
samples just 13 samples were used for analysis. Of the 13
samples successfully sequenced a total of 183 million raw
reads were generated. Of these 119 million reads passed
the Illumina pipeline quality filters. These 119 million
usable reads consisted of 17.6 million unique tags. 66% of
the usable reads mapped to the horse genome, 30% of the
usable reads mapped to the predicted Ensembl gene
restriction sites and 36% to the genomic regions.

The intragenic reads may represent regulatory non-
coding RNAs or novel genes. However, more likely is the
explanation that these tags are a combination of segments
of genes that were excluded from the current annotation
(or assembly) of the equine genome; an observation
which has been previously reported [54] as well as tags
containing sequencing errors. We expect that as the
annotation of the horse transcriptome improves that
most of the genomic tags we have sequenced will be reas-
signed to genic tags. In particular we believe that a de
novo transcriptome assembly approach (using longer
sequencing reads) of the equine muscle transcriptome
would enable us to more accurately allocate tags to the
correct gene models. In the absence of an accurate mus-
cle transcriptome we believe that the Ensembl horse tran-
scriptome, which is predominantly automatically
generated and infers much of the information about gene
models by homology from better annotated organisms,
represents the best available option for DGE tag map-
ping.

The reasons that reads may not match a genomic loca-
tion include ambiguous reads (same sequence tag present
in more than one genomic location), reads overlapping an
unannotated exon boundary, sequencing errors or single
nucleotide variants present in the tag. Due to the short
nature of the reads used in DGE compared to other
sequencing protocols it is problematic to correct for
SNPs or sequencing errors by allowing mismatched
bases. Other protocols (e.g. RNAseq), which generate
longer tags, can overcome this limitation but they intro-
duce new problems, the most important of which is mul-
tiple tags per transcript and a bias towards highly
expressed long transcripts [55]. The intragenic reads may
represent regulatory non-coding RNAs or novel genes.
However, more likely is the explanation that these tags
represent segments of genes that were excluded from the

current annotation (or assembly) of the equine genome;
an observation which has been previously reported [54].

Only the 20% of reads that unambiguously matched
Ensembl genes were used for further analysis. These rep-
resented 5,068 unique genes, ~25% of annotated equine
genes. As some genes were represented by multiple dif-
ferent transcripts these were summed to calculate the
total number of reads per gene. Highly expressed genes
where > 50,000 tags per million (TPM) were detected
made up 39% of all annotated reads. However, the major-
ity of unique genes were expressed at low levels (i.e. 2,200
genes, < 40 TPM) and there was an inverse relationship
between the level of gene expression and the number of
genes expressed (Figure 1).

Functional annotation of muscle transcriptome
Using the online tool DAVID, 448 gene ontology groups
and 14 KEGG pathways were observed to be significantly
(FDR = 0.05) overrepresented in skeletal muscle relative
to the entire genome. There was a substantial overlap of
genes within these functional groups resulting in the
overrepresentation of a large number of functionally sim-
ilar gene ontology groups. Therefore only the highly sig-
nificant groups are shown in Table 1. The
overrepresentation of mitochondrial genes, and genes
involved in muscle contraction and metabolism concurs
with current SAGE data [56]. However, an overrepresen-
tation of genes related to RNA processing, the stress
response and proteolysis has not, to our knowledge, pre-
viously been reported in the muscle transcriptome. DGE
is much more sensitive to the detection of low level tran-
scripts than SAGE and consequently provides greater
coverage of the muscle transcriptome. When functional
analysis of only the highly expressed genes (those com-
prising > 0.05% of annotated muscle transcriptome) was
performed, the novel overrepresented functional groups
were not identified. This indicates that these are com-
prised of genes expressed at relatively low levels. Further-
more, functional groups involved in muscle contraction
and aerobic respiration were more significantly overrep-
resented among the highly expressed genes (Table 1).

A list of the most abundant genes (those comprising
>0.5% of annotated muscle transcriptome) is presented in
Table 2. Just 28 genes contribute to over 50% of the anno-
tated mRNA in equine skeletal muscle and are principally
involved in muscle contraction and energy metabolism.
Creatine kinase muscle (CKM) was the most abundantly
expressed gene in equine skeletal muscle representing
6.9% of the annotated transcriptome and creatine kinase,
mitochondrial 2, (CKMT2), was ranked 20th among the
most abundantly expressed genes, making up 0.8% of the
transcriptome. Human studies using SAGE have indi-
cated that CKM mRNA makes up ~1% of the human skel-
etal muscle transcriptome and CKMT2 did not feature in
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a list of the 54 most abundantly expressed genes [56]. The
very high levels of both isoforms of creatine kinase in
equine muscle compared to humans is indicative of the
highly adapted athletic capacity of Thoroughbred horses
as creatine kinases play a crucial role as an energy store in
tissues with fluctuating energy demands. CKM is utilised
during anaerobic respiration while CKMT2 is tightly cou-
pled to oxidative phosphorylation [57-60]. The impor-
tance of CKM in athletic adaptation in the horse is
further supported by the identification of a novel SNP in
the CKM gene that, in a preliminary study, has been
observed to be associated with racing performance [61].
The third most highly expressed gene in equine skeletal
muscle, actin, alpha 1, skeletal muscle (ACTA1) has also
been implicated as a candidate athletic performance gene
following a genome scan for positive selection in Thor-
oughbred horses [62].

Differential gene expression following training
Following correction for multiple testing, a total of 92
transcripts were significantly (FDR = 0.05) differentially
expressed in the skeletal muscle transcriptome following
a ten month period of training: nineteen transcripts
showed increased expression (+0.72-fold to +29.3-fold),
and 73 displayed decreased expression (-0.43-fold to -4.2-
fold). Twenty of the differentially expressed transcripts
lay within annotated genes, 54 transcripts were located <
5 kb up or downstream of annotated genes and for 18
transcripts no annotated genes were located within 5 kb.
The transcripts located in the vicinity of equine genes
may represent regulatory regions of the genes and more
in-depth analysis and annotation of the recently
sequenced equine genome may lead to a reassessment of
the boundaries of many currently annotated genes [63].
The uncharacterised transcripts that were not in the
region of any known equine gene may represent novel

Figure 1 Relationship between the number of genes expressed and mRNA abundance. a - Number of genes compared to tags per million per 
gene. b - The % of the total number of reads compared to the tags per million per gene.
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equine exercise related genes or non-protein coding reg-
ulatory mRNAs. The differentially expressed transcripts,
including those located within 5 kb of a known gene, and
the associated gene names are listed in Table 3 and Table
4.

Genes with higher post-training basal mRNA levels
included those involved in the mitochondria, ubiquitina-
tion and circadian rhythm regulation, whereas genes with
significantly reduced mRNA were mainly associated with
cytoskeletal structure and the control of growth and
development.

Functional profiling of differentially expressed genes
Significantly up and down-regulated blocks of function-
ally related genes were identified by performing a gene
enrichment test (FatiScan) for all expressed genes ranked
according to differential expression following training.
Among the up-regulated genes we identified 275 signifi-
cantly (FDR < 0.05) overrepresented GO terms and 13
KEGG pathways. Among the down-regulated genes we
identified 207 significantly (FDR < 0.05) overrepresented
GO terms and five KEGG pathways. Subsets of the func-
tional groups are shown in Table 5 and Table 6, and were

Table 1: Functional groups of genes identified in the equine skeletal muscle transcriptome.

All genes High abundance genes

GO ID Term Count FC Adj P Count FC Adj P

GO BP:0008152 metabolic process 2468 1.19 8.17 × 10-55 131 1.2 4.13 × 10-08

GO MF:0005515 protein binding 2122 1.35 4.53 × 10-90 105 1.3 2.88 × 10-12

GO CC:0043234 protein complex 713 1.57 2.75 × 10-43 68 2.9 1.32 × 10-15

GO CC:0005739 mitochondrion 407 1.97 5.63 × 10-49 53 4.9 3.71 × 10-23

GO BP:0006936 muscle contraction 73 1.94 1.78 × 10-07 33 8.7 3.98 × 10-17

hsa00190 Oxidative phosphorylation 56 1.55 0.006 32 9.5 4.47 × 10-18

GO MF:0003723 RNA binding 289 1.76 3.84 × 10-23 27 3.3 3.78 × 10-06

GO MF:0009055 electron carrier activity 94 1.81 1.47 × 10-07 24 9.4 1.43 × 10-11

GO CC:0043292 contractile fibre 50 3.37 3.19 × 10-17 23 29.9 5.32 × 10-18

GO CC:0005840 ribosome 93 1.32 1.63 × 10-02 21 5.8 9.29 × 10-09

GO MF:0005524 ATP binding 434 1.28 1.71 × 10-07 20 1.2 NS

GO BP:0006950 response to stress 337 1.39 9.17 × 10-10 19 1.5 NS

GO CC:0044428 nuclear part 429 1.88 9.51 × 10-46 10 0.8 NS

GO BP:0006457 protein folding 132 2.12 5.64 × 10-18 10 3.1 0.007

GO BP:0015031 protein transport 290 1.85 5.91 × 10-28 7 0.9 NS

GO MF:0045182 translation regulator 
activity

76 2.40 9.13 × 10-13 5 3.2 NS

GO BP:0006396 RNA processing 195 1.90 8.21 × 10-20 4 0.8 NS

GO MF:0008134 transcription factor 
binding

153 1.67 1.89 × 10-09 4 0.9 NS

hsa00620 Pyruvate metabolism 27 2.28 3.30 × 10-04 4 3.6 NS

hsa00020 Citrate cycle (TCA cycle) 20 2.36 0.003 4 5.1 NS

hsa04120 Ubiquitin mediated 
proteolysis

55 1.49 0.016 2 0.6 NS

hsa00071 Fatty acid metabolism 24 1.89 0.017 2 1.7 NS

GO CC:0005681 spliceosome 78 2.71 2.04 × 10-18 1 0.7 NS

hsa03050 Proteasome 21 3.38 2.28 × 10-07 1 1.7 NS

GO categories and KEGG pathways overrepresented among genes expressed in equine skeletal muscle compared to all annotated equine 
genes. Terms in italics are more significantly overrepresented among the high abundance genes. High abundance genes are defined as those 
comprising > 0.05% of annotated muscle transcriptome. FC - fold change; Adj P - adjusted P value using the Benjamini and Hochberg method.
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Table 2: Highly abundant transcripts in equine skeletal muscle

Gene symbol Gene name Total reads % All Cumulative % Average no. 
reads pre-
training

% All Average no. 
reads post 
training

% All

CKM Creatine kinase, muscle 236,942 6.9 6.9 18,642 6.7 17,870 7.1

MYL1 Myosin, light polypeptide 1, alkali; 
skeletal, fast

203,634 5.9 12.8 17,454 6.2 14,130 5.6

ACTA1 Actin, alpha 1, skeletal muscle 147,884 4.3 17.1 15,065 5.4 8,214 3.3

TNNC2 Troponin C type 2 (fast) 147,779 4.3 21.4 12,128 4.3 10,716 4.2

ALDOA Aldolase A, fructose-bisphosphate 118,636 3.4 24.8 9,506 3.4 8,800 3.5

TTN Titin 116,385 3.4 28.2 9,919 3.5 8,125 3.2

MYLPF Myosin light chain, 
phosphorylatable, fast skeletal 
muscle

97,094 2.8 31.0 7,426 2.7 7,506 3.0

MYH1 Myosin, heavy polypeptide 1, 
skeletal muscle, adult

91,271 2.7 33.7 8,611 3.1 5,658 2.2

TPM2 Tropomyosin 2 (beta) 73,395 2.1 35.8 6,240 2.2 5,136 2.0

ATP2A1 ATPase, Ca++ transporting, 
cardiac muscle, fast twitch 1

59,889 1.7 37.6 5,516 2.0 3,827 1.5

RPLP1P4 Ribosomal protein, large, P1 
pseudogene 4

55,290 1.6 39.2 4,340 1.6 4,178 1.7

ENO3 Enolase 3 (beta, muscle) 40,827 1.2 40.4 3,143 1.1 3,138 1.2

LOC440359 Similar to cold shock domain 
protein A short isoform

36,681 1.1 41.4 2,877 1.0 2,774 1.1

ATP5O ATP synthase, H+ transporting, 
mitochondrial f1 complex, o 
subunit

34,234 1.0 42.4 2,212 0.8 2,994 1.2

MYOZ1 MYOZENIN 1 32,638 0.9 43.4 2,449 0.9 2,564 1.0

PYGM Phosphorylase, glycogen; muscle 31,710 0.9 44.3 2,895 1.0 2,048 0.8

TPM1 Tropomyosin 1 (alpha) 30,823 0.9 45.2 2,820 1.0 1,986 0.8

MYBPC2 Myosin binding protein C, fast 
type

28,386 0.8 46.0 2,409 0.9 1,990 0.8

TNNT3 Troponin t type 3 (skeletal, fast) 27,469 0.8 46.8 1,960 0.7 2,244 0.9

CKMT2 Creatine kinase, mitochondrial 2 
(sarcomeric)

27,394 0.8 47.6 1,622 0.6 2,523 1.0

TNNI2 Troponin I type 2 (skeletal, fast) 25,005 0.7 48.3 1,674 0.6 2,138 0.8

PGK1 Phosphoglycerate kinase 1 24,378 0.7 49.0 2,005 0.7 1,764 0.7

RPL30 Ribosomal protein L30 23,575 0.7 49.7 2,162 0.8 1,515 0.6

NDUFAB1 NADH dehydrogenase 
(ubiquinone) 1, alpha/beta 
subcomplex, 1, 8 kDa

22,285 0.6 50.4 1,570 0.6 1,838 0.7

SLC25A4 Solute carrier family 25 
(mitochondrial carrier; adenine 
nucleotide translocator), member 4

21,881 0.6 51.0 1,270 0.5 2,037 0.8

ACTN3 Actinin, alpha 3 21,097 0.6 51.6 2,042 0.7 1,264 0.5

PGAM2 Phosphoglycerate mutase 2 
(muscle)

21,059 0.6 52.2 1,736 0.6 1,521 0.6

RPS13 Ribosomal protein S13 19,063 0.6 52.8 1,610 0.6 1,343 0.5
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chosen to include all significant (FDR<0.05) KEGG path-
ways and all highly significantly (FDR < 0.0001) overrep-
resented functional groups satisfying GO > level 6 and for
which at least six genes were identified.

The most significantly overrepresented cellular com-
partment GO groups among the genes with increased
abundance post-training were mitochondrion (CC
GO:0005739; P < 1.04 × 10-41) and related terms such as
organelle inner membrane (CC GO:0019866) and mito-
chondrial part (CC GO:0044429). Aerobic respiration
(BP GO:0009060), oxidative phosphorylation (BP
GO:0006119) and the tricarboxylic acid cycle (GO
BP:0006099) were among the overrepresented GO bio-
logical processes groups. The KEGG pathways included
Citrate cycle (TCA cycle) (hsa00020) and Oxidative phos-
phorylation (hsa00190) and multiple metabolism path-
ways. These transcriptional data concur with biochemical
and physiological studies that have demonstrated an
increase in mitochondrial volume and aerobic capacity
following endurance training [1,2]. Although there is evi-
dence to indicate that an increase in oxidative capacity is
part of the maturation process in horses [64] it has been
demonstrated that exercise training, not growth, causes
increases in whole muscle activity of the oxidative
enzyme succinate dehydrogynase and changes in muscle
fibre type composition in young Thoroughbred horses
[14]. To our knowledge, this is the first time that these

GO groups have been shown to have increased expres-
sion following exercise training.

This highlights the value of using a method such as
FatiScan which incorporates all experimental data rather
than limiting interpretation to those that rank among the
highly differentially expressed. Only three mitochondrial
genes were among those significantly differentially
expressed: MRPS21, SLC25A29 and ACADVL. MRPS21
is a nuclear-encoded mitochondrial ribosomal gene
required for protein synthesis in the mitochondria.
Therefore, an increase in mitochondrial abundance
would require an increase in mitochondrial protein syn-
thesis. The SLC25A29 and ACADVL proteins are local-
ized in the mitochondrial inner membrane and play a role
in fat metabolism [65,66]. The fatty acid oxidation (BP
GO:0019395), fatty acid beta-oxidation (BP GO:0006635)
and fatty acid metabolic process (BP GO:0006631) GO
ontologies were also overrepresented among genes that
increased expression following training. This is in agree-
ment with previous observations of a shift towards fatty
acid metabolism in response to exercise training [3]. Fur-
thermore, 12 of the 13 up-regulated KEGG pathways
were associated with aerobic respiration and metabolism.
Overall these results demonstrate that exercise training
brings about a subtle but coordinated increase in the
basal level of gene expression of a wide array of genes
involved in energy production and metabolism.

Table 3: Genes significantly up-regulated post-training compared to pre-training levels

Tag Gene symbol Gene name FC Adj P

gctgctctgcagtctga ACADVL Acyl-Coenzyme A dehydrogenase, very long chain 0.72 0.037

gaataattgaagactgg ACTR3B Arp3 Actin-Related Protein 3 Homolog B 2.37 0.041

gcgtccttgaggtccgg C14orf153* Chromosome 14 open reading frame 153 1.14 0.049

ctgtttttctgtttttt CUL3* Cullin 3 1.43 0.004

tgataccaatattcagt FBXO32* F-box protein 32 1.17 0.009

cagaaagagcagggaag GOT1* Glutamic-oxaloacetic transaminase 1, soluble 1.46 0.035

tggatgtgtggctatgg GRHPR Glyoxylate Reductase/Hydroxypyruvate Reductase 1.45 0.043

ggacccatgaaggacca IGFN1* Immunoglobulin-like and fibronectin type III domain-containing 
protein 1

2.03 0.019

tggttctgtttgttttg KIAA1303* P150 target of rapamycin (TOR)-scaffold protein 2.70 0.049

gagtgcagcctttcacc MRPS21 28 S ribosomal protein S21, mitochondrial 3.24 0.024

accagagagatgaatgt MRPS21 28 S ribosomal protein S21, mitochondrial 1.76 0.032

tgttgaagcgatgcagt PER2* Period homolog 2 29.26 0.004

tgttggtaagtagatcg PER3* Period homolog 3 (Drosophila) 1.05 0.047

tggctgtatggggaggc SLC25A29* Solute carrier family 25 member 29 1.32 0.013

gccttctgcacccagaa TNNT3* Troponin T Type 3 (Skeletal, Fast) 1.55 0.002

ttaaatatacttggaag ZAK* Sterile alpha motif and leucine zipper containing kinase AZK 2.08 0.023

An asterisk (*) indicates that the tag lay within 5 kb of the gene. FC - fold change; Adj P - adjusted P value using the Benjamini and Hochberg 
method.
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Table 4: Genes significantly down-regulated post-training compared to pre-training levels

Tag Gene Symbol Gene Name FC Adj P

acccgagagacagccga ACTN3 actinin, alpha 3 -0.97 0.029

acacagttagttaattt AHCYL2* Putative adenosylhomocysteinase 3 -1.39 0.006

acacagttagttaattt AHCYL2* Putative adenosylhomocysteinase 3 -1.39 0.006

taattttatttttttta ANKHD1* Ankyrin repeat and KH domain containing 1 -2.30 0.043

ttttccctcacatcttc APOOL* Apolipoprotein O-like -0.54 0.003

cttagtgtgtatatctc ATP2B1 ATPase, Ca++ transporting, plasma membrane 1 -0.62 0.041

atcattattttaccttt BCL6* B-cell CLL/lymphoma 6 -3.09 0.011

acggttttccccagatc C1orf51* Chromosome 1 open reading frame 51 -1.61 0.035

cactggccaaaagattt C21orf7 Chromosome 21 open reading frame 7 -3.08 0.035

ccactaccctcttactc CALM3* Calmodulin3 -1.46 0.009

acagacacttggctaaa CALM3* Calmodulin3 -0.83 0.043

aacagaatcaaggagct CCNDBP1 Cyclin-D1-binding protein 1 -0.81 0.035

gaaaacagtagctaaag DAG1 dystroglycan 1 -1.49 0.022

ctcaacagcaacatcaa EIF3F Eukaryotic translation initiation factor 3, subunit F -0.52 0.002

tccagcctcaaagcatt FBXL17* F-Box And Leucine-Rich Repeat Protein 17 -0.52 0.002

aactgtagtgctttaaa GATM Glycine Amidinotransferase -1.35 0.035

taggttttacctccatt GATM* Glycine Amidinotransferase -1.35 0.001

ctggaacaggggcgaac GLUL* Glutamate-ammonia ligase -3.94 0.007

cccatcatccccttcct GPSN2 GLYCOPROTEIN, SYNAPTIC 2 -1.06 0.004

aagtcccaccccaatat GSTM5* Glutathione S-transferase M5 -1.1 0.004

tccacccataagcagat HOXC9* Homeobox protein Hox-C9 -1.04 0.038

ggactgtctttattttt IGFBP5* Insulin-like growth factor binding protein-5 -2.32 0.001

gtaaccctacacagtca IGFBP5* Insulin-like growth factor binding protein-5 -2.12 0.038

cccagaaagacatttgt IRF2BP2* Interferon regulatory factor 2 binding protein 2 -1.57 0.001

caaaaggctctcctaat KCMF1 potassium channel modulatory factor 1 -0.81 0.048

tttccattcaacaaaaa KPNA1* Karyopherin alpha 1 -1.8 0.006

aattactctttcactgt KPNA3* Karyopherin alpha 3 -1.55 0.043

cttttcacacacaaaac LRRFIP1* Leucine Rich Repeat -0.95 4.1 × 10-5

ttaagtgccattactac MAP3K4 Mitogen-activated protein kinase kinase kinase 4 -0.85 0.048

ccccaccctactcccac MLEC* Malectin -1.13 0.017

tatgacagaaaagcaac MSTN* Myostatin -2.56 0.002

atgactgtataatgtga MSTN* Myostatin -2.55 0.008

gttcctaaataaataat MSTN* Myostatin -4.2 0.004

ctgctgagcggcctctc MYLK2 Myosin Light Chain Kinase 2, Skeletal Muscle -1.94 0.034

gctcattaaagaacaaa MYO9A* Myosin Ixa -1.03 0.043

ctatcttttccttttct NAT12* N-acetyltransferase MAK3 homolog -0.68 0.002

attgtttaaatatcact NEDD4* Neural precursor cell expressed, developmentally down-regulated 4 -0.97 0.012

aaatcccaccctcccct NLN* Neurolysin -1.02 0.008

tccagctttctattctt PALLD* Palladin, cytoskeletal associated protein -1.06 0.039

cttctttccccacctcc PCBP4 Poly(rC) binding protein 4 -0.82 0.004

taattgcagtttactat GNPNAT1* Similar to glucosamine-phosphate N-acetyltransferase 1 -1.23 0.006

ctctagaacatttacct PTDSS1* Phosphatidylserine synthase 1 -0.62 0.003

agagtcaatataaaggt PTPLA* Protein Tyrosine Phosphatase-Like -2.07 0.01

aaatctaaagttaaata RAB33B* RAB33B, member RAS oncogene family -1.24 0.04
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Interestingly there was also an up-regulation of GO
terms involved in the immune response such as the
KEGG pathway complement and coagulation cascades,
complement activation and positive regulation of
immune response. The up-regulation of the complement
and coagulation cascades may be a response to exercise
induced hemolysis. It has been suggested that exercise
induced decreases in blood pH and increases in blood
temperature may increase the osmotic fragility of eryth-
rocytes. Previous studies have shown that an immune
response is elicited in response to a single bout of exercise
and that this response is attenuated in trained subjects.
Furthermore, it appears that moderate exercise can
enhance the immune response [67], whereas over-train-
ing in humans is detrimental to health and can leave ath-
letes more susceptible to infection [68]. Overtraining in
horses has been associated with increased levels of the
alpha-1-antitrypsin protein [69] which is involved in pro-
tection of cells from inflammatory enzymes released
from neutrophils [70]. This protein was also found to be
increased in humans following a marathon run but
returned to basal levels within a few hours [71]. Despite
numerous studies documenting the immune response to
a single bout of exercise [72-74], little is known regarding
the molecular mechanisms governing the adaptations to
the immune response brought about by exercise training.
It has been suggested that exercise-induced reactive oxy-
gen species (ROS) may play a major role in the modula-
tion of the immune response following exercise [75]. It is
also likely that exercise-induced muscle damage contrib-
utes to the inflammatory response [76]. The exercise

regime undertaken by the horses in this study incorpo-
rated both endurance and sprint work which would be
expected to elicit both increased ROS and intramuscular
microtears.

Another interesting observation was the increased
expression of ribosomal genes as elevated rates of protein
synthesis and degradation have been reported following
resistance exercise with an overall increase in protein
mass [4,77,78].

The down-regulated functional groups were mainly
associated with structural genes and ion transport. It has
been shown that the cellular response to mechanical
stimuli, such as increased load, involves ECM signalling
to the cytoskeleton at focal adhesion complexes via integ-
rin receptors. Ion transport is central to muscular con-
traction. Calcium is the main regulatory and signalling
molecule in muscle and ATP synthesis is dependent on
phosphate transport. Although the down-regulation of
these functional groups is counter-intuitive, the modula-
tion of gene expression in these functional groups may
reflect structural reorganization of myofibrils.

Validation of a panel of genes by real time qRT-PCR
Eleven genes represented by tags that were differentially
expressed between untrained and trained skeletal muscle
were selected for real time qRT-PCR validation. Four tags
(acyl-coenzyme A dehydrogenase, very long chain
[ACADVL], actinin, alpha 3 [ACTN3], dystroglycan 1
[DAG1] and 28 S ribosomal protein S21, mitochondrial
[MRPS21]) were located within a known gene and seven
(calmodulin 3 [CALM3], insulin-like growth factor bind-
ing protein-5 [IGFPB5], myostatin [MSTN], period

cagccctgggggcctac RYK Ryk Receptor-Like Tyrosine Kinase -0.94 0.005

attcccatttctagtaa SEPT7* Transcribed locus -0.72 0.018

tgaggacaaagctcagg SLC10A2* Solute carrier family 10 -4.11 0.001

ccttcaactcaacaaat SNAP29* Synaptosomal-associated protein, 29 kDa -0.43 0.009

gtattgtaagatattaa SNORA24* Small nucleolar RNA SNORA24 -0.89 0.037

aagcaagaaataaattt TET1* Tet oncogene 1 -1.4 0.029

atgcagagcaccacaga TLE1 transducin-like enhancer of split 1 -1.58 2.0 × 10-5

actgacatatgtaaaga TOR3A* torsin family 3, member A -1.49 0.022

tgcctatcacctgccgg TPD52* Tumor protein D52 -0.68 0.005

tcctttcagtcttcaca TSPAN3 Tetraspanin 3 -0.58 0.04

ctttgtgacttccaagt ULK2* Unc-51-like kinase 2 -0.72 0.018

aaaccatatttcttccc VCL* Vinculin -1.13 0.005

cccaggcccgtccctgc ZC3H3* Zinc finger CCCH-type containing 3 -1.28 0.035

aagtctaacttccattt ZNF704* Zinc finger protein 704 -0.93 0.013

ttagtttcttttcttta ZWINT* ZW10 interactor -1.21 1.1 × 10-4

An asterisk (*) indicates that the tag lay within 5 kb of the gene. FC - fold change; Adj P - adjusted P value using the Benjamini and Hochberg 
method.

Table 4: Genes significantly down-regulated post-training compared to pre-training levels (Continued)
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Table 5: Gene ontology categories with significantly increased expression post-training compared to pre-training levels

GO ID GO Term P

BP:0009060 aerobic respiration 1.89 × 10-16

BP:0046356 acetyl-CoA catabolic process 2.28 × 10-16

BP:0006099 tricarboxylic acid cycle 5.83 × 10-16

BP:0006100 tricarboxylic acid cycle intermediate metabolic process 5.92 × 10-10

BP:0019395 fatty acid oxidation 4.65 × 10-08

BP:0006119 oxidative phosphorylation 3.69 × 10-06

BP:0006956 complement activation 4.07 × 10-06

BP:0002455 humoral immune response mediated by circulating immunoglobulin 4.07 × 10-06

BP:0002253 activation of immune response 5.31 × 10-06

BP:0006635 fatty acid beta-oxidation 6.70 × 10-06

BP:0002541 activation of plasma proteins during acute inflammatory response 8.46 × 10-06

BP:0050778 positive regulation of immune response 8.46 × 10-06

BP:0006631 fatty acid metabolic process 7.12 × 10-05

CC:0005739 mitochondrion 1.04 × 10-41

CC:0043231 intracellular membrane-bound organelle 8.17 × 10-21

CC:0019866 organelle inner membrane 2.16 × 10-19

CC:0044429 mitochondrial part 1.04 × 10-16

CC:0044444 cytoplasmic part 6.14 × 10-16

CC:0031967 organelle envelope 1.07 × 10-08

CC:0031090 organelle membrane 2.25 × 10-05

CC:0000793 condensed chromosome 5.40 × 10-05

CC:0005840 ribosome 7.74 × 10-05

KEGG ID KEGG pathway

hsa04510 Complement and coagulation cascades 5.61 × 10-06

has00750 Vitamin B6 metabolism 1.21 × 10-04

hsa00790 Folate biosynthesis 1.35 × 10-04

hsa00350 Tyrosine metabolism 3.93 × 10-04

hsa00760 Nicotinate and nicotinamide metabolism 4.51 × 10-04

hsa00020 Citrate cycle (TCA cycle) 0.002

hsa00190 Oxidative phosphorylation 0.002

hsa00500 Starch and sucrose metabolism 0.002

hsa00280 Valine, leucine and isoleucine degradation 0.003

hsa00380 Tryptophan metabolism 0.003

has00720 Reductive carboxylate cycle (CO2 fixation) 0.007

hsa00860 Porphyrin and chlorophyll metabolism 0.019

hsa00252 Alanine and aspartate metabolism 0.032
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homolog 2 [PER2], period homolog 3 [PER3], solute car-
rier family 25 member 29 [SLC25A29] and troponin T
type 3 [TNNT3]) were located within 5 kb of a known
gene and were predicted to represent the gene. Primers
were designed to span exons 1 and 2 or exons 2 and 3 of
the gene of interest. This approach was taken to validate
both the differential expression of genes and to assess the
prediction that the differentially expressed tags that were
identified within 5 kb of a known gene were indeed repre-
sentative transcripts of that gene.

The mean expression of three of the four genes repre-
sented by intergenic tags reached significance (P < 0.05)
and concurred with DGE data. ACTN3 showed the same
direction of change as the DGE data and tended towards
significance (P < 0.1). The mean expression of six of the
seven genes predicted to be represented by adjacent tags
agreed with the DGE data, the exception being TNNT3.
The putative TNNT3 tag was matched to a region ~880
bp downstream of the TNNT3 gene and may represent a
novel gene or mRNA. Alternatively the tag may span a
splice site in an alternative gene and consequently may
represent RNA transcribed from a different region in the
genome. Real time qRT-PCR results are detailed in Table
7.

The PER2 and PER3 genes, key molecular clock com-
ponents within the mammalian circadian timing system
[79], had mean post-training increases in expression of
+1.88-fold and +1.74 fold respectively. The induction of
these genes may represent an entrainment of the muscle

transcriptional clock by a regular exercise regime. While
primarily regulated by photoperiodic signals to the mas-
ter pacemaker within the suprachiasmatic nucleus,
peripheral circadian clocks, which are known to exist in
almost all peripheral tissues examined to date [80], can
also be entrained by alternative timing cues including
exercise [81] and feeding [82]. The role of peripheral
clocks is to align specific tissue function to the correct
time of day via differential regulation of subsets of clock-
controlled genes.

As exercise is a known synchroniser of circadian
rhythms in mice [83], humans [81] and horses [84], and
PER2 has previously been shown to oscillate in equine
tissues [85], the increased expression of PER genes post-
training in the current study is thought to represent a
strengthening of the endogenous circadian clock in
equine muscle. Furthermore, human studies have shown
time of day variations in exercise performance at the
physiological level [86-88], and it has been suggested that
circadian rhythms may play an important role in sports
performance [89]. Combined with our results, this is
strong incentive for further investigation of the influence
of training times on daily muscle function in the horse,
such that optimal athletic performance may be achieved.

The proteins encoded by ACADVL (+1.72-fold, P =
0.014), MRPS21 (+6.03-fold, P = 0.013) and SLC25A29
(+1.22-fold, P = 0.350) function in the mitochondria to
increase protein synthesis and fat metabolism. The
increase in expression of the gene encoding the mito-

Table 6: Gene ontology categories with significantly decreased expression post-training compared to pre-training levels

GO ID GO Term P

BP:0006817 phosphate transport 2.92 × 10-20

BP:0015698 inorganic anion transport 7.84 × 10-18

BP:0050679 positive regulation of epithelial cell proliferation 9.57 × 10-05

CC:0005856 cytoskeleton 4.00 × 10-09

CC:0044430 cytoskeletal part 5.59 × 10-09

CC:0016528 sarcoplasm 6.32 × 10-07

CC:0015629 actin cytoskeleton 2.11 × 10-06

CC:0016529 sarcoplasmic reticulum 2.93 × 10-06

CC:0005887 integral to plasma membrane 6.96 × 10-06

KEGG ID KEGG pathway P

hsa04530 Tight junction 5.30 × 10-04

hsa04630 Jak-STAT signaling pathway 0.008

hsa04720 Long-term potentiation 0.013

hsa01430 Cell communication 0.032

hsa04512 ECM-receptor interaction 0.046
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chondrial ribosomal protein MRPS21 likely reflects an
increase in mitochondrial protein synthesis and an over-
all increase in mitochondrial volume. Numerous studies
have demonstrated an increase in mitochondrial volume
concurrent with an increase in VO2max following endur-
ance training [90-93]. The proteins encoded by ACADVL
and SLC25A29 are involved in fat metabolism and are
located in the mitochondrial inner membrane.

ACTN3, CALM3 and DAG1 were decreased in expres-
sion by -1.41-fold (P = 0.090), -1.81-fold (P = 0.028) and -
1.27-fold (P = 0.021) respectively. The ACTN3 protein is
localized to the skeletal muscle z-discs and DAG1 forms
part of the dystroglycan complex. A null mutation in the
ACTN3 gene has been associated with sprint perfor-
mance in human athletes [94] and DAG1 has been pro-
posed as a candidate gene in some muscular myopathies
[95,96]. CALM3 is an isoform of calmodulin, a calcium-
modulated protein which regulate numerous protein tar-
gets. The binding of calcium to calmodulin induces a
conformational change which affects its ability to bind
target proteins. In this manner calmodulin may be used
by other proteins as a calcium sensor and signal trans-
ducer. CALM3 may be involved in muscle fibre type
transformation in response to muscle excitation [97,98].
CALM3 gene expression was also decreased in equine
muscle four hours post exhaustive treadmill exercise [47].

IGFBP5 and MSTN encode growth factors with large
observed decreases in expression post training (-3.18-
fold, P = 0.023 and -4.97-fold P = 0.004 respectively).
IGFBP5 is one of family of modulators of insulin like
growth factors (IGFs) which interact with IGFs resulting
in an increase in half life and alteration of the interaction
with receptors. IGF-1 promotes muscle hypertrophy and
protein levels are increased in humans following adminis-

tration of human growth hormone as an illegal doping
agent [99,100]. The exact mode of action of IGFBP5 is
poorly understood however it has been shown to associ-
ate with the extra cellular matrix and is a regulator of a
wide range of physiological processes including cell pro-
liferation and muscle cell differentiation [101-103].

Myostatin encoded by the MSTN gene is a negative reg-
ulator of muscle growth and an inhibitor of satellite cell
proliferation[104]. The expression of MSTN was found to
be decreased in humans following resistance training
[105,106]. Null mutations in this gene have been found to
cause a double muscling phenotype in cattle, dogs, and
humans [107-111]. Structural variation in the MSTN
gene has also been associated with athletic performance
in dogs [110] and horses [112]. The differential expres-
sion of this gene is of particular significance as an intronic
SNP in equine MSTN has been found to be a strong pre-
dictor of optimal racing distance in Thoroughbred race-
horses [112].

Conclusion
Deep sequencing of the equine skeletal muscle transcrip-
tome has revealed novel transcripts and functional
groups associated with this tissue. Furthermore, follow-
ing exercise training we have observed an increase in the
occurrence of genes involved in metabolism and oxida-
tive phosphorylation, and a decrease in the expression of
structural genes. Overrepresented functional groups of
genes post-training were associated with both endurance
and resistance exercise. This study documents the tran-
scriptome-wide reprogramming of skeletal muscle in
Thoroughbred racehorses that brings about the well doc-
umented phenotypic adaptations to exercise.

Table 7: Real time qRT-PCR results for genes used to validate DGE data

Tag Gene Symbol Gene Name DGE FC RT-PCR FC P

gctgctctgcagtctga ACADVL Acyl-Coenzyme A dehydrogenase, very long chain 1.65 1.72 0.014

acccgagagacagccga ACTN3 Actinin, alpha 3 -1.97 -1.41 NS

ccactaccctcttactc CALM3 Calmodulin 3 -2.75 -1.81 0.028

gaaaacagtagctaaag DAG1 Dystroglycan 1 -2.81 -1.27 0.021

ggactgtctttattttt IGFBP5 Insulin-like growth factor binding protein-5 -4.35 -3.18 0.023

gagtgcagcctttcacc MRPS21 28 S ribosomal protein S21, mitochondrial 9.47 6.03 0.013

tatgacagaaaagcaac MSTN Myostatin -4.35 -4.97 0.004

tgttgaagcgatgcagt PER2 Period homolog 2 +inf 1.88 0.003

tgttggtaagtagatcg PER3 Period homolog 3 (Drosophila) 2.07 1.74 0.001

tggctgtatggggaggc SLC25A29 Solute carrier family 25 member 29 2.50 1.22 0.035

gatgaagctgggatgca TNNT3 Troponin T Type 3 2.93 0.94 NS

The figure for the DGE fold change could not be calculated due to the fact that the PER2 transcript was undetectable pre-training (the 
transcript had zero counts in all the pre-training samples).
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Methods
Subjects
All animal procedures were approved by the University
College Dublin, Animal Research Ethics Committee, a
licence was granted from the Department of Health and
Children (Ireland) and owners' consent was obtained for
all horses.

Seven two-year-old untrained Thoroughbred horses (n
= 5 females, n = 2 entire males), raised on the same farm
for the previous 2 - 3 months and destined for Flat racing
with the same trainer comprised the study cohort. The
horses had a mean height of 154.9 cm (± 2.8) and a mean
pre-training weight of 437.4 kg (± 18.0). All horses under-
took a regular exercise regime with the same trainer for
10 months (trained). This consisted of light canter (1,500
m) once a day six times a week on an all-weather gallop
and higher intensity exercise ("work") no more than once
a week which consisted of warm-up (walk and trot) fol-
lowed by gallop with velocities reaching maximal inten-
sity for 800-1,000 m.

Muscle biopsy sampling
Percutaneous needle muscle biopsies [113] were obtained
from the dorsal compartment of the gluteus medius mus-
cle according to Dingboom and colleagues [114] using a 6
mm diameter, modified Bergstrom biopsy needle (Jørgen
KRUUSE, Veterinary Supplies). Biopsies were taken
approximately 15 cm caudodorsal (one-third of the dis-
tance) to the tuber coxae on an imaginary line drawn
from the tuber coxae to the head of the tail. The biopsies
were obtained at a depth of 80 mm. Each biopsy site was
shaved, scrubbed with an antiseptic and desensitized by a
local anaesthetic. The biopsy samples were washed with
sterile PBS (BD Biosciences, San Jose, CA) and preserved
in RNAlater (Ambion, UK) for 24 hours at 4°C and then
stored at -20°C. Muscle biopsy samples were collected at
rest at two time points: T0-untrained and T2-trained.

RNA isolation and purification
Approximately 100 mg of each muscle biopsy sample was
removed from RNAlater and homogenized in 1 ml TRI-
zol using a TissueLyser (Qiagen Ltd, Crawley, UK) and
extracted according to the manufacturer's instructions.
Each sample was purified using the RNeasy® Mini kit
(Qiagen Ltd, Crawley, UK) and DNase treated with
RNase free DNase (Qiagen Ltd, Crawley, UK). RNA was
quantified using a NanoDrop® ND1000 spectrophotome-
ter V 3.5.2 (NanoDrop Technologies, Wilmington, DE)
and RNA quality was subsequently assessed using the
18S/28 S ratio and RNA integrity number (RIN) on an
Agilent Bioanalyser with the RNA 6000 Nano LabChip
kit (Agilent Technologies Ireland Ltd, Dublin, Ireland)
according to the manufacturers' instructions.

Library preparation for Illumina sequencing
The Illumina cDNA library was prepared according to
the manufacturer's instructions. All reagents were sup-
plied by Illumina apart from SuperScript II Reverse Tran-
scriptase (part # 18064-014) with 100 mM DTT. Briefly,
1.5 μg mRNA was isolated from total RNA by binding the
mRNA to a magnetic oligo(dT) bead. Double stranded
cDNA was synthesized and cleaved at each NlaIII site.
The site of NlaIII cleavage was ligated with an Illumina-
supplied adaptor using T4 DNA ligase. The bead bound
double stranded cDNA was the cut by the restriction
enzyme, MmeI. This resulted in a 17 bp tag which was no
longer attached to the oligo(dT) bead. The cDNA con-
struct was then precipitated and the site of MmeI cleav-
age was ligated with an Illumina-supplied adaptor using
T4 DNA ligase. The adaptor ligated cDNA was PCR
amplified with two adapter primers (Illumina). The PCR
product of 85 bp was purified by gel extraction in prepa-
ration for loading on the Illumina Cluster Station. The
quality and quantity of the purified constructs were
assessed using an Agilent DNA series 7500 series II assay
(Agilent Technologies Ireland Ltd, Dublin, Ireland) and
Qubit fluorometer according to manufacturer's instruc-
tions. Cluster generation and sequencing analysis were
carried out using Illumina's Solexa Sequencer according
to the manufacturer's instructions.

Analysis
The DGE samples were processed through the standard
software pipeline provided by Illumina for the Genome
Analyzer. The sequence reads were base called using the
Bustard base caller (part of the Illumina software). The
tag annotation pipeline consisted of two parts: mapping
to known Ensembl [115] cDNAs and mapping to the
genome. The known cDNAs from version 49 of Ensembl
for the EquCab2 assembly of the equine genome were
downloaded in FASTA format using the Ensembl biomart
tool. The FASTA files for the individual equine chromo-
somes were downloaded from the UCSC genome
browser website [116]. A pipeline consisting of perl, C++
and linux shell scripts was used to conduct an in-silico
digestion of both the transcriptome and genome and to
generate tag location records which were loaded into a
MySQL database. The tag records were then annotated
according to their type (genomic or cDNA, canonical,
noncanonical, repeat etc.). A matrix of tag counts for
each sample was generated. The edgeR Bioconductor
package [117] was used to determine differential expres-
sion of tags in each group.

Functional clustering according to gene ontology 
annotations
The equine Ensembl gene IDs were cross-matched to
human Ensembl gene IDs. Using the Ensembl IDs of
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human homologues of equine genes it was possible to use
the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) [118,119] for functional clus-
tering and overrepresentation analyses. The Expression
Analysis Systematic Explorer (EASE) tool [120] within
DAVID was used to investigate the representation of
functional groups in equine skeletal muscle relative to the
whole genome. The FatiScan [121,122] gene enrichment
test was used to analyse the transcriptional profile post-
training. FatiScan is part of the Babelomics Suite of web
tools and tests for the asymmetrical distribution of bio-
logical labels in an ordered list of genes through applica-
tion of a Fisher's exact test. Genes were ranked by
differential expression and FatiScan was used to detect
functional blocks (GO and KEGG pathways) that were
significantly up-regulated and down-regulated post-
training. Results from both EASE and FatiScan were cor-
rected for multiple testing using the Benjamini and
Hochberg method [123].

Real time quantitative RT-PCR
Selected cDNA samples were quantified by real time
quantitative RT-PCR (qRT-PCR). 1 μg of total RNA from
each sample was reverse transcribed into cDNA with
oligo-dT primers using a SuperScript™ III first strand syn-
thesis SuperMix kit according to the manufacturer's
instructions (Invitrogen Ltd, Paisley, UK). The converted
cDNA was diluted to 2.5 ng/μl working stocks and stored
at -20°C for subsequent analyses. Oligonucleotide prim-
ers for real time qRT-PCR were designed using Primer3
version 3.0 http://www.primer3.sourceforge.net and
commercially synthesized (MWG Biotech, Germany).
Primer details are shown in Table 8. Each reaction was
carried out in a total volume of 20 μl with 5 μl of cDNA (1
ng/μl), 10 μl SYBR® Green PCR Master Mix (Applied Bio-
systems, Cambridgeshire, UK) and 5 μl primer/H2O. Real

time qRT-PCR was performed using a 7500 Fast Real-
Time PCR machine (Applied Biosystems, Cam-
bridgeshire, UK). All reactions were performed in dupli-
cate. Hypoxanthine phosphoribosyltransferase 1 (HPRT)
was selected as a stable reference gene based on a study of
equine reference genes for real time qRT-PCR [124] and
on the DGE results. Expression values were calculated
using a standard curve which was plotted based on the
expression of HPRT in serial dilutions of equine skeletal
muscle RNA (1:1, 1:2, 1:4, 1:8, 1:16, 1:32, and 1:64). The
standard curve method was used to normalise the gene
expression data. The paired Student's t-test was used to
identify significant differences in mRNA abundance
between time-points.
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Table 8: Real time qRT-PCR primers for genes used to validate DGE data

Gene symbol Forward Primer Reverse Primer

ACADVL ctgcccagcgatcctatg ttccactggtcgaagtctca

ACTN3 cggcgagtatatggaacagg gtgagttgcaccaggcagt

CALM agcacttggtggactccttg aaatgcctgactgtgctcaa

DAG1 ccaggaggagtgagcacct ctcaccctctgcacacctg

IGFBP5 ggaggagccgagaacactg gcgaagcctccatgtgtc

MRPS21 ggagatctgctgtttgctca tctctcaaagcgacccatct

MSTN tgacagcagtgatggctctt ttgggttttccttccacttg

PER2 agcctgatgatggcgaagtctgaa agttctttgtgcgtgtctgccttg

PER3 aactatgcccttcgctgtgt gtacccggtcacatctgctt

SLC25A29 ggacacccgtttgacactg ctgatgatggattggaagca

TNNT3 cggagggggagaaagtagac caaagtggctgtcgatgaga
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http://www.biomedcentral.com/1471-2164/11/398
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