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Abstract

Background: The horn fly, Haematobia irritans (Linnaeus, 1758) (Diptera: Muscidae) is one of the most important
ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally,
horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to
conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST) analysis and RNA
interference (RNAi).

Results: A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn
flies. High quality horn fly ESTs (2,160) were sequenced and assembled into 992 unigenes (178 contigs and 814
singlets) representing molecular functions such as serine proteases, cell metabolism, mitochondrial function,
transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell
response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion,
and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown
by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin,
ferritin and vATPase groups) or both (immune response and 5’-NUC groups) when compared to controls. Silencing
of ubiquitination ESTs did not affect horn fly mortality and ovisposition while gene knockdown in the ferritin and
vATPse functional groups reduced mortality when compared to controls.

Conclusions: These results advanced the molecular characterization of this important ectoparasite and suggested
candidate protective antigens for the development of vaccines for the control of horn fly infestations.

Background
The horn fly, Haematobia irritans (Linnaeus, 1758)
(Diptera: Muscidae) is one of the most important ecto-
parasites of pastured cattle [1]. This fly was originally
introduced from Europe and currently represents a tre-
mendous health problem for cattle in the Americas
from Southern Canada to Argentina [2]. Although horn
flies parasitize mainly cattle, occasionally they feed on
horses, sheep and dogs [3].
The developmental cycle of H. irritans is very short,

taking from 10 to 14 days to complete. Larvae and
pupae develop on dung and once the flies emerge from
pupae, immediately start and remain feeding on cattle

during their whole life. Flies leave the host only to move
to others or to lay eggs on fresh manure [1]. Both males
and females feed 24 to 38 times per day ingesting an
average of 14.3 mg blood per fly [4].
Horn flies infestations interfere with animal feeding,

thus producing significant reductions in weight gain
and milk production [5,6]. The economic impact of
H. irritans on livestock in the United States was esti-
mated in approximately US$1 billion annually [7,8]. In
dairy cattle, infestations higher than 200 flies per animal
produce a loss of 520 ml milk and 28 kg weight daily
[6]. In beef cattle, H. irritans infestations can cause a
reduction of 8.1 kg weight daily [5]. Moreover, the skin
lesions caused by the intermittent feeding of horn flies
produce significant hide damages, affecting considerably
the leather industry [9]. Additionally, horn flies are
mechanical vectors of different pathogens that cause
disease in cattle [10-14].
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The control of horn flies has been primarily based on
the use of chemical insecticides [15,16]. This control
strategy has been partially successful but has resulted in
the selection of flies resistant to most commercially
available insecticides [15-17]. In addition to resistance,
chemical insecticides affect other living organisms, con-
tribute to environmental pollution and contaminate cat-
tle products for human consumption.
Recently, research has been conducted to develop new

horn fly control strategies that are cost-effective and
environmentally friendly. The efficacy of the entomo-
pathogenic fungi, Metarhizium anisopalinae, against
horn fly larvae was very high in vitro [18]. However,
field application of entomopathogenic fungi for biologi-
cal control of horn flies is difficult. The use of female-
specific conditional lethality systems has been also con-
sidered but not yet developed [19].
The immunological control of ectoparasite infesta-

tions was demonstrated through cattle vaccination
against tick infestations [20,21]. The effect of anti-tick
vaccines on the reduction of cattle tick infestations
and the transmission of some tick-borne pathogens
[21-23] and preliminary results obtained in insect vec-
tor species [24-32] have provided evidence that protec-
tive antigens may be used for development of vaccines
with the dual target control of both arthropod infesta-
tions and reduction of vector capacity to transmit
pathogens that impact human and animal health.
Recently, Cupp et al. [33] demonstrated that horn flies
fed on cattle immunized with the anti-clotting factor
thrombostasin, took smaller blood meals and the egg
development was delayed. Although other molecules
have been proposed as vaccine candidates against horn
flies [16,34,35], further research is needed to identify
new vaccine candidates for effective control of horn fly
infestations.
Recently, RNA interference (RNAi) was proposed as a

method to identify candidate tick protective antigens
[36] and was used for the screening of tick genes with
potential applications in vaccine development [37-39].
The aim of this study was to conduct a functional

genomics study in female horn flies using Expressed
Sequence Tags (EST) analysis and RNAi. The results of
this study will advance the molecular characterization of
this important ectoparasite and suggested candidate pro-
tective antigens for the development of vaccines for the
control of horn fly infestations.

Results
Assembly and annotation of female horn fly Expressed
Sequence Tags (ESTs)
A cDNA library was made from whole abdominal tis-
sues collected from partially fed adult female horn flies.
From 2,462 sequenced ESTs, 302 and 2,160 were low

and high quality ESTs, respectively (Table 1). Empty or
vector ESTs were not obtained.
Since the female horn fly cDNA library was not nor-

malized, the EST distribution per contig was quantified
to determine the redundancy level of our EST dataset.
High quality ESTs were assembled into 992 unigenes
(178 contigs and 814 singlets) (Table 1; Additional file
1: Table S1), representing 46% novelty (unigenes/
assembled ESTs) in our dataset. ESTs (814) present as
singleton sequences represented 82% of all unigenes,
while 72 unigenes (7%) contained only two ESTs. On
average, the number of ESTs per unigene was 2.2, which
suggested a low diversity in our dataset.
BLAST searches to TrEMBL and Swiss-Prot databases

assigned 367 proteins to molecular function Gene
Ontology (GO) terms (Figure 1). One hundred unigenes
(10%) containing 535 ESTs (25%) corresponded to serine
proteases. Other molecular functions represented in the
unigenes included those involved in cell metabolism,
mitochondrial function, transcription and translation,
transport, chromatin structure, vitellogenesis, cytoskele-
ton, DNA replication, cell response to stress and infec-
tion, cell proliferation and cell-cell interactions,
intracellular trafficking and secretion, and development
(Figure 1). Of the 367 unigenes with molecular function
GO assignments, 184 could be assigned to Clusters of
Orthologous Groups of proteins (COG) (Figure 2). The
COG comprising posttranslational modification, protein
turnover and chaperones contained 40% of proteins
with COG assignments, followed by translation, riboso-
mal structure and biogenesis (17%) and energy produc-
tion and conversion (12%) (Figure 2).
A relatively large set of 449 unigenes (45%) lacked any

significant sequence similarity (Blast E values > 10-5) to
any sequence available in the public databases. Of all
the 543 unigenes with significant sequence similarity to

Table 1 Statistics of horn fly EST assembly

Number of sequences 2,462

Mean length ± S.D. before vector stripping 877 ± 44 bp

Mean length ± S.D. after vector stripping 653 ± 32 bp

High quality EST reads 2,160

Assembled ESTs 2,160

No. unigenes 992

Mean length ± S.D. 758 ± 46 bp

No. unigenes with more than 20 ESTs 13

No. unigenes with 5-20 ESTs 44

No. unigenes with less than 5 ESTs 935

No. contigs 178

No. singlets 814

Novelty (unigenes/assembled ESTs) 46%

Redundancy (1-Novelty) 54%
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previously published sequences, 88.8% were most similar
to Diptera (Drosophila spp., H. irritans, Musca domes-
tica, Lucilia cuprina, Glossina spp., Stomoxys calcitrans,
Aedes aepgypti, Sarcophaga spp., Phlebotomus papatasi,
Chrysomyia bezziana, Anopheles gambiae, Ceratitis
stricta, Trichopalpus fraterna, Automola atomaria,
Nanna tibiella, Bactrocera dorsalis, Lutzomyia longipal-
pis, Eristalinus punctulatus, and Ophiomyia sp.), 1.5% to
other insect species (Spodoptera frugiperda, Tribolium
castaneum, Gryllus bimaculatus, Lonomia obliqua,
Nasonia vitripennis, and Lymantria dispar), 5.5% to
other eukaryotic organisms, and 4.2% to microorganisms
(Table 2).

Thirteen unigenes assembled from 505 sequence
reads, contained more than 20 ESTs, most probably
representing transcripts with highest abundance in
abdominal tissues of partially fed female horn flies
(Table 3). As expected from the results of the annota-
tion of the entire EST dataset, 10 (77%) of these uni-
genes corresponded to serine proteases (Table 3). The
second largest group of ESTs was derived from mito-
chondrial transcripts (Table 3). The analysis of serine
protease unigene sequences showed that although some
of them may be paralogs (for example unigenes 1-2 and
3-5; Table 3), other probably reflect sequence poly-
morphisms within the horn fly population because they
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Figure 1 Functional grouping of horn fly unigenes based on Gene Ontology (GO) molecular function assignments.
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had 97%-98% nucleotide sequence identity (for example
between unigenes 3-5; Table 3).

Functional characterization of horn fly ESTs by RNAi
For functional genomics studies, selected unigene func-
tional groups were used in RNAi experiments in female
horn flies (Table 4). These groups included serine pro-
tease, protease inhibitor, vitellogenin (VTG), ubiquitina-
tion, ferritin (FER), vacuolar (H+)-ATPase (vATPase),
proteasome component, immune response and 5’-
nucleotidase (5’-NUC) ESTs and were selected based on
their putative function in insect biology and previous
results of RNAi experiments in other arthropods (see
Discussion). As controls, ESTs with sequence identity to
Nora virus and Wolbachia endosymbionts were selected
(Table 4). The injection of these control dsRNAs did
not affect horn fly mortality (b = -0.01, Wald Chi2 =
0.01, P = 0.91) and oviposition (P > 0.05) when com-
pared to buffer-injected flies in 14 independent RNAi
experiments (Table 5), thus supporting their use as con-
trols. Significant gene knockdown was obtained for at
least one targeted unigene sequence on each group
except for the serine protease group 1 in which signifi-
cant gene expression silencing was not obtained for any
of the unigenes included in the analysis (Table 5). For
some sequences, gene knockdown was observed as early
as 6 h post-injection (hpi) and lasted at least until 36
hpi (Table 5). For other sequences in groups 8 and 9,

gene knockdown was not detected until after 12 hpi
(Table 5). In most cases, gene expression silencing was
higher than 70% when compared to the control group
(Table 5).
To analyze RNAi off-target effects, the expression of

genes not targeted by the injected dsRNA was analyzed at
12 hpi in functional groups 7-9 (Figure 3). The results
showed that the expression of genes not targeted by the
injected dsRNA was silenced in all three groups analyzed
(Figure 3), thus suggesting RNAi off-target effects in horn
flies. Pairwise sequence alignments identified regions with
homology ≥ 11 bp in some sequences (Figure 4). However,
only one region had 21 bp homology between unigene
sequences 13_D07 and 7_A04 (Figure 4).
Injection of dsRNAs in the serine protease and ubiqui-

tination functional groups did not affect fly mortality
(b = 0.09, Wald Chi2 = 2.68, P = 0.10 and b = 0.07, Wald
Chi2 = 3.60, P = 0.08, respectively) or oviposition (P >
0.05) when compared to controls (Table 5). The knock-
down of a protease inhibitor gene (elastase) resulted in
higher fly mortality (b = 0.60, Wald Chi2 = 13.35, P =
0.0002) but did not affect oviposition (P > 0.05) when
compared to controls (Table 5). VTG-2 and proteasome
component genes knockdown did not affect fly mortality
(b = 0.03, Wald Chi2 = 1.42, P = 0.22 and b = 0.13, Wald
Chi2 = 2.59, P = 0.107, respectively) but significantly (P <
0.005) reduced oviposition (Table 5). When the expression
of immune response and 5’-NUC genes was silenced,

Figure 2 Horn fly unigene assignment to Clusters of Orthologous Groups of proteins (COG; http://www.ncbi.nlm.nih.gov/COG).
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higher fly mortality (b = -0.46, Wald Chi2 = 7.39, P = 0.006
and b = 0.35, Wald Chi2 = 4.65, P = 0.03, respectively) and
reduced oviposition (P < 0.005) were obtained when com-
pared to controls (Table 5). Interestingly, knockdown of
FER light chain and vATPase genes resulted in lower fly
mortality (b = 0.21, Wald Chi2 = 5.12, P = 0.02 and b=-
0.16, Wald Chi2 = 14.70, P = 0.0001, respectively), and 6
and 16-fold decrease in oviposition (P < 0.005) when com-
pared to control dsRNA-injected flies (Table 5).

Discussion
The effective control of horn fly infestations requires the
design of new control strategies. Genomics and func-
tional genomics studies are important to understand
basic biological questions and to identify new targets for

improved control strategies. Recently, gene expression
analysis was reported in horn fly embryos, larvae and
adult females [19,35]. However, this is the first report of
functional genomics studies in this species.
ESTs sequenced and assembled in this study provided

new sequence information for horn fly. The assembled
unigenes without sequence similarity to sequences in
public databases probably represented unique transcripts
for horn fly or corresponded to proteins that have not
yet been identified in related organisms due to incom-
plete genomic information. However, it cannot be
excluded that the identified ESTs represent parts of
known proteins whose similarities are located in parts of
the sequence that are not covered by the analyzed ESTs.
The number of ESTs assembled into a certain unigene

roughly reflected the relative abundance of corresponding
mRNAs since the cDNA library from female horn flies
used in this study was not normalized. We found that
100 unigenes, containing 25% of the ESTs, corresponded
to serine proteases, indicating that this group represented
the most abundantly expressed genes in abdominal tis-
sues of partially fed female horn flies. In fact, the uni-
genes with the largest number of ESTs represented
members of the serine protease family, thus suggesting
that posttranslational modification and protein turnover
were highly active in partially fed female flies.
The high proportion of ESTs present as singleton

sequences when compared to contigs reflected a low
diversity in our dataset, probably due to the presence of
paralogs and sequence polymorphisms for some
unigenes. In fact, sequence analysis of serine protease
unigenes makes at this point difficult to discriminate
between paralogs and ESTs representing sequence poly-
morphisms within the horn fly population.
RNAi was used to functionally characterize selected

horn fly genes in adult female flies. To our knowledge,
this is the first report of RNAi in horn flies. RNAi has
been used to study gene function in insects and other
arthropods [37,40-49] and to screen for candidate protec-
tive antigens in ticks [36-39]. Although with some fly
mortality probably due to dsRNA injection with a Hamil-
ton syringe, the RNAi method used here produced repro-
ducible results in female horn flies. The failure to
demonstrate gene knockdown for some sequences in ser-
ine protease and other functional groups studied could
be due to unknown factors affecting RNAi in horn flies,
because gene expression silencing did not occur until
after 24-36 hpi for these genes or due to the existence of
paralogs in these groups that affected the efficacy of gene
knockdown. Gene silencing mediated by RNAi depends
on short interfering RNAs (siRNAs) and micro RNAs
(miRNAs). These RNAs have unique features, namely
a defined size of 19-21 pb, and characteristic two-nucleo-
tide single-stranded 3’ overhangs and 5’ monophosphate

Table 2 Distribution of annotated unigenes to different
species

Species Total No. of unigenes Ratio (%)

All organisms 543 100

Insects (Diptera) 482 88.8

Drosophila spp. 289 53.2

H. irritans 89 16.4

Musca domestica 22 4.0

Lucilia cuprina 16 2.9

Glossina spp. 15 2.8

Stomoxys calcitrans 14 2.6

Aedes aepgypti 11 2.0

Sarcophaga spp. 9 1.7

Phlebotomus papatasi 3 0.6

Chrysomyia bezziana 3 0.6

Anopheles gambiae 3 0.6

Ceratitis stricta 1 0.2

Trichopalpus fraterna 1 0.2

Automola atomaria 1 0.2

Nanna tibiella 1 0.2

Bactrocera dorsalis 1 0.2

Lutzomyia longipalpis 1 0.2

Eristalinus punctulatus 1 0.2

Ophiomyia sp. 1 0.2

Insects (Other) 8 1.5

Tribolium castaneum 2 0.4

Gryllus bimaculatus 2 0.4

Spodoptera frugiperda 1 0.2

Lonomia obliqua 1 0.2

Nasonia vitripennis 1 0.2

Lymantria dispar 1 0.2

Other eukaryotes 30 5.5

Microorganisms 23 4.2

Over 90% of best hits matched to insects. Only less than 10% of all best hits
matched to other eukaryotes and microorganisms.
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groups [50]. Although RNAi off-target effects were shown
in horn flies, most sequence alignments resulted in
homology regions of 11 bp only and in some cases no
homology ≥ 11 bp was found. These results suggested
differences in RNAi specificity and sensitivity, a fact that
needs to be fully characterized to understand and

efficiently use RNAi in horn flies and other organisms
[37,48,51].
The aim of this study was to conduct a functional

genomics study in female horn flies combining EST ana-
lysis with RNAi. Therefore, we will focus the discussion
on unigene functional groups characterized by RNAi.

Table 3 Transcripts with highest abundance in abdominal tissues of partially fed female horn flies

Unigene annotation

Unigene No. [GenBank
accession number]

Number of
clustered ESTs

Sequence identity Clusters of Orthologous Groups
of proteins (COG)

Molecular function Gene
Ontology (GO) term

1 [HO004732] 21 L. cuprina clone sbsp9 serine
proteinase

Posttranslational modification,
protein turnover, chaperones

Secreted trypsin-like serine
protease

2 [HO004733] 21 L. cuprina clone sbsp9 serine
proteinase

Posttranslational modification,
protein turnover, chaperones

Secreted trypsin-like serine
protease

3 [HO004734] 22 H. irritans serine protease Posttranslational modification,
protein turnover, chaperones

Secreted trypsin-like serine
protease

4 [HO004735] 25 H. irritans serine protease Posttranslational modification,
protein turnover, chaperones

Secreted trypsin-like serine
protease

5 [HO004736] 25 H. irritans serine protease Posttranslational modification,
protein turnover, chaperones

Secreted trypsin-like serine
protease

6 [HO004737] 26 D. pseudoobscura GA21163-
PA (Dpse\GA21163)

Amino acid transport and
metabolism

Zinc carboxypeptidase

7 [HO004738] 28 H. irritans serine protease
mRNA

Posttranslational modification,
protein turnover, chaperones

Secreted trypsin-like serine
protease

8 [HO004739] 30 L. cuprina clone sbsp9 serine
proteinase

Posttranslational modification,
protein turnover, chaperones

Secreted trypsin-like serine
protease

9 [HO004740] 33 H. irritans serine protease Posttranslational modification,
protein turnover, chaperones

Secreted trypsin-like serine
protease

10 [HO004741] 37 H. irritans mitochondrion,
complete genome

Mitochondria

11 [HO004742] 40 H. irritans serine protease Posttranslational modification,
protein turnover, chaperones

Secreted trypsin-like serine
protease

12 [HO004743] 90 H. irritans serine protease Posttranslational modification,
protein turnover, chaperones

Secreted trypsin-like serine
protease

13 [HO004744] 107 H. irritans mitochondrion,
complete genome

Mitochondria

Table 4 Horn fly unigene functional groups selected for RNAi

Group N° Functional group N° of unigenesa Unigenes selected for RNAib

1 Serine protease 100 5, 10, 14, 19, 42, 90, 224, 230

2 Protease inhibitor 2 2_B12, 24_H02

3 Vitellogenin 13 7, 20, 37, 76, 89, 145, 176, 7_D07

4 Ubiquitination 5 84, 146, 4_E04, 5_G03, 7_B08

5 Ferritin 5 26, 39, 154, 156, 10_A09

6 vATPase 3 7_F08, 9_A08, 17_H03

7 Proteasome component 3 6_G04, 7_A04, 12_H09

8 Immune response 2 6_F11, 10_G05

9 5’-nucleotidase 1 13_D07

10 (negative control) Infectious agents:
Nora virus
Wolbachia endosymbionts

3
3

191
2_E12

aNumber of unigenes grouped into this category.
bWhen the number of unigenes in the functional group was greater than 5, unigenes were selected for RNAi to include all different genes present in this
category. Unigenes GenBank accession numbers are shown in Table 6.
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Serine proteases
Serine proteases are a group of endopeptidases involved
in several processes such as digestion, immune response,
blood clotting and inflammation. In female horn flies,
10% of the assembled unigenes, containing more than
500 ESTs, were identified as serine proteases. In agree-
ment with these results, Guerrero et al. [19] recently
showed that serine proteases are differentially expressed
in fly adult stages when compared to larvae. Significant
gene knockdown was not obtained for any of the genes
targeted by dsRNA injection in this group. Conse-
quently, RNAi did not affect fly mortality or oviposition.
In other arthropods, silencing of serine proteases
expression by RNAi showed that these proteins are
involved in blood digestion, oocyte maturation, develop-
ment and immune response [40,42-44,46,52-55].

Protease inhibitors
The protease inhibitor genes identified in female horn
flies corresponded to serpins, inhibitors of serine pro-
teases and thus involved in the same biological pro-
cesses discussed before for serine proteases. A horn fly
serine protease inhibitor gene was previously cloned and
characterized, suggesting that these genes may be
involved in the control of fly endogenous and pathogen
proteases [56,57]. In mosquitoes, serpin RNAi affected
insect immune response [58]. The elastase inhibitor
gene knockdown significantly increased horn fly mortal-
ity at 12, 24 and 36 hpi. Thus, the effect of elastase inhi-
bitor RNAi described here in horn flies may be the
result of impaired fly protease control and/or the effect
of increased susceptibility to persistent pathogen infec-
tions resulting from diminished immune response.

Table 5 Results of RNAi experiments in female horn flies

Group No.a Cumulative percent mortality Oviposition
(eggs per survived fly)b

Expression silencing (average% ± SD)
with respect to group 10 controlc

dsRNA
injectedd

12 hpi 24 hpi 36 hpi 6 hpi 12 hpi 24 hpi 36 hpi

1
(Serine protease)

57 ± 6 69 ± 11 78 ± 2 0.88 ± 0.23 ND ND 57 ± 50
0 ± 0

ND 90
230

2*
(Protease inhibitor)

73 ± 11 84 ± 7 94 ± 1 2.56 ± 1.80 ND ND 83 ± 3** ND 2_B12

3
(Vitellogenin)

55 ± 11 67 ± 8 74 ± 8 0.31 ± 0.9** ND ND 0 ± 0
0 ± 0

100 ± 2*

ND 7
20
76

4
(Ubiquitination)

42 ± 12 67 ± 11 83 ± 16 0.64 ± 0.63 ND ND 92 ± 6*
70 ± 24
46 ± 43

ND 84
146
4_E04

5*
(Ferritin)

24 ± 23 39 ± 37 47 ± 41 0.22 ± 0.17** ND ND 68 ± 13*
86 ± 86

ND 26
154

6*
(vATPase)

17 ± 13 24 ± 11 34 ± 3 0.08 ± 0.05** ND ND 78 ± 6*
100 ± 1*
99 ± 8*

ND 7_F08
9_A08
17_H03

7
(Proteasome component)

64 ± 3 76 ± 8 84 ± 11 0.38 ± 0.03** 98 ± 2*
100 ± 6*

100 ± 2*
67 ± 9*

ND ND 0 ± 0 ND 7_A04
12_H09

8*
(Immune response)

66 ± 7 ND 99 ± 8 0.23 ± 0.09** 100 ± 8*
0 ± 0

92 ± 5
0 ± 0

ND ND 96 ± 9*
98 ± 8*

6_F11
10_G05

9*
(5’-nucleotidase)

50 ± 11 ND 91 ± 22 0.12 ± 0.09** 0 ± 0 98 ± 9* ND 70 ± 7* 13_D07

10
(negative control)

45 ± 24 57 ± 30 64 ± 27 1.26 ± 0.90 — — — — 191
2_E12

Injection buffer 46 ± 28 57 ± 30 65 ± 29 1.50 ± 1.01 0 ± 0 0 ± 0 0 ± 0 0 ± 0 None
aThe average ± S.D. of two independent RNAi experiments for each of the test groups 1-9 and 14 experiments for the negative control and injection buffer
groups is shown. One hundred flies were used on each RNAi experiment. Cumulative percent mortality was evaluated in female horn flies at 12, 24 and 36 hpi.
Survival curves (temporal rates of mortality) were compared between different treatments and the control group 10 using Cox Proportional Hazards Survival
Regression analysis (*P < 0.05). Abbreviation: ND, not determined.
bOviposition data from test groups 1-9 and the injection buffer control were compared with the unrelated dsRNA-injected control group 10 by Student’s t-test
(**P < 0.005).
cFor analysis of expression silencing, the mRNA levels of each knockdown gene were determined by real-time RT-PCR in 4 individual flies each at 6, 12 and 24 or
36 hpi. Percent expression silencing shown at different hpi corresponds to each individual gene targeted by dsRNA injection. The mRNA levels were normalized
against horn fly 16S rRNA and the mean of the duplicate normalyzed Ct values from test dsRNA-injected groups 1-9 and in the injection buffer control were
compared with the unrelated dsRNA-injected control group 10 by Student’s t-test (*P < 0.05, **P < 0.005).
dUnigenes GenBank accession numbers are shown in Table 6.
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Vitellogenin
VTGs constitute a multigene superfamily encoding for
egg yolk precursor proteins expressed in the females of
arthropods and other oviparous organisms [59]. In cock-
roaches, ants and ticks, knockdown of VTG receptor
(VTG-R), essential for VTG uptake into developing
oocytes, disrupts egg formation [41,60-62]. In honey-
bees, silencing of VTG expression by RNAi affects hon-
eybee workers developmental behavior [63,64]. Similar
to results of VTG-R knockdown in other arthropods,
silencing of VTG-2 expression in horn flies reduced ovi-
position in 4-fold when compared to controls.

Ubiquitination
Ubiquitination is a post-translational modification car-
ried out by a set of enzymes that affect protein protea-
somal degradation, stability, function, and intracellular
localization [65]. In this functional group, horn fly genes
involved in the ubiquitination pathway such as ubiqui-
tin-1 (UBQ-1), UBQ-protein ligase, and UBQ hydrolase
were included. In this group, only the UBQ-protein
ligase expression was significantly silenced after RNAi.
Although UBQ-protein ligase has been shown to regu-
late apoptosis in Drosophila [66], knockdown of this
gene did not affect horn fly mortality or oviposition.
Thus, it may be possible that the phenotype resulting
from silencing the UBQ-protein ligase expression was
not evident in horn flies under our experimental condi-
tions. Additionally, knockdown of other ubiquitination
genes may be required in order to have a significant
effect on horn fly mortality and oviposition. For exam-
ple, UBQ knockdown in ticks causes mortality and
reduces oviposition and Anaplasma marginale infection/
multiplication in the guts [39,67].

Ferritin
FER is the main protein for intracellular iron storage
and consists of 2 types of subunits, a heavy (ferroxidase
sites) and a light chain (nucleation sites) [68]. FER light
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7_A04
ATATCGAATTCGTATCGGCCA

||||||| |||||||||||||
ATATCGAGTTCGTATCGGCCA

7_A04
CATTTTGGAAT

|||||||||||
CATTTTGGAAT

12_H09
TTTGTAAAATT

|||||||||||
TTTGTAAAATT

13_D07

6_F11

10_G05

12_H09
CATTCAAACCC

|||||||||||
CATTCAAACCC

6_F11
NONE

10_G05
TGCCCAACAAT

|||||||||||
TGCCCAACAAT

12_H09
TATCCATAGACT

||||||||||||
TATCCATAGACT

7_A04
NONE

Figure 4 Pairwise sequence alignment of dsRNA sequences
showing homology regions ≥ 11 nucleotides. Sequence
alignments were done between the sequences used in the
experiment described in figure 3. Abbreviation: ND, not determined.
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(3 unigens containing 5 ESTs) and heavy (2 unigenes
containing 4 ESTs) chains were not among the most
abundant ESTs identified in female horn flies. However,
Guerrero et al. [35] found FER light chain as one of the
most abundant transcripts in horn fly larvae. These
results suggested differences in the FER expression
between horn fly larvae and adult females. FER light
chain knockdown in horn flies significantly reduced ovi-
position (6-fold with respect to controls), but surpris-
ingly fly mortality was reduced when compared to
controls. In ticks, FER RNAi reduces not only oviposi-
tion but also feeding and A. marginale infection levels
in IDE8 cells [67,68].

vATPase
vATPase is a multisubunit enzyme that mediates acidifi-
cation of eukaryotic intracellular organelles and has
been shown to be required for the normal function of
the Golgi complex, endoplasmic reticulum, vacuoles and
endocytotic and exocytotic vesicles [69]. vATPase was
also implicated in immunity [70]. Guerrero et al. [35]
identified vATPase as one of the most abundant tran-
scripts in horn fly larvae. However, in adult females,
only 3 ATPase unigenes were assembled with one EST
each, those suggesting like previously for FER, differ-
ences in the vATPase expression between horn fly larvae
and adult females. Genetic knockout of vATPase subu-
nits resulted in lethal phenotypes in fruit flies (Droso-
phila melanogaster), flour beetles (T. castaneum), pea
aphids (Acyrthosiphon pisum), and tobacco hornworms
(Manduca sexta) [69,71] and reduced influenza virus
replication in Drosophila cells [72]. RNAi of vATPase
expression in ticks resulted in testis and salivary gland
degeneration, suggesting a role for this molecule in the
function of these organs [73] and reduced A. marginale
infection in Dermacentor variabilis tick guts but not
pathogen multiplication in IDE8 tick cells [67]. vATPase
knockdown in horn flies resulted in 16-fold reduction in
oviposition but, as with FER light chain, fly mortality
was reduced when compared to controls. These results
suggested that despite the important function of vAT-
Pase in all arthropods, developmental stage-specific and
species-specific differences might exist that could
explain the results obtained after gene knockdown in
horn flies.

Proteasome component
Proteasomes are large protein complexes involved in pro-
tein proteolysis that are functionally related to ubiquitina-
tion and thus essential for eukaryotic cells [74].
Experiments in D. melanogaster showed that knockdown
of proteasome subunits leads to increased levels of ubiqui-
tin conjugates, cell cycle defects, DNA overreplication,
and apoptosis [74,75]. In tick cells, 26S proteasome

knockdown resulted in lower A. marginale infection levels
when compared to controls but did not affect tick survival,
feeding and reproduction [67]. However, based on the
essential proteasome function in eukaryotic cells, it was
not surprising to observe a decrease in oviposition in horn
flies injected with proteasome components dsRNAs target-
ing proteasome subunit beta (two unigenes) and protea-
some maturation protein (one unigene). As previously
shown in D. melanogaster [74,75], proteasome subunits
knockdown in horn flies may affect cell cycle and DNA
replication thus resulting in reduced oviposition.

Immune response
Innate immune response is essential for insect survival.
Only two unigens were assembled into this category and
knockdown in female horn flies. Assembled unigenes
encoded for putative T-cell immunomodulatory protein
and RNAse L inhibitor. Silencing of these genes resulted
in higher horn fly mortality and lower oviposition when
compared to controls. These RNAi results may be due
to an effect of gene knockdown on increased susceptibil-
ity to persistent pathogen infections resulting from
impaired immune response in horn flies. Knockdown of
immune response genes may affect the mechanisms
involved in the control of persistent infections such as
those caused by Nora virus and Wolbachia spp. [76-78],
which could affect horn fly mortality and ovisposition.
RNAi knockdown of immune response genes in other
arthropods results in increased mortality and higher
pathogen infection levels [79-81].

5’-nucleotidase
5’-NUC and other ectonucleotidases control the levels of
extracellular nucleotides and nucleosides that act as sig-
naling molecules involved in a wide spectrum of biologi-
cal effects [82]. 5’-NUC is commonly expressed in the
salivary glands of blood-sucking ectoparasites [83-88].
Herein, as previously shown in ticks [36], 5’-NUC
knockdown resulted in higher fly mortality and lower
oviposition when compared to controls. As in other
organisms, these results suggested an essential function
for 5’-NUC in horn fly females.

Conclusions
In summary, a cDNA library was constructed from
whole abdominal tissues collected from partially fed
adult female horn flies and 2,160 high quality ESTs were
sequenced and assembled into 992 unigenes (178 con-
tigs and 814 singlets) representing molecular functions
such as serine proteases, cell metabolism, mitochondrial
function, transcription and translation, transport, chro-
matin structure, vitellogenesis, cytoskeleton, DNA repli-
cation, cell response to stress and infection, cell
proliferation and cell-cell interactions, intracellular
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trafficking and secretion, and development. A method
was developed for RNAi that produced reproducible
results in horn flies. Functional analyses by RNAi
showed the effect of some genes on horn fly mortality
and oviposition. These results advanced the molecular
characterization of this important ectoparasite and sug-
gested candidate protective antigens for the develop-
ment of vaccines for the control of horn fly infestations.
Based on RNAi results, some of the candidate antigens
to be considered for cattle vaccination experiments
against horn flies include those within VTG, immune
response and 5’-NUC functional groups.

Methods
Rearing of horn flies
H. irritans were reared under laboratory conditions as
reported by Schmidt et al. [89]. A horn fly colony was
established with flies originally collected in a cattle farm
close to Ciudad Victoria, Tamaulipas, Mexico. About
2,000 flies were collected from 2 infested animals and
transported in a 20 × 30 cm mosquito netting alumi-
num cage. Flies were allowed to lay eggs over a water
container during 12 h. Eggs were collected and incu-
bated into fresh bovine feces during 5 days. Pupae were
collected and placed in Petri dishes located inside mos-
quito netting aluminum cages for molting into adult
flies. After molting, flies were fed twice a day using
pieces of cotton impregnated with fresh defibrinated
bovine blood obtained from a naive cow. All the horn
fly developmental phases were kept under a photoperiod
of 12 h light: 12 h darkness at 28-32°C and 70-80%
relative humidity [89].

Analysis of expressed sequence tags (ESTs) in adult
female horn flies
Total RNA was isolated from whole abdominal tissues
collected from 1,500 partially fed adult female horn
flies using Trizol (Sigma, St. Louis, MO, EUA). The
cDNA library was synthesized using the SMART™
cDNA Library Construction Kit (Clontech, Mountain
View, CA, USA) at Creative Biolabs (Port Jefferson Sta-
tion, NY, USA; http://www.creativebiolabs.com).
cDNAs were cloned into the pBluescript II SK vector
(Agilent Technologies, Inc., Santa Clara, CA, USA).
The library had more than 1×106 primary clones, with
>90% recombinants with inserts >500 bp (average
cDNA length >1,000 bp). A total of 2,462 ESTs were 5’
sequenced (Creative Biolabs). The cDNA Annotation
System software (CAS; Bioinformatics and Scientific IT
Program (BSIP), Office of Technology Information Sys-
tems (OTIS), National Institute of Allergy and Infec-
tious Diseases (NIAID), Bethesda, MD, USA) http://
exon.niaid.nih.gov was used for automated sequence
clean up, assembly, blasting against multiple sequence

databases (ncbi non-redundant nucleotide and protein
sequence databases, H. irritans EST sequences [35]
and databases of mosquito- and tick-specific sequences
http://www.ncbi.nlm.nih.gov/;http://www.vectorbase.
org/index.php) and Gene Ontology (GO) assignments.
Comparison with the ncbi Clusters of Orthologous
Groups of proteins (COG; http://www.ncbi.nlm.nih.
gov/COG) was also performed. Nucleotide sequences
were aligned using the program AlignX (Vector NTI
Suite V 5.5, InforMax, North Bethesda, MD, USA).
Gene sequences were deposited in the GenBank
with accession numbers HO000420-HO001165 and
HO004499-HO004744.

RNAi in adult female horn flies
Oligonucleotide primers (pBLUET75: 5’-TAATACGACT
CACTATAGGGTACTTCGAGGTCGACGGTATCGAT-3’
and pBLUET73: 5’-TAATACGACTCACTATAGGGTACT-
CAATTAACCCTCACTAAAGGGA-3’) were synthesized
specific for vector DNA sequences flanking the
horn fly cDNA insert and containing T7 promoter
sequences (in italics) for in vitro transcription and
synthesis of dsRNA. PCR reactions were performed
from individual or pooled cDNA clones (when more
than one unigene was included in the functional group
analyzed; Table 2) using the Access RT-PCR system
(Promega, Madison, WI, USA) in a 50 μl reaction mix-
ture. The resultant amplicons were purified using the
Wizard 96-well PCR purification system (Promega). In
vitro transcription and purification of dsRNA was done
using the Megascript RNAi kit (Ambion, Austin, TX,
USA). The dsRNA was quantified by spectrometry.
Adult partially fed female flies were injected with
approximately 0.1 μl of dsRNA (1 × 109-1 × 1011

molecules per μl) in the abdominal segment. The
injections were done with a Hamilton syringe with a 1
inch, 33 gauge needle. Control flies were injected with
unrelated dsRNA or injection buffer (10 mM Tris-HCl,
pH 7, 1 mM EDTA) (Table 5). One hundred flies were
used in each group. After injection with dsRNA,
female flies were kept in petri dishes for one hour and
then transferred to wired 20 × 30 cm boxes. Flies were
fed using impregnated cotton with fresh defibrinated
blood obtained from a naive cow and reared as
described before. Fly mortality was evaluated at 12, 24
and 36 hpi. Survival curves (temporal rates of mortal-
ity) were compared between different treatments and
controls using Cox Proportional Hazards Survival
Regression analysis (SPSS Inc., Chicago, IL, USA). Ovi-
position (number of eggs per survived fly) was also
evaluated and the results in test dsRNA-injected
groups and in the injection buffer control were com-
pared with the unrelated dsRNA-injected control
group by Student’s t-test (P = 0.05).
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Gene expression silencing was evaluated in 4 indivi-
dual flies each at 6, 12 and 36 or 24 hpi. The mRNA
levels of each knockdown gene were determined using
sequence-specific oligonucleotide primers (Table 6) and
the iScript One-Step RT-PCR Kit with SYBR Green and
the iQ5 thermal cycler (Bio-Rad, Hercules, CA, USA)
following manufacturer’s recommendations. A dissocia-
tion curve was run at the end of the reaction to ensure
that only one amplicon was formed and that the ampli-
con denatured consistently in the same temperature
range for every sample [90]. The mRNA levels were
normalized against horn fly 16S rRNA (Table 4) using

the genNorm method (ddCT method as implemented
by Bio-Rad iQ5 Standard Edition, Version 2.0) [91]. In
all cases, the mean of the duplicate values was used and
normalyzed Ct values from test dsRNA-injected groups
and in the injection buffer control were compared with
the unrelated dsRNA-injected control group by Stu-
dent’s t-test (P = 0.05).

Additional material

Additional file 1: Table S1. Assembling and analysis of H. irritans high
quality ESTs.

Table 6 Primer sets and real-time RT-PCR conditions used for analysis of selected H. irritans ESTs

Unigene ID (Genbank accession
number)

Gene description Upstream/downstream primer sequences
(5’-3’)

PCR annealing
conditions

13_D07
(HO000820)

5’-nucleotidase AGTGGACAAATGTCCCGAAG
AGCATTGGGGTTTGAATGAG

55°C, 30 s

6_F11
(HO000609)

T-cell immunomodulatory protein CCGGTGACTTTGATGGAGAT
GATAATGGCTCCCCTTTGGT

55°C, 30 s

10_G05
(HO000738)

RNase L inhibitor GCCGATCGTGTTATTGTCCT
CCGGATCGTTTTTGTTCAGT

55°C, 30 s

7_A04
(HO000619)

Proteasome subunit beta CAGGCGAGGTCCATTATTGT
AGTGCGCGACCTCAAGTAGT

55°C, 30 s

12_H09
(HO000808)

Proteasome maturation protein GAGGAATCGTGAGGGTTTGA
ACATGGGGTTGTCGGATAAA

55°C, 30 s

7_F08
(HO000644)

vATPase subunit d TGTTTTTCCGTCACCAGTCA
GGCACAAACCCTCCAAGTAA

60°C, 30 s

9_A08
(HO000679)

vATPase subunit f TGTTGGATTCTTGCTTGGTG
GGCACTGGTGATGTATGTGC

60°C, 30 s

17_H03
(HO001053)

vATPase proteolipid subunit GTCCAGCCAGACTGTGATGA
AATCAATCGCGGACAAAAAC

60°C, 30 s

26
(HO004524)

Ferritin light chain TGATCATGTTGAACCCGAGA
CGGCTGGTCAATTTCTTGAT

60°C, 30 s

154
(HO004652)

Ferritin heavy chain GTTGTTGCCCCTGCTGTATT
TGAAAAGTGGGCTCCCATAG

60°C, 30 s

84
(HO004582)

Ubiquitin-protein ligase TCGCATCTGTTTGGATGTGT
CGGGAAAACTTTTGAGTCCA

60°C, 30 s

146
(HO004644)

Ubiquitin family (UBQ-1) CCCGACCAACAACGTTTAAT
CGACGAAGACGGTGAATTTT

60°C, 30 s

4_E04
(HO000538)

Ubiquitin carboxyl-terminal hydrolase AGCCAGAGATGTTGGAATGG
TCGATGTAAATTGCCGCATA

60°C, 30 s

7
(HO004505)

Vitellogenin 3 GAGCTTTTTGCGTTGTAGCC
ACAAAAGTGGGAGCAACACC

60°C, 30 s

20
(HO004518)

Vitellogenin 1 GAGCTTTTTGCGTTGTAGCC
ACAAAAGTGGGAGCAACACC

60°C, 30 s

76
(HO004574)

Vitellogenin 2 ACGGCCGGTTGTGAGATTAT
AGCATCTTTTTCGGTCTTGC

60°C, 30 s

2_B12
(HO000479)

Elastase inhibitor CAAGGGTGAATGGGAAAAGA
TAAAGGCCTTCACGTTCCTG

60°C, 30 s

90
(HO004588)

Serine protease, midgut specific
trypsin, secreted

TGCGTTATATTCCGTTGGTG
CTTTGTCAACGGCATAAGCA

60°C, 30 s

230
(HO004728)

Serine protease TGGCTACAATGAATGCAAGC
GGTTAGCACCAGGGAACGTA

60°C, 30 s

(FJ025436) H. irritans 16S rRNA TTTAAATGGCCGCAGTATCC
GATTTATAGGGTCTTCTCGTCTTTT

60°C, 30 s
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