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Abstract

Trypanosoma cruzi versus Homo sapiens.

Background: Trypanosoma cruzi is the etiological agent of Chagas’ disease, an endemic infection that causes
thousands of deaths every year in Latin America. Therapeutic options remain inefficient, demanding the search for
new drugs and/or new molecular targets. Such efforts can focus on proteins that are specific to the parasite, but
analogous enzymes and enzymes with a three-dimensional (3D) structure sufficiently different from the
corresponding host proteins may represent equally interesting targets. In order to find these targets we used the
workflows MHOLline and AnEnII obtaining 3D models from homologous, analogous and specific proteins of

Results: We applied genome wide comparative modelling techniques to obtain 3D models for 3,286 predicted
proteins of T. cruzi. In combination with comparative genome analysis to Homo sapiens, we were able to identify a
subset of 397 enzyme sequences, of which 356 are homologous, 3 analogous and 38 specific to the parasite.

Conclusions: In this work, we present a set of 397 enzyme models of T. cruzi that can constitute potential
structure-based drug targets to be investigated for the development of new strategies to fight Chagas’ disease.
The strategies presented here support the concept of structural analysis in conjunction with protein functional
analysis as an interesting computational methodology to detect potential targets for structure-based rational drug
design. For example, 2,4-dienoyl-CoA reductase (EC 1.3.1.34) and triacylglycerol lipase (EC 3.1.1.3), classified as
analogous proteins in relation to H. sapiens enzymes, were identified as new potential molecular targets.

Background

Chagas’ disease constitutes a significant health and
socio-economic problem in most of Central and South
America and Mexico [1,2]. About 18 million people are
infected resulting in an estimated 21,000 deaths per year
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(WHO, 2002). Cases have also been described in
Canada, United States [3-5], Europe and Australia [6-8].

A hundred year after the discovery of Chagas’ disease,
caused by the haemoflagellate protozoan Trypanosoma
cruzi, there are still no appropriate therapies that lead to
consistent cure in the chronic phase of the disease. The
importance of developing new, effective chemotherapies
against Chagas’ disease [9] is reinforced by its incidence
death rate, the toxicity of the current drugs benznidazol
and nifurtimox and the parasite’s ability to develop drug
resistance [10,11]. The analysis of the T. cruzi genome
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[12] opens new opportunities to develop more effective
and less toxic drugs against the parasite.

Although therapeutic agents are also able to interact
with polysaccharides, lipids and nucleic acids, protein
inhibitors, particularly enzyme inhibitors, comprise
about 47% of all drugs against pharmacological targets
with commercial interest [13]. For this reason, this work
is focused on enzymatic activities.

Metabolic pathways that are common to many diverse
organisms are mostly made up of enzymatic reactions that
are catalysed by conserved proteins. Enzymes which per-
form similar chemical reactions usually share similar
structures, however analogous enzymes have little or no
structural similarity, while sharing the same catalytic activ-
ity, and are thought to be evolutionarily unrelated [14].
In silico sequence analysis and comparisons of the primary
and secondary structures per se cannot prove that two
sequences are unrelated from an evolutionary point of
view. A common origin can be inferred from protein
structure conservation, even when evidence of homology
at the amino acid level has been completely washed out by
divergence. The possibility of a common origin can only
be considered highly unlikely by additional confirmation
that two proteins have different three-dimensional (3D)
structures [15]. Furthermore, these differences of 3D
structures are an important factor in selecting a protein as
a potential therapeutic target [16].

During the process of the development of a new drug,
many synthetic compounds or natural products are
often tested. The efforts to isolate, purify, characterise,
and synthesise active compounds and perform pre-and
clinical tests take many years and can cost billions of
dollars [17,18]. When an active compound is discovered,
its mechanism of action is often unknown. Structure-
based rational drug design intends to accelerate the
steps of identification and comprehension of the mole-
cular interactions between receptor and ligand using
computational methods [19]. In this context, bioinfor-
matics and molecular modelling tools can play an
important role in the identification and structural inves-
tigation of molecular targets that are essential for the
survival of T. cruzi. Indeed, candidate targets must be
essential for the parasite’s infectivity and/or survival,
without affecting the (human) host [20]. Nonetheless,
inhibitors should be efficient, soluble, bio-available and
administrable in an acceptable way, having the potential
for chemotherapeutic development [21].

Using comparative modelling techniques, it is possible
to obtain protein models accurate enough to be used in
structure-based rational drug design studies. Building
models based on templates of homologous proteins that
have had their 3D structure experimentally determined
by X-Ray or Nuclear Magnetic Resonance has been use-
ful for drug design, as they can guide the development
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of more specific non-natural inhibitors for variants of a
given enzyme or receptor [22-24]. Conversely, models
built based on low and medium similarity between the
target and template sequences can be useful for func-
tional inference, design of rational mutagenesis experi-
ments and molecular replacement in crystallography.
Thus, structural biology has been helpful in directing
target identification and discovery, using high-through-
put methods of structure determination, and providing
an important tool for initial drug target screening and
further optimisation [19].

A high-throughput functional genomics approach has
been used to bridge the gap between raw genomic infor-
mation and the identification of possible viable drug tar-
gets using techniques in biochemistry, molecular and cell
biology, and bioinformatics [25]. This approach allows a
better understanding of the role played by the steps in
biological pathways involved in a variety of diseases.

The search for suitable targets for the development of
new drugs in parasitosis is usually based on the identifi-
cation of enzymes specific to the metabolic pathways of
the parasite. However, data about the frequency and dis-
tribution of analogous enzymes suggests that they may
represent an untapped resource for such targets, since
analogous enzymes share the same activity but possess
different tertiary structures, an interesting attribute for
drug development.

In previous studies, the existence of functional analo-
gues was observed in several important steps in the
metabolism of T. cruzi, such as the energetic [26] and
amino acids pathways [27]. These works show enzymes
that are analogous to those found in the human host,
listed as possible new therapeutic targets to be studied.
Other studies of analogous enzymes have suggested they
comprise about 25% of the total enzymatic activity of an
organism [28].

In this work, the protein sequences that have been pre-
dicted from the T. cruzi genome sequence were analysed
with the objective of improving the annotation of their
putative biological functions, and to model their probable
three-dimensional structures. We used a high-through-
put computational environment that uses comparative
modelling techniques for 3D protein structure prediction.
In our comparison of T. cruzi and Homo sapiens enzyme
sequences, we could identify and model the 3D structure
of 356 homologous, 3 analogous and 38 specific T. cruzi
putative enzymes, that can be investigated as potential
drug targets for Chagas’ disease treatment.

Results and Discussion

Analysis of Enzymatic Functions of Trypanosoma cruzi and
Construction of Three-Dimensional Models

We intended to perform a comparative analysis of 3D
structures for T. cruzi and human enzymes, in order to
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detect significant differences that can be exploited and
justify these enzymes as potential drug targets. As a
starting point, we used the T. cruzi CL-Brener database
http://tcruzidb.org/tcruzidb/ of predicted proteins,
containing 19,607 entries (translated CDS - Coding
Sequences). To remove redundant and very similar
sequences, an all-against-all BLAST analysis was done
and the output was submitted to BioParser [29]. From
multiple sequences with more than 95% identity only
one member was kept, resulting in a dataset of 12,348
protein sequences.

These were submitted to the MHOLIline workflow
http://www.mholline.Incc.br to construct 3D protein
structure models by comparative modelling. This analy-
sis resulted in 3,286 models, presented in Table 1, that
were classified according to the criterion described in
Methods section.

Inference of Functional Annotation of Trypanosoma cruzi
Predicted Proteins

We previously reported results [26,27] on the inference
of function in proteins predicted from the T. cruzi
CL-Brener genome initiative http://tcruzidb.org/tcruzidb/
using the annotation module in the AnEnII pipeline [28].
In addition to the aforementioned analysis, we have
added enzymatic functions specified in Swiss-Prot that
were absent in the KEGG database, in order to increase
the number of enzymatic functions to be analysed. This
was done due to the fact that there are enzymatic func-
tions that are not represented in the metabolic pathways
described in the KEGG database (e.g. prolineracemase -
EC 5.1.1.4).

The choice of the cut-off remains a critical point in
this procedure and for this reason we investigated differ-
ent e-values as cut-off (10e2°, 10e™*® and 10e®) in the
AnEnIl methodology (Table 2). In order to confer a
high degree of reliability to our analysis we adopted the
cut-off of 10e™ for the next steps. To establish a good
cut-off we should analyse groups of protein families

Table 1 Trypanosoma cruzi 3D protein models

Quality TOTAL
1. Very High 50
2. High 200
3. Good 79
4. Medium to Good 835
5. Medium to Low 873
6. Low 759
7. Very Low 490
TOTAL 3,286

Number of Trypanosoma cruzi proteins that could be modeled by comparative
modelling using the MHOLIine workflow and their respective quality. The
quality of models depends on sequence identity and coverage (See the Table
6 in the Methods for detailed description).
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Table 2 Predicted proteins and enzymatic functions of
Trypanosoma cruzi using different cutoffs and KEGG and
Swiss-Prot databases

Cutoff 10e2° 10e™° 10e3°

Database KEGG  Swiss- KEGG  Swiss- KEGG  Swiss-
Prot Prot Prot

Predicted 3,625 2,743 2,805 1,924 1,751 762

Functions®

Enzymatic 1,027 749 770 523 517 246

Functions®

“Total number of predicted proteins with functions inferred by AnEnIl.
®Total number of distinct enzymatic functions (EC number) from predicted
proteins in .

separately and take into account other parameters like
coverage, bit-score and identity, but these is not yet
available in AnEnIl. The inferred protein functions of
T. cruzi were used to find analogy between the parasite
sequences and the predicted proteins of Homo sapiens.

Comparison Between Homo sapiens and Trypanosoma
cruzi Enzymatic Functions

Using AnEnll, we analysed and compared the predicted
protein sequences from Homo sapiens and Trypanosoma
cruzi to establish possible cases of analogy between
these two species. For some enzymatic functions, the
sequences of H. sapiens and T. cruzi were allocated in
different clusters, representing probable cases of analogy
(see the Methods for more details), while sequences
allocated in the same cluster were considered homolo-
gous. We expected the 3D structures to be dissimilar in
the first case, and probably similar in the latter. This is
indeed true in some cases, as exemplified in Figure 1.
Also, some sequences are specific to T. cruzi and are
absent in H. sapiens. The results are summarised in
Table 3 and were acquired using as final dataset the 478
entries obtained by the combination of both KEGG and
Swiss-Prot databases, considering the complete four-
digit EC number.

Figure 1 shows examples of comparison between
T. cruzi and H. sapiens protein structures, using the
functional classification determined by AnEnII Figure
1(a) presents the structural alignment (RMSD¢ =
0.65 A) between the T. cruzi protein model (yellow),
obtained with MHOLline, and the homologous struc-
ture (PDB 1F14) of L-3-Hydroxiacyl-CoA Dehydrogen-
ase from Homo sapiens (blue). The structure of the
active site (S137, H158 and N208) of the human pro-
tein, according to [30], is quite similar to the structure
of the modelled T. cruzi protein. Figure 1(b) shows the
same T. cruzi model (yellow) and the analogous
enzyme (PDB 1SO8) 3-Hydroxiacyl-CoA Dehydrogen-
ase Type II from H. sapiens (green). In this figure, the
dissimilarity between these two structures is evident.
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Figure 1 Structural comparison between a medium to high quality model of 3-Hydroxiacyl-CoA Dehydrogenase from Trypanosoma
cruzi and one homologous and one analogous structure from the PDB (classified according to the AnEnII pipeline). 1(a): structural
alignment of the T. cruzi (Tc00.1047053510105.240) protein model (yellow) and a homologous protein (PDB 1F14) from Homo sapiens (blue),
detailing its active site residues $137, H158 and N208 according to [30]. The alignment was performed by Swiss-PDB Viewer (v4.0.1) [31]. 1(b):
structure of T. cruzi (Tc00.1047053510105.240) model (yellow) and the analogous enzyme (PDB 1508) from H. sapiens (green). The putative active
site residues S154, H175 and N225 of T. cruzi protein (yellow) are presented in detail, inferred by the alignment in Figure 1(a), and the H. sapiens
(green) active site (5155, Y168 and K172) from [44]. The images were generated using VMD (Visual Molecular Dynamics - v1.8.6) software [45].

The RMSD ~was calculated using Swiss-PDB Viewer
(v4.0.1) program [31].

Functional Classification of Modelled Enzymes

In the next step, we combined the results presented in
Tables 1 and 3, and identified a set of 397 predicted
proteins from Trypanosoma cruzi, to which an enzy-
matic function was assigned with the AnEnII tool, and
for which a structural model was obtained using

MHOLIline. These functions have 93 distinct EC num-
bers assigned to them, as showed in Additional file 1,
Table S1.

Table 4 summarises the results of the overall analysis
in this work. The modelled proteins associated to an EC
number were grouped as follows with regard to the
comparison between T. cruzi and H. sapiens: (i) Homo-
logous enzymes; (ii) Analogous enzymes; (iii) Specific of
T. cruzi and (iv) Undetermined enzymes - enzymes with
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Table 3 Comparison between Homo sapiens and
Trypanosoma cruzi functions obtained from KEGG and
Swiss-Prot databases

AnEnII Classification KEGG Swiss-Prot
Homologous® 356(107) 194 (71)
Analogous 28 (5) 8 (6)
Specific of T. cruzi 133 (6) 44 (7)

Numbers in parenthesis represent the number of enzymatic functions (EC
number) found among the modelled proteins from T. cruzi, using a cut-off
of 10e%.

“In some cases, a given protein of the parasite is analogous to a human
protein but it also has an homologous counterpart. These cases were included
here.

conflicting clustering depending on the KEGG or Swiss-
Prot database used for initial clustering. Moreover, these
protein sequences were classified according to [UBMB
Nomenclature with regard to the first EC number digit
and from 1 to 7 according to the MHOLIline model
quality proposed in Methods.

Discussion and Conclusions

Knowledge of the three-dimensional structures of pro-
teins opens the way to accelerate drug discovery [19].
Theoretical predictions of 3D protein structures and
protein folding patterns, even on a genome scale, can
provide valuable information to infer possible protein
functions and contribute to the identification of poten-
tial drug targets [32]. It is believed that evolution tends
to conserve functions primarily on the preservation of
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the 3D structure rather than primary structure. A 3D
alignment between structural relatives, even (or
mainly) comprising a small number of residues within
a protein active site, can be a powerful method to infer
function [33].

Using the 19,607 predicted protein sequences from
Trypanosoma cruzi CL-Brener genome as the initial
dataset, we produced a non-redundant dataset compris-
ing 12,348 sequences. Afterwards, these sequences were
submitted to the MHOLIine workflow and we were able
to construct models for 3,286 sequences (26.6% of the
total). 1,164 models (35.4%) have a “medium to good” to
a “very high” quality (presented in Table 1), being,
therefore, suitable for structure-based drug design
projects.

It is important to note that there are problems in the
processes of genome assembly and annotation, which
involve for example the quality of the produced
sequences, errors derived from automatic gene predic-
tion, presence of repetitive regions, lack of usage of con-
trolled vocabulary terms (ontology) and propagation of
previous annotation errors.

Until now the genome of T. cruzi has not been com-
pletely assembled, due to the highly repetitive gene con-
tent and the heterozygosity of the T. cruzi strain at
hand. Many predicted proteins have unknown or puta-
tive functions which hinder the correct identification of
proteins and consequently the elucidation of the para-
site’s metabolism. To minimise some of these problems,

Table 4 Protein Models: AnEnm and enzyme classifications, and model quality

AnEnII Enzyme Classes Quality Models TOTAL
1 2 3 4 5 [ 7

1. Homologous Oxidorreductases 5 16 - 25 8 4 1 59 (trypanothione-disulfide reductase)
Transferases 7 17 3 41 12° 15 9 104 (protein kinases, polymerases)
Hydrolases - 9 5 38 17 14 10 93 (trans-sialidase, endopeptidases)
Lyases - 12 1 1 4 2 - 20 (hydratases, endonucleases)
Isomerases - 1 3 8 1 7 2 22 (peptidylprolyl isomerase)
Ligases - 8 1 14 - 5 5 33 (glutathione synthase, ubiquitins)

2. Analogous Oxidorreductases - - - 1 1 - - 2 (dehydrogenases)
Hydrolases - - - 1 - - - 1 (phosphatases)

3. Specific of T. cruzi Oxidorreductases 1 - 1 - - - - 2 (trypanothione-disulfide reductase)
Transferases - - - 2 - - - 2 (protein kinases, polymerases)
Hydrolases - - 2 23 1 4 4 34 (cruzipain, leishmanolisin)

4. Undetermined’ Hydrolases - - - 22 - - - 22 (leishmanolisin)
Lyases - - - - - - 3 3 (hydratases, endonucleases)

TOTAL 13 63 16 176 44 51 34 397

Examples of proteins found in final dataset are presented in parenthesis.

@ Conflicting clustering between results obtained by KEGG and Swiss-Prot databases using AnEnIl methodology.

® Two sequences were identified as conflicting annotation between the methodology proposed in this work and GeneDB.
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we used the AnEn pipeline to annotate the 7. cruzi gen-
ome and to identify enzymatic functions using KEGG
and Swiss-Prot databases (Table 2). From the compari-
son between T. cruzi and Homo sapiens enzymatic func-
tions, we identified a set of 397 T. cruzi modelled
sequences, comprising 93 distinct EC numbers (see
Additional file 1, Table S1). Six sequences originally
annotated (by GeneDB) as hypothetical proteins could
be associated to an enzymatic function by AnEnIlI (more
details in Additional file 2, Table S2).

An important result of this work was the identification
and construction of 3D protein models for three
sequences classified as analogous and 38 classified as
specific for T. cruzi (listed on Table 5), which are possi-
bly interesting molecular targets for the development of
drugs against Chagas’ disease. Among the specific
enzymes, we identified some proteins that are already
being studied as drug targets (e.g. cruzipain and trypa-
nothione-disulfide reductase). It is important to note
that the quality of some 3D models constructed for
these well known drug targets were classified, by
MHOLlIine, from “medium to good” to “very low”. It is
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due to the fact that the MHOLIline model quality con-
siders the total query length for coverage calculation,
and not only the portion of sequence aligned via
BLAST. The way proteins are assembled could influence
the calculation of the alignment’s coverage since the
length of these sequences could differ from those
experimentally solved (e.g. the presence of pre- and/or
pro-domains in the annotated sequence).

In general, to confirm the potential of these 41 pro-
teins as structure-based drug targets, it is necessary to
take into account the importance of metabolic pathways
involved in parasite survival, the existence of possible
isoforms and alternative metabolic pathways, data about
enzymatic assays and the quality of constructed model
for further structural analysis, and other information
that could help in understanding the physico-chemical
properties, catalytic sites and pharmacological inhibitors
of these proteins. Of course, one should not discard the
356 sequences classified as homologous proteins in rela-
tion to H. sapiens glyceraldehyde-3-phosphate dehydro-
genase [34], for example, is an important known drug
target.

Table 5 List of modelled sequences classified by AnEnlII as analogous or specific of Trypanosoma cruzi, in relation to

Homo sapiens

Categories Quality EC®  Description®
Models
A. Analogous 4 13.1.34  24-dienoyl-CoA reductase(NADPH) (ID%: Tc00.1047053509941.100)
5 13.1.34  24-dienoyl-CoA reductase(NADPH) (ID%: Tc00.1047053510303.210)
6 3.1.1.3  Triacylglycerol lipase (ID%: Tc00.1047053509005.50)
B. Specific of 1 1.8.1.12  Trypanothione-disulfide reductase (ID%: Tc00.1047053503555.30)
T. cruzi
3 1.8.1.12  Trypanothione-disulfide reductase (ID“: Tc00.1047053504507.5)
4 25147 Cysteine synthase (ID: Tc00.1047053507165.50, Tc00.1047053507793.20)
34.22.51 Cruzipain (D Tc00.1047053508595.50, Tc00.1047053507297.10)
342251 Cruzipain (D% Tc00.1047053506529.550, Tc00.1047053507537.20)
3.4.22.51 Cruzipain (ID% Tc00.1047053509429.320, Tc00.1047053507603.260, Tc00.1047053507603.270,
Tc00.1047053509401.30)
3636 Proton-exporting ATPase (ID: Tc00.1047053506649.20)
6 3636 Proton-exporting ATPase (ID: Tc00.1047053505763.19)
4 34.2436 Leishmanolysin (ID: Tc00.1047053511211.90, Tc00.1047053510565.150, Tc00.1047053507623.110,

Tc00.1047053508699.100, Tc00.1047053508699.90, Tc00.1047053509011.80, Tc00.1047053506587.100,
Tc00.1047053509205.100, Tc00.1047053506163.10, Tc00.1047053506163.20, Tc00.1047053508813.40,
Tc00.1047053505965.10, Tc00.1047053506257.50, Tc00.1047053510899.10, Tc00.1047053505931.10,
Tc00.1047053505931.20, Tc00.1047053511203.10, Tc00.1047053504397.20, Tc00.1047053506921.10,
Tc00.1047053508475.30, Tc00.1047053505615.10, Tc00.1047053508825.10, Tc00.1047053510873.20,
Tc00.1047053507197.10)

9 EC number determined by AnEnIl methodology.
% EC number description obtained from Swiss-Prot database.
¢ Trypanosoma cruzi identification number according to TcruziDB (version 5.0).
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We have further analysed the models for the 7. cruzi
analogous enzymes (presented in Table 5) 2,4-dienoyl-
CoA reductase (EC 1.3.1.34) and triacylglycerol lipase (EC
3.1.1.3), which are involved in the metabolism of lipids.
The major aspects of lipid metabolism concern fatty acid
oxidation to produce energy, and the synthesis of lipids.
Knowledge about the oxidation of fatty acids as a source
of ATP for trypanosomatids remains scarce. Previous ana-
lysis of T. brucei, T. cruzi and Leishmania genomes identi-
fied orthologous genes encoding enzymes involved in the
B-oxidation of fatty acids, and this pathway probably
occurs in both glycosomes and mitochondria [35].

The oxidation of polyunsaturated fatty acids requires
an auxiliary enzyme (2,4-dienoyl-CoA reductase) that
removes the double bonds in the fatty acids. This
enzyme (combined with enoyl-CoA isomerase) is essen-
tial to allow beta-oxidation and consequently energy
production for the parasite [36]. It is possible that this
reaction occurs in the opposite direction, generating an
unsaturation which could be important in the synthesis
of a compound produced in the parasite, whenever the
parasite requires it in the composition of unsaturated
fatty acids. The sequence and structure alignment
between the two isoforms of 2,4-dienoyl-CoA reductase
from T. cruzi suggest that these proteins are paralogous.
Figure 2 presents the difference between the primary
and tertiary structures of the paralogous enzymes of
T. cruzi and the 2,4-dienoyl CoA reductase 1 (DECRI -
mitochondrial) and 2,4-dienoyl CoA reductase 2
(DECR?2 - peroxisomal) of H. sapiens.

The other analogous enzyme, triacylglycerol lipase,
converts triacylglycerol and H,O into diacylglycerol and
a carboxylate. This reaction is important to glycerolipid
metabolism [37] showed that the parasite is able to take
up LDL cholesterol (by endocytosis), a molecule that
has triglycerides in its composition, justifying the pre-
sence of this enzyme in the parasite. Furthermore, the
product of this reaction is diacylglycerol, an important
molecule for the synthesis of membrane lipids (phos-
pholipids and glycolipids). Taking into account the pre-
sented results and the importance of the two enzymatic
activities in the oxidation of polyunsaturated fatty acids
and glycerolipid metabolism, these analogous enzymes
might be an interesting choice for further studies for
drug development against Chagas’ disease.

The most widely used paradigm in the search of new
drug targets is to look for pathogen specific molecules,
against which to develop ligands to inactivate target
function without a effecting the host [20]. However,
data on the frequency and distribution of analogous
enzymes suggest that these enzymes should be studied
as additional targets since they are expected to share the
same enzymatic activity with sufficiently different
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tertiary structures, a prerequisite for the development of
drugs [20].

The results presented in this work corroborate the
idea that structural analysis could be an attractive com-
putational methodology for predicting protein functions
[38]. The combination of MHOLIline workflow with the
AnEnlI pipeline was effective to infer protein function
and to detect and construct structural models of pro-
teins in high-throughput analysis. Thus, we were able to
identify a list of T. cruzi specific or analogous enzymes
that can be considered as target candidates suitable to
be used in further structure-based drug design projects
against Chagas’ disease (a complete list of proteins is
provided in Additional file 2, Table S2).

Methods

Datasets

In this work, we used a dataset composed of 19,607 pre-
dicted protein sequences from the Trypanosoma cruzi
genome (CL-Brener strain). This dataset was obtained
from TcruziDB http://tcruzidb.org/common/downloads/
release-5.0/Tcruzi/TcruziAnnotatedProtein.fas - version
5.0. AnEnlI is a tool for identification and annotation of
analogous enzymes [28]. We have used the dataset con-
tained in AnEnIlI (Analogous Enzyme Pipeline), which
was obtained from the KEGG (Kyoto Encyclopedia of
Genes and Genomes) database (from ftp://ftp.genome.
ad.jp/pub/kegg/ of December, 2006) [39]. To increase
the number of identifiable enzymatic functions by
AnEnlIl, we incorporated data from Swiss-Prot [40]
(from http://www.expasy.org/sprot/ of May, 2008),
resulting in a final dataset composed of 478 four-digit
EC numbers. Each T. cruzi enzyme function obtained
(considering the complete four-digit EC number) was
compared with the original genome function annotation
list from GeneDB (from http://www.genedb.org/ of
October, 2007).

The structures used as templates to provide 3D mod-
els of predicted proteins from 7. cruzi were obtained
from the Protein Data Bank (PDB) (44,700 sequences
from ftp://ftp.wwpdb.org/pub/pdb/derived_data/ of
December, 2006). These models were constructed by
comparative modelling method using the workflow
MHOLlIine, as described in the Methods.

High-Throughput Comparative Modelling

To construct 3D structural models of the predicted pro-
teins from the T. cruzi genome we used the MHOLIine
software http://www.mbholline.Incc.br, a biological work-
flow that combines a specific set of programs for auto-
mated protein structure prediction, detection of
transmembrane regions, and EC number association. It
extracts distinct and valuable structural information


http://tcruzidb.org/common/downloads/release-5.0/Tcruzi/TcruziAnnotatedProtein.fas
http://tcruzidb.org/common/downloads/release-5.0/Tcruzi/TcruziAnnotatedProtein.fas
ftp://ftp.genome.ad.jp/pub/kegg/
ftp://ftp.genome.ad.jp/pub/kegg/
http://www.expasy.org/sprot/
http://www.genedb.org/
ftp://ftp.wwpdb.org/pub/pdb/derived_data/
http://www.mholline.lncc.br
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a hsa:lﬁSSlDEBRl mitochondrial MKLPARVFFTLGSRLPCGL 'F IL QSK QKAML o] I TLLSS 81
Tc00.1047053510303.210 MTGKISPLFLPICI ELPNRFLMLPMYLNMEQELDL LIVCGGL IGKWRIDS 82
Tc00.1047053509941.100 MSLMYEKMFSPLSLGFT TLRNRIVMG SMHTGLEDLKKDRIERMCDFY¥GERAKGGCALIVTGGFSPNFEGKLNPFA 75
S sh. we
hsa_2 6063 [ DECR2 peroxisomal HGCHTVIASRSLPRVLTAARKL PL vDQ 99
hsa 1656|DECRI mitochondrial LGAQCVI. KATAEQISS(Q' I 'R VSE 130
TC00.1047053510303.210 MALGTYDAAKAFSRV' ILAQAFHP! I 'QPFR DRHPWRIPGLLVEYIVSEHARFAR 162
Tc00.1047053509941.100 PCISSKSHALEYKPVADAVHREGGKIVMQILHAGRYAYSPLCVAPSGIPSPIWPFKGYHLRPIALPKVWINKTIKDFARARAA 157
hsa 26063 J DECR2 peroxisomal ALKEFGRIDILINCAAG NFLCPAGALSFNAFK TVMDIDTSGTFNV 144
hsa_lﬁﬁﬁlDEERl mitochondrial LIKVAGHPNIVINNAAG NFISPTERLSPNAWK TITDIVLNGTAFV 175
Tc00.1047053510303.210 LAEARGFDGIEIPVSEGGLLHNFL ¥YGRSLEGRLEATLRVL LLSVRLCLHDL 244
Tc00.1047053509941.100 LVKEAGFDGVEIMASEGYLLNEFIVKHTNK 'PLEVL KEFIIIFRLSMLDLIPNGSTHE 237
B R CR™ Lt i = hE A
hsa_26063 } DECR2 peroxisomal SRVLYERFFRDHG GVIVNITATL L I GPT. RRLGGP 223
hsa:lESS|DEL‘.Rl mitochondrial TLEIGKQLIKAQKGAAFLSITTIYAETGSG A YGMRFNVIQPGPIKTKGAFSRLDPT 255
Tc00.1047053510303.210 ETLVAAEAL I Q VPQAVFARCVQ SHGL v IAVAERLVREGV 325
Tc00.1047053509941.100 EVCKLAEEVANSG ADIINTGIGWHEAR VPTIATSVPRAGFTWV' RKYLRSKGIST IERVLSK D 316
=2 s : goom oAl e @ @ s *:
hsa_25053 [DECIZ peroxisomal QASL QRL IAHSVLYLASPLASYVTG 262
hsa_lﬁsﬁlDECRl mitochondrial GTFEKEMIGRIPCGRLGTVEELANLAAFLCSDYASWING 294
Tc00.1047053510303.210 CDIVGLARPLLSDPQMIRKAEEGHEDAIIPCIACN HCVNRLYKHQRITCALNPTSG KKNVAVIGAGAAG 406
Tc00.1047053509941.100 ADL LSDPFF INICIACNOACLDHIFKGQISSCLVNPTAC IPTROKKRIAVI 398
* * *
hsa_26063 \DECRZ peroxisomal AVLVADGGAWLTFP NGVKGLPDFASFSAKL 292
hsa_1666 | DECR1 mitochondrial AVIKFDGGEEVLIS GEFNDLRKVTKEQWDTIEELIRKTKGS 335
Tc00.1047053510303.210 VTCALTL TLFEKSNFI NL VPGKESYQEV R INVRLGVEF 'FHALVLCC 488
Tc00.1047053509941.100 ASCALVLAQRGHEVTIYEKEDCLGGQFNLAKKIPGKAEYESSI: T TLNNVKLHL L VIVAT 479
Py ® s *
hsa_26063|DECR2 peroxisomal 292
bsa_lﬁﬁﬁ'DE(:Rl mitochondrial 335
Tc00.1047053510303.210 GSVPRPATSHQIPGTSECPMVVPFEKIL RVVIIGNGAL LLHDPRVS RSVEAYCDEWGVNL 563
Tc00.1047053509941.100 GCLPKPIKNSVIKGVEGLKNVFSYVDVLSGKAHVGDRVATIIGGGGIGFDVAYFLVENHDLL IDL 561
hsa_26063 | DECR2 peroxisomal 292
hsa_1666|DECR1 mitochondrial 335
Tc00.1047053510303.210 EDGTL VLFNKAD KDADL WIRNHGGTIIKHGLIENIDRNGVHI 'DSRKYFVE 643
Tc00.1047053509941.100 EIASPGGLRKPNI TERLEL QIIGVTYDSFDGKTLSYSIGD KKHNLD 640
hsa_26063 |DECR2 peroxisomal 292
hsa_1666|DECR1 mitochondrial 335
Tc00.1047053510303.210 CDTIVWAYGMLPNISVGTWI SDFSIY L EIGYKI 717
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Figure 2 Structural and sequence comparison between 2,4-dienoyl CoA reductase (DECR) from Trypanosoma cruzi and Homo sapiens,
analogous enzymes. 2(a): sequence alignment between putative paralogous DECR enzymes from T. cruzi and mitochondrial DECR1 and
peroxisomal DECR2 enzymes from H. sapiens. The alignment was performed using ClustalX (v1.83) [46]. 2(b): structural alignment between the

H. sapiens DECR1 (reconstructed PDB: 1W6U) (yellow) and DECR2 model (blue), constructed using PDB: 1TW6U as template. The active site
residues Y199 and K214 of DECR1 (yellow) are presented in detail, according to [47], and L167 and K182 of DECR2 (blue), which were inferred by
the structural alignment with DECR1. 2(c): structural alignment between DECR enzymes of T. cruzi. The putative active sites constituted by Y175
and H261 of Tc00.1047053509941.100 (yellow) and, G180 and H269 of Tc00.1047053510303.210 (blue) are presented in detail. The active sites of
T. cruzi DECR were inferred by their structural alignment (not presented) with the DECR protein (PDB: 1PS9) from Escherichia coli, used as
template. Its active site residues Y166 and H252 are described by [36]. The alignments were performed by Swiss-PDB Viewer (v4.0.1) program
[31] and the images were generated using VMD (Visual Molecular Dynamics - v1.8.6) software [45].
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Table 6 Classification according to the quality of the
models built based on BLAST sequence identity and
BATS coverage of the template in relation to the target

Quality Identity Coverage
1. Very High > 75% > 90%
2. High > 50% and < 75% > 90%
3. Good > 50% > 70% and < 90%
4. Medium to Good > 35% and < 50% > 70%
5. Medium to Low > 25% and < 35% > 70%
6. Low > 25% > 50% and < 70%
7. Very Low > 25% > 30% and < 50%

about protein sequences even in large-scale genome
annotation projects.

MHOLline uses the HMMTOP program to identify
transmembrane regions. The BLAST algorithm is used
for template structure identification by performing
searches against the Protein Data Bank [41]. Refine-
ments in the template search - a key step for the model
construction - were implemented with the development
of a program called BATS (Blast Automatic Targeting
for Structures). BATS identifies the sequences where
comparative modelling techniques can be applied, by
choosing template sequences from the BLAST output
file using their scores, expectation values, identity and
sequence similarity as criteria. It also consider the num-
ber of gaps and the alignment coverage.

BATS also selects the best template for 3D model
construction and generates the files for the automated
alignment used by the Modeller program [42]. The gen-
erated models are evaluated by stereochemical quality
using the Procheck program [43]. In summary, for each
submitted sequence, MHOLIline generates and aggre-
gates structural information, returns a 3D model, a
Ramachandran plot and comments about structure qual-
ity and enzymatic function.

Sequence Filtering and Generation of Distinct Quality
Protein Models

To exclude possibly redundant and very similar
sequences, an all-against-all BLAST analysis was per-
formed in the dataset composed of all T. cruzi translated
CDS, using the BLOSUM62 matrix and an e-value < 10e®
as cutoff. The result was automatically filtered by identity
(< 95%) using the BioParser tool [29]. This non redundant
dataset of 7. cruzi was submitted to the MHOLIline work-
flow to construct the 3D protein models. Sequences were
locally aligned by MHOLIine (using BLASTP) with protein
sequences from PDB using an e-value < 10e”. The
MHOLline program filtered the new set of aligned
sequences with the BATS program and the Filters tool,
and it constructed the protein structure models using the
Modeller program. Table 6 displays the criteria used for
the classification of the obtained models.

Page 9 of 10

Trypanosoma cruzi Protein Function Inference

AnEnllI uses the similarity score of BLASTP pairwise
comparisons between all proteins included in a pre-
viously determined group to assign these proteins to
separate clusters for each enzymatic function (EC num-
bers). Enzymes inside a cluster are considered homolo-
gous, while enzymes in different clusters (of the same
group/function) are considered analogous.

With the purpose of annotation and identification,
users can perform similarity searches by BLASTP. In
this case, the database is composed of the sequences
belonging to each cluster. In this study, AnEnIl was
used for the identification of predicted proteins of Try-
panosoma cruzi using different e-values as cutoff (10e™°,
10e* and 10e%°).

Additional material

Additional file 1: Table S1 - Enzyme Commission Numbers (EC)
associated to modelled Trypanosoma cruzi proteins.

Additional file 2: Table S2 - Complete list of homologous,
analogous and specific 3D protein models of Trypanosoma cruzi
versus Homo sapiens.
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