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Abstract

Changes to the glycosylation profile on HIV gp120 can influence viral pathogenesis and alter AIDS disease progres-
sion. The characterization of glycosylation differences at the sequence level is inadequate as the placement of car-
bohydrates is structurally complex. However, no structural framework is available to date for the study of HIV
disease progression. In this study, we propose a novel machine-learning based framework for the prediction of
AIDS disease progression in three stages (RP, SP, and LTNP) using the HIV structural gp120 profile. This new intelli-
gent framework proves to be accurate and provides an important benchmark for predicting AIDS disease progres-
sion computationally. The model is trained using a novel HIV gp120 glycosylation structural profile to detect
possible stages of AIDS disease progression for the target sequences of HIV+ individuals. The performance of the
proposed model was compared to seven existing different machine-learning models on newly proposed gp120-
Benchmark_1 dataset in terms of error-rate (MSE), accuracy (CCI), stability (STD), and complexity (TBM). The novel
framework showed better predictive performance with 67.82% CCI, 30.21 MSE, 0.8 STD, and 2.62 TBM on the three
stages of AIDS disease progression of 50 HIV+ individuals. This framework is an invaluable bioinformatics tool that
will be useful to the clinical assessment of viral pathogenesis.

Background
The human immunodeficiency virus (HIV) is responsi-
ble for the acquired immunodeficiency syndrome
(AIDS) disease and 33 million people are infected glob-
ally. Infected individuals can live a normal life with drug
treatment, but most will eventually progress to AIDS.
The duration of disease varies between individuals.
Some HIV+ patients can progress towards AIDS within
two years of primary infection (rapid progressors – RP).
RP show rapid rise in plasma virus and rapid decline in
CD+ T cell counts. On the other hand, another group of
HIV+ patients show steady but gradual increase in vire-
mia and decrease in T cell counts over 10-15 years
(slow progressors – SP). Only about 1% of HIV+ therapy
naïve individuals can maintain virus level below detec-
tion level, robust T cell counts and experience sustained
immune response for more than 20 years (long term

non-progressors – LTNP). With such a great difference
in AIDS disease progression among HIV+ patients,
much can be learned at the level of differences in viral
architecture that exists in HIV variants evolving at dif-
ferent stages of HIV disease and under different immu-
nologic constraints in a given host.
Glycans on the HIV glycoprotein 120 (gp120) surface

mask important viral epitopes that host antibodies
recognize [1,2], preventing the eradication of the virus.
The rapid mutation in gp120 during viral evolution
further creates an ever changing landscape of glycosyla-
tion patterns of HIV surface glycoprotein gp120 (also
known as the “carbohydrate landscape”) that favours
host immune evasion. This observation has been termed
the glycan shield of HIV [3] and is directly responsible
for the persistence of viral infection even after therapy.
Thus, any modification to the glycosylation profile of
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gp120 is likely to affect viral susceptibility to host
immune response [4], transmission efficiency [5], infec-
tivity [6] and AIDS disease progression [7]. While the
glycosylation of HIV is the main barrier to viral control
and eradication, it is possible to harness the protective
glycosylation profiles on gp120 against the virus [8] and
develop a glycan based approach to vaccine design.
We have previously reported on our findings on glyco-

sylation site interaction within the envelope gp120 [9],
which are consistent with the findings by Poon et al
[10]. The association of multiple glycans within env
gp120 could be due to the structural placement of the
glycosylation sites after protein folding. Glycosylation
sites that are far away at the sequence level might actu-
ally be close together in three-dimensional (3D) struc-
ture of a protein. Thus, the understanding of gp120
glycosylation structural (3D) profile modification can
explain the determinants of HIV disease progression.
Studies to date have mainly focused on the changes to
single glycosylation sites at the sequence level, while the
analysis of complete gp120 structural glycan modifica-
tion is new. This could be due to the lack of an analysis
framework for multiple glycan comparison across the
entire gp120 sequence.
In this paper, we introduce a novel statistical kernel

model, which is designed to learn the complex glycan
interactions and predict the differences in AIDS disease
progression using the structural 3D glycan profile. It
involves the design of semi-parameterized, and support-
vector assisted hierarchical mixture model, which is able
to effectively capture the information of non-local inter-
actions with strong resistance to vanishing gradient and
high-dimensionality problems. The proposed framework
successfully classified the changes to glycosylation pro-
files and segregated HIV disease groups. These results
show the utility of new bioinformatics and machine-
learning tools in providing useful biological understand-
ing of glycosylation patterns during AIDS disease
progression.

Methods
Our approach to the prediction of AIDS disease pro-
gression consists of three consecutive steps: (1) compre-
hensive HIV dataset construction for the purpose of
benchmarking 3D structure-based HIV progress classifi-
cation methods. (2) novel gp120 structural profile design
and (3) the construction of semi-parameterized, and
support vector assisted hierarchical mixture model for
the exploitation of non-local interaction information
from the profile.

gp120 benchmark dataset
gp120-Benchmark_1 is a newly developed comprehen-
sive dataset for benchmarking 3D structure-based AIDS

disease progress classification methods. Based on AIDS
progression rates, HIV+ individuals have been divided
into three categories such as rapid progressors (RP),
slow progressors (SP) and long-term non-progressors
(LTNP) [11]. RP patients progress towards AIDS within
two years of primary infection. RP show rapid rise in
plasma virus and rapid decline in CD+ T cell counts. SP
group of HIV+ patients show steady but gradual increase
in viremia and decrease in T cell counts over 10-15
years. Only about 1% of HIV+ therapy naïve individuals
(LTNP) can maintain virus level below detection level,
robust T cell counts and experience sustained immune
response for more than 20 years [11]. A total of 50 env
gp120 samples were manually extracted from 50 HIV+

individuals, of which 10 samples were LTNPs, 11 were
RPs and 29 were SPs. The list of samples with the Gen-
Bank accession number, year of sample collection and
disease type are shown in Table 1.
gp120-Benchmark_1 is available at http://www.cs.usyd.

edu.au/~yangpy/software/AIDS-progression.html

Structural gp120 profiling
The glycosylation of HIV occurs on the asparagine resi-
due of a NX[ST] motif where X can be any amino acid
residue except proline [35,36]. To create a whole envel-
ope glycan profile, the 3D coordinates of the asparagine
residue from every glycosylation site were extracted
from the gp120 structure models. The extracted glycans
from the query model were matched to an appropriate
glycosylation site from the template model (Figure 1,
left-hand). Mutations, insertions and deletions (indels)
are common within the gp120 gene and can thus com-
plicate the matching of target and template glycosylation
sites. Further, it is also difficult to differentiate whether
a glycosylation site has moved if the neighbouring gly-
cans are clustered close together. To overcome these
problems, we developed a protocol to loosely encapsu-
late the movement, insertion and deletion of glycosyla-
tion sites in the HIV envelope gp120 models, to
facilitate the glycan matching process. First, the glycosy-
lation sites were separated into their respective regions
(V1, V2, C2, V3, C3, V4, C4, V5, C5). The glycan from
the query model can only be matched with the template
glycan of the same region. Second, within each region, a
distance matrix was created by calculating the 3D dis-
tance between every glycan of the query and template
models. Finally, every glycan in the query model was
matched to the closest glycan from the target model
and their distance noted.
The addition of glycosylation sites as compared to the

template model is expressed as an additional distance
value in the glycosylation profile. The movement of gly-
cosylation sites is reflected as a significant change in dis-
tance value in the profile, while retaining its association
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with the same template glycan. Finally, the deletion of
glycans was coded as an absent distance value in the
profile as compared to other models. The glycan profile
reflects the variation in the global glycosylation pattern
in relation to the given template model. The glycan pro-
files for all the sequences in our dataset are compiled in
an N ? M matrix, where N is the maximum number of
glycans in our dataset and M is the number of
sequences in the dataset. Sequences with fewer glycosy-
lation sites were padded with a distance value of zero
on either side of the matrix.

Nonlocal interactions in sequence and vanishing
gradient problem
A machine learning framework with kernel method [12]
was used to learn and characterize the changes to glyco-
sylation profiles for the prediction of HIV disease pro-
gression. Existing large machine-learning algorithms like
neural networks have performed well in the analysis of
sequence-based problems, where the information is pro-
cessed in the order that they are given. However, these
were not designed to analyse the long-range dependen-
cies between glycosylation sites at the sequence level.
This is due to the lack of an efficient algorithm for
numerical optimization, commonly known as the van-
ishing-gradient problem [13]. For example, when the
glycosylation sites are analysed in the order they appear
in the sequence, the dependency between a glycan X
and a previously processed glycan Y might not be learnt.
If glycan X and glycan Y are processed immediately
after one another (short range), their dependency can be
learnt. However, if there are multiple glycans between X
and Y (long range), the neural network can only learn
the dependencies between glycan X and the sum of all
glycan information before X (including glycan Y). While
the dependencies between X and Y are somewhat estab-
lished because of the partial inclusion of glycan Y in the
combined information, the long range dependency
learned between glycans X and Y are not sufficient to
classify HIV disease progression. Furthermore, error
minimization is known to fail in the presence of depen-
dences that are far apart in the sequence space [14,15].

Support vector assisted hierarchical mixture model
(SV-HMM)
One possible solution to this problem is to ameliorate
the vanishing gradient problem by providing the kernel
function with information of distantly located glycan.
This gives the machine-learning framework a fair chance
of learning any long-range interaction between glycosy-
lation sites. We developed a hierarchical kernel mixture
model that combines a modular approach with local lin-
ear support vector classifiers, which can effectively ana-
lyse distantly related information.

Table 1 Patient dataset used for structural glycan
profiling

Cohort/
Country

Sample GenBank
Accession No

Year of sample
collection

Disease
type

USA A1 AY835754 1982 RP

USA A2 AY835765 1984 RP

USA A3 AY835775 1986 RP

USA B4 AY835777 1983 RP

USA B6 AY835778 1986 RP

USA C7 AY835779 1984 RP

USA C8 AY835780 1986 RP

USA D9 AY835781 1983 RP

USA D10 AY835755 1985 RP

USA D11 AY835756 1986 RP

USA E12 AY835757 1986 RP

USA F1 AY835759 1982 SP

USA F2 AY835760 1987 SP

USA F3 AY835761 1991 SP

USA G4 AY835762 1984 SP

USA G5 AY835763 1988 SP

USA G6 AY835764 1992 SP

USA H7 AY835766 1989 SP

USA H8 AY835767 1993 SP

USA J1 AY835769 1985 SP

USA K4 AY835771 1986 SP

USA K5 AY835772 1992 SP

USA K6 AY835773 1994 SP

USA L7 AY835774 1986 SP

USA M1 AY835748 1983 LTNP

USA M2 AY835749 1986 LTNP

USA M3 AY835750 1989 LTNP

USA M4 AY835751 1990 LTNP

USA M5 AY835752 1992 LTNP

USA N8 AY835753 1996 LTNP

Canada CAN_A_1 AY779564 1996 LTNP

Canada CAN_A_3 AY779550 1998 LTNP

Canada CAN_A_5 AY779551 1999 LTNP

Canada CAN_A_6 AY779552 2000 LTNP

Canada CAN_B_3 AY779553 1994 SP

Canada CAN_B_4 AY779554 1997 SP

Canada CAN_B_5 AY779555 1998 SP

Canada CAN_B_6 AY779556 1999 SP

Canada CAN_C_2 AY779557 1992 SP

Canada CAN_C_3 AY779558 1993 SP

Canada CAN_C_5 AY779559 1994 SP

Canada CAN_C_6 AY779560 1994 SP

Canada CAN_C_8 AY779561 1996 SP

Canada CAN_C_10 AY779562 1998 SP

Australia 1181 GQ995529 1995 SP

Australia 1182 GQ995528 1995 SP

Australia BB_76 GQ995532 1982 SP

Australia BB_24 GQ995530 1984 SP

Australia BB_42 GQ995531 1984 SP

Australia BB_92 GQ995533 1983 SP
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At the top level of our framework, we have adopted a
well-known Hierarchical Mixture of Experts (HME)
model for regression and classification [16]. The HME
model is a tree-like structure (Figure 2) that uses the
divide and conquer principle to learn the interactions
between HIV glycosylation sites. At the bottom of the
tree (leaf nodes) are multiple locality effective support
vector, that will analyse the similarities between the
given glycosylation sites.
HME describes a conditional probability distribution

over a vector t of target variables, conditioned on a vec-
tor x of inputs. Consider the case of functional mapping
learning of the type y f x

 
= ( ) based on training data set

T = (x(t), y(t)), t = 0, …, n with x x x xn


= { , , , }1 2 and a
corresponding desired response y y y yn


= { , , , }1 2 . All

of the networks, both experts and gating, receive the
same input vector at the tth time instant, x(t). However,
while the gating networks use this input to compute
confidence level values for the outputs of the connected
expert networks, the expert networks themselves use the
input to generate an estimate of the desired output
value. The outputs of the gating networks are scalar
values and are a partition of unity at each point in the
input space, i.e. a probability set. Thus, consider a two-
layered binary branching HME: Each of the expert local
models (i, j) produces outputs yij from the input vector
x(t) according to the relationship: y f x wij

t
ij= ( )( , ),
 

,
where f is a neural-network mapping using input x(t)

and its corresponding weight matrix wij

 
. The outputs

of the gating network gi at the top level are computed
according to:
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where Vi is the weight vector associated with gating
network gi. Due to the special form of the softmax being
non-linear, the gi’s are positive and sum up to one for
each input vector x(t). The lower level gating networks
compute their output activations similar to the top level
gating network according to the following expression:
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The output activations of the expert networks are
weighted by the gating networks’ output activations as
they proceed up the tree to form the overall output vec-
tor. Specifically, the output of the ith internal node in
the second layer of the tree is:

y g yi j i ij

j

= ∑ |

while the output at the top level node is:

y g yt
i i

i

( ) = ∑
Since both the g’s and the y’s depend on the input x(t),

the overall output of the architecture is a non-linear
function of the input.

Figure 1 Annotation of the glycans on the template env gp120 crystal structure PB4C (left-hand), and variations in structural locations of glycans
(right-hand).
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Local kernel machine as a collaborating filter to SV-HMM
As a key local collaborator, we use a support-vector
classifier [17] to assist the global HME model. SVMs are
known as maximum margin classifiers since they classify
their objects by minimizing the empirical generalization
error and maximizing the geometric margin simulta-
neously. Where the two classes are not separable, they
map the input space into a high-dimensional feature
space (where the classes are linearly separable) by using
a non-linear kernel function. The kernel function calcu-
lates the scalar product of the images of two examples
in the feature space. Given a n-dimensional input vector,
xi=(x1,x2,…,xn) with class labels, yi Î {+1,–1}, (i=1,2,...,N),
the hyperplane decision function of binary SVM with
kernel method is written as:

f x y a x x b y a k x x bi i i

i

i i i

i

( ) sgn ( ), ( ) sgn ( , )= +
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= +
= =
∑ Φ Φ

1 1

 

∑∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

and the following quadratic program:

maximize W a a a a y y k x xi

i

i j i j i j

i j

( ) ( , )
,

= −
= =
∑ ∑

1 1

1
2

 

subject to ai ≥ 0, i = 1,..., , and a yi i

i

=
=
∑ 0

1

.


where  is the number of training patters; ai are the
parameters of the SVM; k ⋅ ⋅( ), is a suitable kernel func-
tion, and b is the bias term.

Semi-parametric modelling to the local kernels
The use of xi examples, especially in high-dimensional
space causes several key problems. First, the good data
fitting capacity of the flexible “model-free” approach
often tends to fit the training data very well and thus,
have a low bias. However, the potential risk is overfitting
that causes high variance in generalisation. In general,
the variance is shown to be a more important factor
than the learning bias in poor prediction performance
[18]. Second, with the high-dimensional data such as
proteins, as the number of hidden nodes of the network
is severely increased, it eventually leads to an exponen-
tial rise in computational complexity. A high complexity
model generally shows a low bias but a high variance
[19]. On the other hand, a model with low complexity
shows a high bias but a low variance. Hence, a good
model should balance well between model bias and
model variance. This problem is generally regarded as
the term bias-variance tradeoff.
One of the solutions to the above problem is the so-

called semi-parametric modeling. Semi-parametric models
take assumptions that are stronger than those of non-
parametric models, but are less restrictive than those of
parametric model. In particular, they avoid many serious
practical disadvantages of non-parametric methods at the
price of an increased risk of specification errors.
To semi-parameterize SV-HMM, we substitute the

centroid vectors from voronoi region [20] for each

Figure 2 Modular hierarchical kernel experts as a global model. HME has a tree-like structure that uses the divide and conquer principle to
learn the interactions between HIV glycosylation sites. At the bottom of the tree (leaf nodes) are multiple locality effective support vector, that
will analyse the similarities between the given glycosylation sites.
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training sample xi used in the SVM decision function
(Figure 3). Consider a training sequence consisting of M
source vectors, T={x1, x2, …,xm}. M is assumed to be
sufficiently large and so that all the statistical properties
of the source are captured by the training sequence. We
assume that the source vectors are k-dimensional, Xm=
(xm,1, xm,2, …, xm,k), m=1,2,…,M. These vectors are com-
pressed by choosing the nearest matching vectors and
form a codebook consisting the set of all the code-vec-
tors. N is the number of code-vectors, C={c1,c2,…,cn}
and each code-vector is k-dimensional, cn=(cn,1,cn,2,…,cn,
k),n=1,2,…,N. The representative codevector is deter-
mined to be the closest in Euclidean distance from the
source vector. The Euclidean distance is defined by:

d x c x ci j ij

j

k

( , ) ( )= −
=

∑ 2

1

where xj is the jth component of the source vector, and
cij is the jth is components of the code-vector ci. Sn is the
nearest-neighbor region associated with code-vector cn,
and the partitions of the whole region are denoted by P=
{S1,S2,…,SN}. If the source vector Xm is in the region Sn, its
approximation can be denoted by Q(Xm)=cn, if Xm Î Sn.
The Voronoi region is defined by:

V x R x c x c j ii
k

i j= ∈ − ≤ − ≠{ : , } for all 

To find the most optimal C and P, vector quantization
uses a square-error distortion measure specifying exactly
how close the approximation is. The distortion measure
can be given as:

D
Mk

X Q Xave m m

m

M

= − ( )
=

∑1 2

1

If C and P are solution to the above minimization pro-
blem, then it must satisfy two conditions namely nearest
neighbor and centroid conditions. The nearest neighbor
condition indicates the sub-region Sn should consist of
all vectors that are closer to cn than any of the other
code-vectors. It is written as:

S x x c x c n Nn n n= − ≤ − ∀ ′ ={ }: , , , ...,’
2 2

1 2

The centroid condition requires the code-vector cn
should be average of all those training vectors that are
in its Voronoi Region Sn.

c
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The centroid vector of each voronoi region which can
be expressed as:

Q X c
x

N
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The new local SVM’s approximation can be written as:
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SVM is considered as a purely non-parametric model,
whereas SV-HMM is considered as semi-parametric
model as it adopts the method of grouping the asso-
ciated input vectors in each class i. Hence, the perfor-
mance of the proposed model has some advantages in
comparison to both pure parametric models and pure
non-parametric models in terms of learning bias and
generalization variance especially on high-dimensional
protein datasets.

Prediction of AIDS disease progression
Our hierarchical mixture modeling contains a number
of consecutive steps. First, structural glycosylation pro-
files from our HIV+ RP, SP and LTNP sequences were
used as the input data in our computational kernel ana-
lysis. By learning the differences in glycosylation changes
between patient samples, the SV-HMM was used to
classify a previously unseen glycosylation profile into
RPs, SPs or LTNPs. Second, the predicted classifications
were compared with the true disease group for the gly-
cosylation profile. These experiments were performed in
a series of steps. The SV-HMM and seven other well-
regarded machine learning models, transductive support
vector machine (SVMLIB) [21], SVM based decorate
model (Decorate SVM) [22], multi-layered perceptron
(MLP) [23], radial basis function network (RBFN) [24],
logistics [25], and decision trees (J48) [26] – were used
to analyse the glycosylation profiles.
For the analysis of each kernel model, we performed a

tenfold cross-validation evaluation on the dataset –
most widely adopted method for fair model evaluation
of general computational sequence-based classification
[37-42]. During the cross-validation phase, one fold data
were randomly chosen and excluded from the training

Yoo et al. BMC Genomics 2010, 11(Suppl 4):S22
http://www.biomedcentral.com/1471-2164/11/S4/S22

Page 6 of 10



set before model learning began, and were later used to
test the performance of the learnt model. This process
was repeated ten times. The cross validation protocol
was chosen to solve the potential problems caused by
residual evaluations. This is because, if the entire dataset
were used for training, the model could not provide
adequate indication of its effectiveness in predicting any
unseen data. Thus, it does not matter how the data is
divided as every data point gets to be in the test set
exactly once and, in the training sets, nine out of ten
times. Since every data point is tested exactly once, it
has been a widely used evaluation method for real
experimental sequence data, (just as the case in gp120
benchmark experiment) [37-42]. Finally, each model has
been measured by the predictive accuracy (CCI: cor-
rectly classified instances) of the kernel model. The final
CCI value was calculated based on the average of all the
prediction accuracies observed during the tenfold valida-
tion process. The mean squared error (MSE: a quantity
used to measure how close forecasts or predictions are
to the eventual outcomes), time (TBM: time to build
model), and model stability (STD: ST Deviation
obtained from ten sub-samples) were also measured in
the experiments. The stepwise procedure has been pro-
vided in Figure 4.

Results
In our comparison between the eight machine-learning
models, SVM-assisted hierarchical mixture models (SV-
HMM: semi-parametric, HMESVM: non-parametric) were
shown to be most suitable (CCI: 67.82%, 69.38%) for the
classification of HIV disease types using the glycosylation
profiles (Table 2). In general, SVM-based models such as
SV-HMM, HMESVM, SVMLIB and DecorateSVM performed

better than the other models in terms of CCI. This sug-
gests that the linear support vector approaches with RBF
kernel used in the standard SVMmodels accurately learns
the characteristics from structural gp120 profiles for the
prediction of AIDS disease progression. Mean testing data
±STD obtained by ANOVA test using optimal settings for
each model. The ANOVA CCI and STD of each model
are insignificant, which suggest that all the models are per-
forming consistently in the experiment. The performance
of our semi-parameterized SV-MHH model was the most
stable (STD: 0.8) in the classification of HIV disease stages
than the other machine-learning models, with the excep-
tion of the Logistic model, which also gave good predic-
tion stability due to its statistical nature.
These results showed that the hierarchical mixture

model approach used in the proposed SV-HMM model
can consistently capture critical changes to HIV glycosy-
lation profiles and can be used to predict AIDS disease
progression. Associative differences in the glycosylation
profile that determine disease progression might be
located far apart in the sequence, but close together in
the tertiary structure. The results also suggest that the
modular approaches used in SV-HMM and HMESVM is
able to capture these non-local interactions. Thus, our
proposed models are resistant to model over-fitting and
weak signal to noise ratio during the learning phase and
can avoid the vanishing gradient problem in this
scenario.
Our structural glycosylation profiles of our gp120 mod-

els were created using the template crystal structure. The
distance between the matching glycosylation sites from
our model to the template structure (Figure 1, left-hand)
was calculated to create the glycan profile. Most glycosy-
lation sites had an equal contribution of structural

Figure 3 The basic architecture of semi-parameterized SV-based local models. The centroid vectors from voronoi region for each training
sample xi used in the SVM decision function. SVM is considered as a purely non-parametric model, whereas SV-HMM is considered as semi-
parametric model as it adopts the method of grouping the associated input vectors in each class i. RBF kernel has been used for the SV-based
local models.
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variations by the three disease groups, with the exception
of glycan N213 in the C3 region, where there were
more structural glycan differences in the LTNP models
(Figure 1, right-hand). When we compared the average
structural variation observed, glycan sites 115, 129, 243,
254 were more structurally variable (>50%).
The gp120 protein exists as a trimer and the inner

domain of gp120 (coloured grey) faces the trimer axis
(left-hand). The outer domain (coloured blue) faces
away from the trimer axis and is exposed on the envel-
ope surface. Coloured red spheres represent the glycosy-
lation sites on our template structure. The V3, V4 and
V5 loop regions are annotated. The CD4 molecule (yel-
low) that binds to gp120 is included to give a better per-
spective of the protein. Each pie chart (right-hand)
represents the percentage of glycan structural variations
by the LTNP, RP or SP samples at each glycosylation
site. The area of the pie charts is proportional to average
structural variation observed. Connecting lines indicate

the primary (sequence) ordering of the glycosylation
sites.

Discussion
A prediction accuracy of 67 to 69% was achieved in the
classification of HIV envelope sequences from RP, SP
and LTNP patients. The structural glycan profiling tech-
nique was designed to encapsulate the frequent and var-
ied structural changes to glycosylation sites observed in
HIV envelope gp120. Structural glycan modifications
from the entire envelope gp120 were characterized at
the same time to provide a macroscopic view of the car-
bohydrate landscape. Interactions between glycosylation
sites were analysed by the division of the glycan input
space into smaller and more manageable problems,
using the modular kernel design adopted in hierarchical
kernel mixture architecture. These partial solutions were
then integrated to yield an overall solution to the whole
problem. The modular approach enforces constant error
flow through the internal states of neural-network units.
By doing so, we were able to study interactions between
glycosylation sites that are located far apart in the
sequence, which were not possible using traditional
machine-learning methods. While the framework was
successful in identifying critical changes to glycan pro-
files for different disease progression rates, we were lim-
ited to the number of available patient samples that
were well characterized clinically. Having more SP
sequences in our dataset also meant that we had to
address the potential bias in our learning model.
Another reason for the reduction of predictive power

for HIV disease progression could be due to the absence
of structural information from the V1-V2 loops of
gp120. During the crystallization process, the V1-V2
loops were normally deleted in order to promote better

Figure 4 The flowchart of SV-HMM showing the stepwise procedure. The above figure shows the stepwise procedure we have performed.
(1) data collection, building gp120 benchmark dataset and pre-processing datasets; (2) structural gp120 profile construction including matching
up and calculating the 3D distance between every glycan of the query and template models. (3) the information obtained in (2) and (3) were
combined and normalised to fall in the interval [–1, 1] to be fed into networks; (4) target levels were assigned to each profile (positive, +1, for
RPs, 0 for SP. –1 for LTNP); (5) a hold-out method, to divide the combined dataset into ten subsets (training and testing sets); (6) model training
on each set, to create a model; (7) simulation of each model on the test set, to obtain predicted outputs; and (8) post-processing to find
predicted HIV progressor groups. The procedure from (6) to (8) was performed iteratively until we obtained the most suitable kernel and the
optimal hyperparameters for SV-HMM for gp120 benchmark dataset.

Table 2 Model comparison on gp120_Benchmark_1
dataset

Models MSERP MSESP MSELTNP MSEOverall CCI STD TBM

SV-HMM 38.02 30.46 45.57 30.21 67.82 0.8 2.62

HMESVM 36.35 24.13 44.43 29.76 69.38 1.9 1.35

SVMLIB 54.53 20.68 44.43 32.65 67.39 1.1 0.17

DecorateSVM 81.82 10.34 55.55 32.88 65.31 2.7 3.02

MLP 72.43 27.59 55.57 27.27 57.14 4.2 4.14

RBFN 63.63 27.58 77.78 29.32 55.10 3.8 0.06

Logistic 63.63 34.48 66.66 31.35 53.06 1.0 0.11

J48 90.91 37.93 66.67 37.77 44.90 3.0 0.01

The final CCI value was calculated based on the average of all the prediction
accuracies ob-served during the tenfold validation process. MSE, TBM and STD
(ST Deviation obtained from ten sub-samples) indicate the accuracy,
complexity and stability of the model respectively.
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crystallization. Thus, no V1-V2 structural information is
available to date. Unfortunately, the V1 and V2 glycans
are important to disease progression. Structurally, the
V1 and V2 glycans protect the bridging sheet between
the inner and outer domain of HIV envelope gp120
[27], and influence AIDS progression through host-
receptor modulation during an infection. Any changes
to the V2 glycan can potentially restrict the capacity of
HIV-1 to replicate [28]. Without the correct glycosyla-
tion profile from the V1 V2 loops, we can only, at best,
develop a partial mapping of the envelope carbohydrate
landscape to determine AIDS progression.
During the glycan profiling, the V3 region of our

sequence was not included in the analyses, as the tem-
plate crystal structure (PDB: 2B4C) was not glycosylated
in the V3 region. This might also have partially disad-
vantaged the model’s prediction power, as the V3 region
is known to indirectly influence disease progression
rates. When HIV infects a host cell, the gp120 protein
first attaches to a CD4 molecule, followed by the bind-
ing to either the CCR5 or CXCR4 co receptor [29,30].
Viral strains that preferentially bind to CCR5 are less
pathogenic, while viruses that prefer CXCR4 are more
virulent and are associated with faster disease progres-
sion [31]. The ability to use the CXCR4 co-receptor is
influenced by the absence of the glycan in the V3 region
only [32], whereas the use of CCR5 co-receptor is col-
lectively influenced by the amino acid makeup and gly-
can profiles in the V1, V2 and V3 regions all together
[32,33]. Thus, the occlusion of V3 glycans from our
study might have partially weakened our prediction
results. On the contrary, the stable prediction rate with-
out the influence of V1, V2 and V3 glycans showed that
the other glycans outside these regions are important to
disease progression. This observation is consistent with
several previously reported findings. For example, glycan
modification within the C3 region can affect viral fuso-
genicity and entry kinetics [6], while both V4 [34] and
C4 [7] glycans can affect the CD4 binding.

Conclusion
This paper addressed two important issues in the predic-
tion of AIDS disease progression. First, it provides a for-
mal framework for researchers to understand the effect
of whole envelope structural glycan modification against
phenotypic changes to viral pathogenesis, like receptor
binding ability, replication efficiency and infectivity pre-
dictions. It is the first study in the literature that uses the
structural glycan information in the analysis of HIV
which was made possible by the availability of the HIV
envelope crystal structures and sophisticated homology
modelling protocols. Second, our novel framework uses
semi-parameterized, support-vector assisted hierarchical
mixture model, which is able to effectively exploit the

information of non-local interactions with strong
resistance to vanishing-gradient and high-dimensionality
problems. This also provided a way of fine-tuning the
model by the adjustment of hyper-parameters as well as
providing efficient semi-parametric approximation. With
the newly built gp120-Benchmark_1 dataset, our novel
framework which uses SV-HMM and HIV structural
gp120 profile has set an important benchmark for the
computational prediction of AIDS disease progression.
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