(o

Genomics

TRAM (Transcriptome Mapper): database-driven
creation and analysis of transcriptome maps from
multiple sources

Lenzi et al.

() BioMed Central Lenzi et al. BMC Genomics 2011, 12:121

http://www.biomedcentral.com/1471-2164/12/121 (18 February 2011)



Lenzi et al. BMC Genomics 2011, 12:121
http://www.biomedcentral.com/1471-2164/12/121

BMC
Genomics

RESEARCH ARTICLE Open Access

TRAM (Transcriptome Mapper): database-driven
creation and analysis of transcriptome maps from
multiple sources

Luca Lenzi', Federica Facchin', Francesco Piva’, Matteo Giulietti?, Maria Chiara Pelleri', Flavia Frabetti’,
Lorenza Vitale', Raffaella Casadei', Silvia Canaider', Stefania Bortoluzzi®, Alessandro Coppes, Gian Antonio Danieli®,
Giovanni Principato?, Sergio Ferrari®, Pierluigi Strippoli'”

Abstract

Background: Several tools have been developed to perform global gene expression profile data analysis, to search
for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene
expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-
specific, or limited to a particular data format) and they typically accept only gene lists as input.

Results: TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of
quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set
(e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal
and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform
intra-sample and inter-sample data normalization, including an original variant of quantile normalization
(scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes.
When in ‘Map' mode, the software generates a quantitative representation of the transcriptome of a sample
(or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to
the desired threshold. When in ‘Cluster’ mode, the software searches for a set of over/under-expressed
consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the
same chromosome or to all genome genes. Transcriptome maps, showing differential expression between
two sample groups, relative to two different biological conditions, may be easily generated. We present the
results of a biological model test, based on a meta-analysis comparison between a sample pool of human
CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant
chromosomal segments and gene clusters with differential expression during the differentiation toward
megakaryocyte were identified.

Conclusions: TRAM is designed to create, and statistically analyze, quantitative transcriptome maps, based on gene
expression data from multiple sources. The release includes FileMaker Pro database management runtime
application and it is freely available at http://apollo11.isto.unibo.it/software/, along with preconfigured
implementations for mapping of human, mouse and zebrafish transcriptomes.
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Background

In the last few years it has became increasingly evident
that, among the multiple gene expression regulation
mechanisms, eukaryotic genes expression level is also
dependent on their location within the genome [1]. For
example, a more or less strong tendency for colocalization
in the same chromosomal regions has been described for
genes expressed at very high levels [2], genes constitutively
expressed in most tissues (housekeeping genes) [3], genes
encoding proteins assigned to the same functional path-
way [4] or genes simultaneously expressed (coexpressed)
in a particular tissue or organ [5]. The coexpression of
colocalized genes could be determined by the conforma-
tion of chromatin domains to which they belong, or by
local sharing of regulatory (e.g., enhancer) elements, thus
raising questions about the functional significance of clus-
tering of coexpressed genes [1]. Alternatively, clustering of
genes could be explained by coinheritance, a selective
pressure to maintain a genetic linkage among genes that
encode for functionally related products and that will tend
to be inherited together or, finally, it could merely reflect
the origin of functionally related genes via tandem duplica-
tion of genes [6,7].

Further studies about the relationships between the
expression of eukaryotic genes and their relative position
in the genome are needed to clarify this biological issue.
Such studies will take great advantage of the ever
increasing amount of genomic-scale expression data
obtained by serial analysis of gene expression (SAGE),
gene expression microarrays or high-throughput RNA
sequencing that are now made available in public data-
bases. In fact, the transcriptome maps studies men-
tioned above showed the biological relevance of a global
view of gene expression distribution by exploiting the
availability of gene expression profile data obtained by
the method of SAGE [2,3,5]. These studies contributed
to challenge the traditional view that genes are ran-
domly distributed along each chromosome in eukaryotic
genomes. However, no computational biology tool for
the generation and analysis of transcriptome maps was
released to perform the algorithms described in these
papers, with the exception of the web-based application
“Transcriptome Map” [2,8]. Nevertheless, this only sup-
ports a limited number of input data types (derived
from a few species, and, for human, only derived from
SAGE experiments or from three Affymetrix microchip
platforms), normalization methods and visualization
options. The application “Caryoscope” [9] is a Java-
based program, able to generate a graphical representa-
tion of microarray data in a genomic context. However,
it is not intended to process input data (that must come
from one single source, already containing all localiza-
tion information for each element), or to perform any
test of statistical significance on the resulting plot. The
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lack of software dedicated to constructing and analyzing
transcriptome maps was already pointed out in 2006
[10], emphasizing that up until then, only algorithms or
scripts had been presented and these were often tailored
to specific uses (e.g., the study of a particular organism
or the analysis of data derived from a single type of
experimental platform). In addition, the tools that are
available typically accept only gene lists as input and are
not able to represent and analyze the continuous
change, along the chromosome, of expression intensity
assigned to overlapping regions of desired size, on the
basis of the mean expression value calculated across all
genes located in that region. This representation better
reflects the biological reality of the quantitative changes
of regional gene activity, rather than a simple count of
the enrichment in differentially expressed genes, which
is however also a desirable additional parameter of
analysis.

These considerations underline the need for a general
tool able to generate and analyze quantitative transcrip-
tome maps from any source, provided that gene expres-
sion values for a certain gene set are available. Such a
tool should also be capable of accepting and integrating
data from multiple sources and be easily configurable
for the investigation of any organism. Here we describe
TRAM (Transcriptome Mapper), a user-friendly graphi-
cal interface software that may be run locally on perso-
nal computers (based on both Macintosh and Windows
operating systems) and that meets and exceeds these
specifications, by integrating original methods for par-
sing, normalizing, mapping and statistically analyzing
expression data (Figure 1); in addition, it has the ability
to easily generate maps showing differential expression
between two sample groups, relative to two different
biological conditions. The results of a test, using the
hematopoietic progenitors CD34+ cells differentiation
toward megakaryocytic cells (the large bone marrow
cells whose fragments form platelets that are released
into the blood) as a biological model, are also presented
and discussed. This shows the ability of TRAM to iden-
tify chromosomal segments and gene clusters which are
biologically relevant for the cell differentiation toward
the megakaryocyte phenotype.

Results

Expression data import, parsing and normalization

The software is composed of a set of 37 related database
tables, with 118 relationships among them. Some tables
are designed to convert gene identifiers associated with
expression data, e.g. GenBank accession numbers and/or
UniGene cluster identifiers, into official gene symbols.
Gene identifier conversion tables may be loaded or
updated by the user, or are provided pre-loaded for
human, mouse and zebrafish organisms. In addition, the
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DATA INPUT

Default data format:

ANALYSIS
| Data Normalization |

[Gene Symbol] [Value] L\no:;??l'ﬂc Jr:.‘c;,;rrmZlg;“cpdjt
DDR1 6.38 as % of by
RFC2 6.65 Sample
HSPA6 6.48 Mean | [Scaled_Q

100.98| 44.26
Alternative data formats: F5:13 43,29

102.47| 45.95
[Custom ID] [Value]
My_1 6.38
My_2 6.65
My_3 6.48

\/
[GEO ID] [Value] [CI;Iatform] [Gene Symbol]* [Value] " " 4 analvsi
1007_s_at 6.38 PL96 DDR1 6.38 ap creation and analysis
1053_at 6.65 > RFC2 6.65
117_at 6.48 HSPA6 6.48
[GenelD] [Value] / *If a Gene Symbol is not available,
780 6.38 £ ; .
ntrez Gene name, or, if lacking,
5982 6.65 UniGene Cluster ID, or, if lacking, =
3310 6.48 GenBank Accession Number g
is used. 5";’

[GB_ACC] [Value] E
NM_001954  6.38 §
BT007058 6.65 £
BM473953 6.48 S
[UniGene] [Value]
Hs.631988 6.38
Hs.647062 6.65
Hs.654614 6.48

Figure 1 General architecture of TRAM software. The user is guided step-by-step through import and analysis of any gene expression profile
dataset in text format. The gene identifiers of any type are converted in official gene symbols/gene names, followed by intra-sample as well as inter-
sample normalization of gene expression values. The expression is mapped along each chromosome and graphically displayed on the basis of mean
value for all genes included in each segment of arbitrary length. Over- and under-expressed regions are determined following statistical analysis.

Segment expression intensity

user may download genomic data from Entrez Gene
(e.g. chromosome number, chromosome lengths and
genomic coordinates for known mRNAs) relating to the
organism investigated. These data files are then easily
imported and processed by the software during the set
up process. Three species-specific pre-loaded (pre-setup)
versions are also distributed.

In addition, TRAM makes fully original specific data
management and analysis tools available, including a
parser able to find the best and updated gene/RNA clus-
ter name available to be assigned to a probe identifier.
This is based on a converter of any RNA sequence
accession number to the relative gene symbol, by
searching an embedded parsed full UniGene updatable
database table. For the human version, the parser locally
resolves all 6,956,798 RNA sequence accession numbers,
which are related to both known transcripts and to

expression sequence tags (ESTs) included in H. sapiens
UniGene build #228, December 2010. This allows a bet-
ter conversion of those sequence accession numbers
listed in a platform that may have been registered in the
past few years without the availability of the presently
corresponding gene symbols. For example, in the
commonly used GPL96 GEO platform (Affymetrix
HG-U133A microarray), 597 probe identifiers, with una-
vailable gene symbols in the Affymetrix platform
scheme, were successfully assigned to mapped gene
symbols or UniGene clusters.

A sample is defined as a homogeneous series of gene
identifiers and their corresponding expression values, i.e.
a list of values obtained in a single channel following a
microarray hybridization experiment. To allow the com-
parison of expression data obtained from different sam-
ples, the absolute values of a sample may be converted
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into percentages of the mean (or median, or maximum)
of all expression values within that sample. The software
is also designed for the comparison between a sample
(or a pool of samples) named ‘A’ and another sample
(or a pool of samples) named ‘B’, each collected into
specific tables. In this case, the ratio of ‘A’ and ‘B’
(named ‘A/B’) expression for each locus will be
analyzed.

Although TRAM is a map-centred transcriptome ana-
lysis tool it can also summarize and allow the analysis of
gene expression data of unmapped genes, exploiting its
capability of parsing and normalization in order to high-
light differential expression of single genes between two
biological conditions even in the absence of data about
genomic location of the gene.

Scaled quantile normalization

We compared the correlation between sample datasets of
the same pool but derived from different platforms, using
the intra-sample normalization ‘Mean’ method (by which
each value is expressed as percentage of the mean gene
expression value for that sample). Inter-sample scaled
quantile normalization always gave analogous or better
results compared to standard quantile normalization. For
example, the correlation coefficient between two series of
locus-matched values obtained by distinct Authors, using
different microarray platforms (samples Al and A3,
respectively; see Table 1), was 0.23 in absence of any
inter-sample normalization, 0.34 following standard
quantile normalization for all values and 0.41 following
scaled quantile method. In the case of B10 and B12 sam-
ples, the quantile method worsened the correlation coef-
ficient from 0.85 to 0.73, while this remained stable using
scaled quantile normalization (0.83).

In addition, we determined the standard deviation
(SD, expressed as percentage of the mean) of measure-
ments from different samples for housekeeping loci
such as beta actin (ACTB) and a set of ribosomal pro-
teins, using the intra-sample normalization ‘Mean’
method. In the absence of any inter-sample normaliza-
tion, the SD for ACTB was 84.95 for pool ‘A’ (26 data
points) and 148.80 for pool ‘B’ (60 data points). After
applying quantile normalization to all available data, the
SD became 35.36 and 78.91, and following the use of
the scaled quantile method it changed into 51.44 and
54.75, for pool ‘A’ and ‘B’ respectively. Therefore, the
scaled quantile method allowed both a decrease in the
variability among the samples within a sample pool, and
an increase in comparability between the ‘A’ and ‘B’
sample pools compared to a reference gene expected to
be stably expressed in both pools. In the absence of any
inter-sample normalization the SD for genes encoding
small ribosomal proteins was 85.80 for pool ‘A’ and
138.75 for pool ‘B’ (mean of SD for 34 loci with “RPS”
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prefix, total data points were 402 for pool ‘A’ and 830
for pool ‘B’). Following quantile normalization of all
available data the SD changed to 66.01 and 78.25, and
after using the scaled quantile method the SD decreased
to 56.21 and 49.06, for pool ‘A’ and ‘B’ respectively, thus
improving homogeneity within each sample pool as well
as between the two sample pools.

Generation and analysis of transcriptome maps

Two main types of analysis are available within TRAM:
‘Transcriptome map - search for over/under-expressed
segments’ (‘Map’) mode and ‘Search for clusters of
neighbouring over/under-expressed genes’ ('Cluster’)
mode.

In ‘Map’ mode, the software generates a graphical
map of the transcriptome showing a vertical line repre-
senting each chromosome. An expression value for a
selected area of a chromosome is calculated as the
mean for all available expression data relating to the
genes included in that segment. The mean expression
level of the segment is represented by an horizontal bar
next to the corresponding segment of the chromosome,
the bar size being proportional to the segment expres-
sion level (Figure 2).

Bars representing expression values included within
the highest/lowest (n) user-defined percent of all seg-
ment expression values are pinpointed, thus highlighting
genomic regions globally over/under-expressed with
respect to the desired threshold. To avoid artefacts due
to very high or very low expression of single genes in
the region, the minimum number of over/under-
expressed genes that must be present in the segment
can be defined. The threshold for a gene to be consid-
ered as over- or under-expressed is the inclusion of the
gene expression value within the highest/lowest (n)
user-defined percent of all gene expression values.

The user may also set the ‘Shift’ parameter that causes
the window to slide along the chromosome at pre-
arranged intervals. In this way the user obtains a set of
partially overlapping segments thereby attaining better
sensitivity because a rigid division in chromosome seg-
ments, always starting from the fixed position 1, may let
neighbouring over- or under-expressed genes be
assigned to different segments.

The user maintains full control of the numerical data
associated with each segment and may easily navigate
among the map of the genes and gene expression values
data tables. Segments may be explored and searched
according to any desired criteria and sorted and pro-
cessed like ordinary database records. Differential tran-
scriptome maps, based on the ratio between
corresponding gene expression values from two ‘A’ and
‘B’ samples or sample pools, relative to two different
biological conditions, may be easily generated.
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Table 1 Samples selected for the biological model used to test TRAM software

TRAM ID GEO ID Sample GEO Platform Microarray Spots Ref.
Pool ‘A’

Al GSM321577 Mk (BM) (n = pool) GPL96 Affymetrix U133A 22,283 [19]
A2 GSM321578 Mk (BM) (n = pool) ! ! ! !
A3 GSM112277 Mk (PB) (n =1, rep. 1) GPL887 Agilent 1A 22,575 [20]
A4 GSM112278 Mk (PB) (n =1, rep. 2) " B " "
A5 GSM15648 Mk (BM) (n = 6) GPL96 Affymetrix U133A 22,283 [21]
A6 GSM8649 Mk (BM) (n = 6) ! ! ! !
A7 GSM88022 Mk (PB) (n = 1) GPL887 Agilent 1A 22,575 [22]
A8 GSM88014 Mk (PB) (n = 1) ! ! ! !
A9 GSM88034 Mk (PB) (n = 1) ! ! ! !
Pool ‘B’

B1 GSM321567 CD34+ (BM) (n = pool) GPL9% Affymetrix U133A 22,283 [19]
B2 GSM321568 CD34+ (BM) (n = pool) ! ! ! !
B3 GSM321569 CD34+ (CB) (n = pool) ! ! ! !
B4 GSM321570 CD34+ (CB) (n = pool) ! ! ! !
B5 GSM321571 CD34+ (PB) (n = pool) ! ! ! !
B6 GSM321572 CD34+ (PB) (n = pool) ! ! ! !
B7 GSM76923 CD34+ (BM) (n = 5) GPL96 Affymetrix U133A 22,283 [23]
B8 GSM76924 CD34+ (BM) (n =5) " ! B "
B9 GSM76925 CD34+ (BM) (n = 5) " " " "
B10 GSM307288 CD34+ (BM) (n = 6, rep. 1) GPL7091 Agilent 22 k A 16,391 -
B11 GSM307289 CD34+ (BM) (n = 6, rep. 2) ! ! ! -
B12 GSM88023 CD34+ (PB) (n = 1) GPL887 Agilent 1A 22,575 [22]
B13 GSM88003 CD34+ (PB) (n =1) ! ! ! !
B14 GSM23407 CD34+ BM) (n=1) GPL201 Affymetrix HG-Focus 8,793 [24]
B15 GSM23410 CD34+ BM) (n=1) ! ! ! !
B16 GSM23411 CD34+ BM) (n=1) " " ! "
B17 GSM23408 CD34+ BM) (n=1) ! " ! !
B18 GSM23409 CD34+ BM) (n = 1) ! ! ! !
B19 GSM23406 CD34+ BM) (n = 1) ! ! ! !

Sample: Mk, megakaryocytic/megakaryoblast cells, obtained by in vitro differentiation of CD34+ cells; CD34+, undifferentiated CD34+ cells; (BM), (CB) or (PB):
CD34+ cells derived from bone marrow, cord blood or peripheral blood, respectively. n = number of subjects from which the sample was derived (in some cases,
where n = pool, the exact number of subjects included in a pool was not available). rep. = biological replicate. Microarray: U133A: Affymetrix Human Genome
U133A Array; 1A: Agilent-012097 Human 1A Microarray (V2) G4110B; 22 k A: Agilent Human oligo 22 k A; HG-Focus: Affymetrix Human HG-Focus Target Array.
When not directly provided, expression value was calculated as the median intensity value of a microarray feature minus the median background value.

The statistical significance of the over/under-expres-
sion of each segment fulfilling the criteria to be tagged
as over/under-expressed is displayed, and it is calculated
as described in the “Statistical analysis” Methods section.
The user may choose to refer the statistical calculations
to data sets within each chromosome rather than to the
whole genome dataset, in order to retrieve domains
regionally over- or under-expressed within each DNA
molecule. Differences between the genome- and chro-
mosome-centred types of analysis are graphically high-
lighted when both have been performed.

Search for clusters of neighbouring over/under-expressed
genes

In ‘Cluster’ mode, the software searches for a set of at
least two successive genes, arranged according to the
position indicated by their known transcription start site,
and over/under-expressed in terms of inclusion of the
gene expression value within the highest/lowest (n) user-
defined percent of gene expression values. In this type of
analysis, each horizontal bar represents the expression
level of an individual gene (Figure 3). Gene clusters are
then built starting from over/under-expressed individual
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Over
Chr  Location JUnder P Q Go to Gene Go to UniGene || Gene values.
chrd] 4413.1 54,750,001 CRL+
chrdj 4g13.1 ©5,000.001 CRL+
chrd| 4g13.1 65.250.001 65.750.000) CRL+
o 55 500,001 _65.000,004
chr4j 49131 65,750,001 66,250,000 [EPHAS-
chrd| 4q13.1) 66.000.001 [EPHAS-
chrdj 4413.1 66,250,001 [EPHAS-
chrd| 4a13.1 66,500,001 [EPHAS-
chr4 66,750,001
chrd| 67.000.001
chr4f 67,250,001
chr4j 67,500,001
chrdj 67.750.001
chrd] 4al2al3 53.000.001)
chrd) 21213 58,250,001
chrdf 4913.2) 68,500,001
chrdj 4913.2 68,750.001
chrd| 4q13.2 63,000,001
chr4 4g13.2 69,250,001
chrdj 4al 69.500.001 2B15- UGT2B10+ UGT2A3+ UGT2B7+
o w139 750001 25+ UGT267> UGT2811- UGT2628.
chrd 4g13.2 70,000,001
chrd| 4q1 70.250.001 2B4- UGT2A1+ SULT1B1- SULTIET-
chrd| 41 70,500,001 2A1+ SULT181- SULTIET- CSN151+ CSN2+ STATH- HTN3- HTN1-
chrdf 4g21.7) 70,750,001
chrd| 4q13.; 71.000.001 40rf40+ DDAM+ C4orf7- CSN3- C4orf35+ SMR3IA+ SMR3B- PROL1+
chrdj 4913, 71.250.001 138- PROL Y+ MUC7+ AMTN+ AMBN- ENAM- IGJ- UTP3- RUFY3-
chrd| 4413, 71,500,001 NAM- IGJ- UTP3- RUFY3- GRSF1- MOBKL 1A DCK+
chrd] 4913 71,750,001 KL1A DCK+ SLC4A4+
chrd| 421 72.000.001]
chrd| 4021 72,250,001
chrd 4q12-q1 72,500,001
chrdf 4q21 72,750.001
chrdj 4021 73,000,001
chrdf 4q13.. 73,250,001
o o733 73500001
chrdj 4q13. 73,750.001]
chrd| 4q13. 74.000.001
v atard| 7250001
chrd| 4q13-g21 74.500,001] [Over 0.
chrd] 4q12-q2) 74,750.001 |Over 0.0 0.00|PF4 PPBP CXCLS+ CXCL3 PPBPL2+ CXCL2 MTHFD2L+ EPGN- EREG-
chrd 4q13. 75,000,001
chrdf 4g13. 75.250.001 REG- AREG Hs.611767- BTC-
chrdj 4q13-g2) 75, ,001] ITC- PARM1+ Hs.570765-
chrd| 4q13.3-921 3‘ 75,750,001
onrd] 2a21,1| 76,000,001 W1+ THAPG- Hs.5818707 CAorf2b-
chrdj 4g21 \H 76.250.001] ICHY1+ THAPE- Hs.581870+ Cdorf26- CDKL2- G38P2+ USD1+

Figure 2 Screenshot of the ‘Map’ graphical display of TRAM software (detail). The length of each horizontal bar is proportional to the
mean gene expression within a chromosomal segment of 0.5 Mb. Consecutive bars are shifted by 250 kb. The vertical line represents human
chromosome 4, from position 64,750,001 (start of the top segment) to position 76,750,000 (end of the bottom segment). The expression value
on the left of each bar is derived from the analysis of the test set used (Table 1). Bars are colour-coded in proportion to their expression values.
Segments, whose expression value is greater (or lower) than the chosen percentile threshold, are highlighted in the “Over/Under” field, which is
only filled when they also include the user-defined minimum number of over/under-expressed genes that must be present in the segment.
Statistical significance p- and g-values are calculated for these regions.

loci, if other contiguous genes fulfil the criteria defined
for inclusion in the cluster. This analysis is complemen-
tary to that performed in ‘Map’ mode, which requires an

arbitrary segment window.

The results of the analysis are displayed in the ‘Clus-
ter’ layouts, as clusters of genes over/under-expressed.

Each gene is actually a record (row) of the database.
The user can find and sort genes and gene clusters
using any desired criteria. Specific buttons help to

retrieve entries from online databases for the desired

genes. Clusters of differentially expressed genes between
two different biological conditions may be easily

(Custer  Over/
Chr  Location Gene_name Start End Expression Mean) Under
kehrd[laa12-021 Tpravt 74,719,013|| 74,720,191 34.22] 11.2:
fchra_aaz1 excn 74,735,100 74,736,953 2 00— 11.29
fehrt ] [Hs.708652 74.736,374| 74,962,913 | [EE | |
hrd JEa133 [oce2958 74,804,321) 74,808,029 1 [EE | |
hré_JEaizq2t pre T T ] 1S 2. — 1129 jover |
fehra Jbs.552264 74,851,718 74,852,646 129 |
fhrd Aa12.a13 =2 74,852.755] 74,853,000 15 47 N2
fhrd Jag12-a13 excis 74,861,350] 74,864,416 1.35)mm (L ||
fchr4 [Hs.598417 74,861,425 74,861,804 [EE | |
fehra [Hs.603888 74,862,313 74,862,637 1129 |
= Hs.617230 74,901,862 74,902,421 1120 |
et J4a21 xc3 74902 306 74,904,480 4 02— 11.20|[Over |
Ehra Ja133 = 74519755 74921116 oo [EE ||
fchrd Ja13.3 Loce43014 74,951,712 74,960,331 | [EE | |
fenra [Hs.719458 74,962,751 74,963,708 | 29 |
hrd_Jaaz1 fexcz 74,962,752 74,964,997 3 80} 11.29|[Over |
Brz|izei3s WF 6,058,040 6,233,836 14.03
khr1z [Hs.605384 6,058,042 6,059,049 [
khr12 [Hs.539512 6,282,730 6,283,299 [ toag |
ari2 Hs712104 6,309,539 6,344,837 .
hriz|12p13.3 [coa 6300555  6.347.427) EEE :sm:ras vosss e 10.49][Over |
Figure 3 Screenshot of the ‘Cluster’ graphical display of TRAM software (detail). Two example clusters, identified by default analysis of the
biological model (Table 1) described in the text, are shown. The length of each horizontal bar is proportional to the mean ‘A’/'B' ratio gene
expression across all samples. Bar red colour indicates gene over-expression according to set criteria. Genes without associated expression values
in the samples are shown but are not considered in the cluster construction. ‘Gap’ parameter was set equal to 1, so a maximum of one not
over-expressed gene (hot pink colour bar) may separate two consecutive over-expressed genes. The cluster mean expression value, derived from
all genes included in each cluster, is shown. The number of data points from which each value was derived, p-, g-value and length for each
over/under-expressed cluster are also calculated (not shown here).
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generated, based on the ratio between corresponding
gene expression values from two defined ‘A’ and ‘B’
pools.

Statistical significance of the over/under-expression of
each gene cluster fulfilling the criteria to be tagged as
over/under-expressed is displayed, and it is calculated as
described in the “Statistical analysis” Methods section.
In ‘Cluster’ mode the user may choose if statistical cal-
culations are to be performed separately for each chro-
mosome as it is possible in ‘Map’ mode. Moreover, the
user may choose how many genes can be tolerated in
the cluster between each gene pair counted in the clus-
ter, even if they do not fulfil the user-set criteria.

Biological model - Chromosomal segments

We compared several options of the software in the
analysis of differential expression of pool ‘A’ (9 megakar-
yocyte cells (Mk) samples, including RNA from at least
21 different subjects) versus pool ‘B’ (19 CD34+ cells
samples, including RNA from at least 41 different sub-
jects) (Table 1). A total of 180,365 data points (gene
expression values) from the pool ‘A’ and 294,987 data
points from the pool ‘B’, relative to 17,676 distinct loci,
for which an ‘A’/’B’ ratio value was determinable, were
included in the analysis. Results obtained by default ana-
lysis (according to the parameters described in the
“Methods” section) included 18 significantly over- or
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under-expressed segments ('Map’ mode, Table 2) and
73 clusters ("Cluster’ mode, Table 3). The use of inter-
sample normalization (scaled quantile method)
improved the identification of significantly over/under-
expressed genome segments versus absence of any inter-
sample normalization (18 vs. 12). In addition, segments
enriched in relevant genes known to be over- or under-
expressed in megakaryocytes/platelets were not identi-
fied in the absence of inter-sample normalization. For
example an over-expressed segment on chromosome 17
was found to contain, among others genes, [CAM?2 and
PECAM]1, as well as an under-expressed segment on
6p21.3 containing several HLA (human leukocyte anti-
gen) system class II members. The differential expres-
sion of these genes is expected in the differentiation
process studied in our model: ICAM?2 is a functional
integrin ligand present on platelets surface [11] and
PECAMI encodes platelet/endothelial cell adhesion
molecule, while the down-regulated genes HLA-DRA,
HLA-DRBI and HLA-DQAI are typically expressed in
antigen presenting cells.

The higher expression ratio between Mk and CD34+
cells (9.23) was observed in the segment at coordinates
74,500,001-75,000,000 on chromosome 4 (4q13-q21). All
10 genes in this location showed expression values
greater than the median, and 6 out of 10 showed values
within the higher 2.5th percentile. While it was known

Table 2 Genomic segments significantly over/under-expressed in Mk cells (pool ‘A’) vs. CD34+ cells (pool ‘B’)

Chr and Segment Segment 'A’/'B’ g-value Genes in the segment

Location Start End Ratio

chr2 2g23-q24 160,250,001 160,750,000  0.398 0.00024 BAZ2B- MARCH7- CD302- LY75-

chrd 4g11-q12 57,500,001 58,000,000 0421 0.00039 HOPX- SPINK2- REST- C4orf14- POLR2B+ IGFBP7-

chr4 4p15.32 15,500,001 16,000,000 0427 0.00039 FBXL5- BST1- CD38- FGFBPI- FGFBP2- PROM1-

chr6 6p21.3 32,250,001 32,750,000 0434 0.00079 Cé6orf10+ BTNL2- HLADRA- HLADRB1- HLADQAT- HLADQB1- HLADQA2- HLADQB2-

chrX Xp11.23 47,000,001 47,500,000  1.806 0.00505 NDUFB11+ RBM10+ UBAT+ INET+ USP11- ZNF157+ ZNF41+ ARAF+ SYNT1+ TIMP1+
CFP+ ELKT+

chr11 119122 61,250,001 61,750,000  1.859 0.00573 Cllorf66+ SYT7- DAGLA- Cllorf9+ Cllorfl0+ FENT1+ FADS1+ FADS2+ FADS3-
RAB3ILT+ BESTT- FTH1+

chr16 16p12.1 28,500,001  29,000000  1.877 0.00248 CLN3+ APOB48R+ IL27+ NUPR1+ CCDC101- SULTIA2+ SULTTAT+ EIF3C- ATXN2L+
TUFM+ SH2B1- ATP2A1+ RABEP2- CD19- NFATC2IP+ SPNST+ LAT+

chr17 17923 62,000,001 62500000 1957 0.00381 C€D79B- SCN4A- C170rf72+ ICAM2+ ERN1+ TEX2+ PECAM1+ C170rf60- POLG2+
DDX5+

chr6 6p21-1 43,500,001 44,000,000  2.196 0.00235 XPOS5- POLH+ GTPBP2+ MAD2L1BP+ MRPS18A+ VEGFA+ C6orf223+

chr5 5qter 178,750,001 179,250,000  2.367 0.00222 ADAMTS2- RUFY 1+ HNRNPH1+ CANX+ MAML1+ LTC45+ MGAT4B+ SOSTM1+

chr11 11p15 5,000,001 5500000  2.384 0.00796 MMP26- OR51L14+ OR52J3+ OR52A1+ HBB+ HBD+ Hs.20205+ HBG1+ HBG2+ HBET+
OR51B4+ OR51B2- OR51B6+ OR51M1- OR5111+ OR5112+

chr17 17p13.2 4,750,001 5250000 2620 0.00796 MINK1+ CHRNE+ GP1BA+ SLC25A11+ RNF167+ PFNT+ ENO3+ SPAG7+ CAMTA2+
KIF1C+ GPR172B+ ZFP3- ZNF232- USP6+ ZNF594- RABEP]-

chr4 4913-g21 74,500,001 75,000,000  9.226 0.00000 /L84 CXCL6+ PF4V1+ CXCL1+ PF4+ PPBP+ CXCL5+ CXCL3+ PPBPL2+ CXCL2+

Chr: chromosome; Segment Start/End: chromosomal coordinates for each segment. Bold and ‘+: over-expressed gene; bold and ‘-: under-expressed gene; '+ or
" gene expression value higher or lower than the median value, respectively. Analysis was performed using default parameters (see “Methods” section).
Segments are sorted by increasing ‘A’/'B’ ratio. In the ‘Map’ mode, TRAM displays UniGene EST clusters (with the prefix “Hs.” in the case of H. sapiens) only if they
have an expression value. Five out of a total of 18 segments are not shown for simplicity, because their over-expressed genes are overlapping with those
highlighted in the listed regions. The complete results for this model are available along with TRAM software.
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Table 3 Clusters of genes significantly over/under-expressed in Mk cells (pool ‘A’) vs. CD34+ cells (pool ‘B’)

Chr and Location Cluster  Cluster End 'A’/'B’ g- Genes in the cluster
Start (Cluster size) Ratio value
chr19 19p13.3 827,831 856,246  0.103 0.00011 AZUT- PRTN3- ELANE-
(28416)
chr4 4g11-q12 57,514,154 57,687,893  0.140 0.00084 HOPX- Hs.630172 Hs.121443 Hs.673386 Hs.613041 Hs.677243 Hs.601479 Hs.44210
(173,740) Hs.566128 SPINK2-
chr10 10g23-g24 97,951,455 98,098,321  0.172 0.00084 BLNK- Hs.716018 Hs.673979 Hs.444049 Hs.688648 Hs.679276 DNTT-
(146,867)
chrl 1p36 26,644,411 26,647,014 0.192 0.00084 CD52- Hs.597423-
(2,604)
chr1 1921 153,330,330 153363549 0.212 000011 ST00A9- S100A12- LOC645900 ST100A8-
(33,220)
Chr6 6p21.3 32,407,647 32,611,429 0.217 0.00011 HLADRA- LOC10028939 Hs.601001 Hs.544645 Hs.693189 Hs.654238 HLADRBS
(203,783) Hs.664382 Hs.611927 Hs.606311 HLADRB1- Hs.706474 Hs.625753 Hs.691818
HLADQA-
chr8 8p23.1 6,835,171 6,875,816  0.233 0.00084 DEFAT1- DEFATB DEFA3-
(40,646)
chr2 2p22.3 32,853,129 33,624,576  6.738 0.00084 TTC27+ Hs.616001 Hs.664352 Hs.639709 Hs.683829 Hs.678473 Hs.623026
(771,448) LOC285045 LOC100271832 LTBP1+
chr1i1 11q12.2- 61,567,097 61,634,825 7.059 0.00084 FADST+ Hs.651782 Hs.621796 LOC100131326 Hs.667454 FADS2+
q13.1 (67,729)
chr17 17921.32 42,422,491 42,466,873 7976 0.00084 GRN+ Hs.602870 FAM171A2 LOC390800 ITGA2B+
(44,383)
chr12 12p13.31 7,966,397 8,088,892 8033 0.00084 SLC2A14+ Hs.664258 Hs.539507 Hs.668117 LOC100130582 Hs.662096 SLC2A3+
(158,906)
chr11 11p15.5 5,254,059 5271087 8722 000010 HBD+ Hs.20205+ Hs.295459 Hs.702082 Hs.702189 HBGT+
(21,857)
chr12 12p13.3 6,058,040 6,347,427 10492 0.00084 VWF+ Hs.605384 Hs.539512 Hs.712104 CD9+
(289,388)
chr4 4g12-g21 74,719,013 74,964,997 11.289 0.00000 PF4V1+ CXCL1+ Hs.708652 LOC642958 PF4+ Hs.552264 PPBP+ CXCL5+ Hs.598417
(245,985) Hs.603888 Hs.617230 CXCL3+ PPBPL2+ LOC643014 Hs.719458 CXCL2+

Chr: chromosome; Cluster Start/End: chromosomal coordinates for each gene cluster. Bold and ‘+": over-expressed gene; bold and ‘-: under-expressed gene; '+ or
"": gene expression value higher or lower than the median value, respectively; gene name without ‘+ or = symbols: no expression value available in the
investigated dataset. Analysis was performed using default parameters (see “Methods” section), choosing to list all colocalized known genes and mapped EST
clusters, regardless of the availability of expression values for them in the investigated samples. Clusters are sorted by increasing ‘A’/'B’ ratio. Only the 7 cluster
with the highest and the 7 cluster with the lowest cluster mean gene expression are shown (out of a total of 31 significantly over- and 42 significantly under-
expressed identified clusters). The complete results for this model are available along with TRAM software.

that several genes in this region are sequence-related
and form a structural cluster of members of the CXC
chemokine gene family (CXCLI, CXCL5, CXCL3,
CXCL2), this finding highlights the simultaneous very
high activity of genes such as PF4V1I (platelet factor 4
variant 1), PF4 (platelet factor 4) and PPBP [official
name: pro-platelet basic protein (chemokine (C-X-C
motif) ligand 7)], previously known as beta-thromboglo-
bulin [12], following differentiation of CD34+ cells in
megakaryocytes. The second segment with highest
expression was located on chromosome 6 and contained
over-expressed genes such as GPIBA [glycoprotein Ib
(platelet), alpha polypeptide], encoding the alpha chain
of megakaryocyte- and platelet-specific surface mem-
brane Glycoprotein Ib, and KIFIC (kinesin family mem-
ber 1C). Over-expression of kinesin 1C, which is
recruited in neural cells APP (amyloid precursor pro-
tein) transport vesicles, was not to date described in Mk

cells. However, it is known that during the complex and
poorly understood process by which Mks generate plate-
lets, kinesin motors carry platelet-specific granules and
organelles over microtubules into the pro-platelets [13].
The third over-expressed segment spans the cluster of
haemoglobins on chromosome 11, highlighting the
known common early origin of erythroid and Mk cells
[14]. Under-expressed segments included genes encod-
ing surface antigens whose expression is known to be
restricted to leukocytes or leukocyte subpopulations (e.
g., CD302, LY75/CD205, CD38 and HLA-DR; Table 2),
highlighting their down-regulation during differentiation
of common CD34+ progenitors to megakaryocyte.
Switching from ‘Mean’ to ‘Median’ intra-sample nor-
malization (values expressed as a percentage of the med-
ian value for each array) globally decreased sensitivity
from 18 significantly over- or under-expressed genome
segments to 10. However, one segment was identified
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only with the ‘Median’ mode. This segment includes
MYOMI (myomesin 1/skelemin), MYLI2A (myosin,
light chain 12A, regulatory, non-sarcomeric) and
MYLI2B (myosin, light chain 12B, regulatory) and it
went undetected with the ‘Mean” mode. Interestingly,
myomesin 1 [15] and myosins [16] pathways have been
involved in pro-platelet formation and platelet function.
Some differences in the results while using different
intra-sample normalization parameters are expected on
the basis of the different distribution of the values for
each sample. For example the sample mean value is
greater than the sample median value if there is a tail of
high values. Normalizing by median could uncover addi-
tional significantly over-expressed regions that were
masked by the mean-based normalization.

Concerning inter-sample normalization, the scaled
quantile adjustment appeared to increase sensitivity in
the identification of significantly over/under-expressed
segments with respect to the standard quantile method
(18 vs. 13). In particular, the quantile method was not
able to detect any under-expressed segment, such as
that containing the HLA class II genes typical of leuko-
cytes that were identified by scaled quantile adjustment.

Lowering or raising the threshold to define a gene
and/or a segment as over/under-expressed makes the
analysis more stringent or less stringent, respectively.
We found that a good starting point is to use lower and
upper 2.5th percentile, so that 5% of the data are
included as positive results, which in a Gaussian distri-
bution would roughly correspond to the percentage of
values exceeding the mean by two standard deviations.
The statistical test will compensate for the high number
of segments or cluster marked as over/under-expressed
obtained relaxing the threshold, by identifying which
results are to be considered significant (Q < 0.05).

Biological model - Gene clusters

In the ‘Cluster’ mode, the identified clusters included
genes well known for being upregulated during mega-
karyocytopoiesis, as well as genes encoding leukocyte
proteins expected to be down-regulated in the same
context. For example, a cluster is composed by DNTT,
encoding deoxynucleotidyl transferase, expressed in a
restricted population of pre-B and pre-T lymphocytes,
and BLNK, encoding B-cell linker, an adaptor protein
that plays a critical role in B cell development (Table 3).
In this mode of use, the physical contiguity of at least
two over/under-expressed genes is considered as the
bond for cluster definition rather than an enrichment of
such genes in a genomic region independently of their
order. Results are in part similar and in part comple-
mentary to those obtained in the ‘Map’ mode. In parti-
cular, the cluster with lowest ‘A’/’B’ ratio mean value
turned out to be the series of genes AZUI (azurocidin
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1), PRTN3 (proteinase 3) and ELANE (elastase, neutro-
phil expressed), located on chromosome 19 and known
to be coordinately expressed in a granulocyte-specific
fashion [17], which resulted to be significantly under-
expressed only in this mode of analysis. On the other
hand, an over-expressed cluster composed only by the
two contiguous genes, encoding platelet-specific proteins
VWE (Von Willebrand Factor, present in the alpha-
granules of platelets) and CD9 (a specific platelet mar-
ker), was identified on chromosome 12 (Table 3). This
would have been undetected in the ‘Map’ mode because
the minimal number of over/under-expressed genes
required to be present in a chromosomal segment was
by default set equal to 3. Another over-expressed cluster
included GATA1I, encoding a major transcription factor
for megakaryocytopoiesis.

The modification of parameters used for ‘Cluster’
mode analysis, such as those above listed for the ‘Map’
mode, had analogous effects on the results.

Some additional significant results were obtained by
setting chromosome-specific thresholds for the analysis,
rather than using the whole genome gene set as a refer-
ence. For example, the cluster of the two genes HIPK2
(a nuclear kinase that interacts with homeodomain tran-
scription factors, previously associated with megakaryo-
cyte lineage) [18] and TBXASI [official name:
thromboxane A synthase 1 (platelet), catalyzing the con-
version of prostaglandin H2 to thromboxane A2, a
potent vasoconstrictor and inducer of platelet aggrega-
tion] scored as significantly over-expressed on a local
basis when the gene expression of chromosome 7 but
not whole genome dataset was considered.

In both ‘Map’ and ‘Cluster’ modes, TRAM displays
EST clusters, in addition to known genes, mapped in
the region of interest. In the case of ‘Cluster’ mode this
occurs independently of the availability of expression
values for the loci within the cluster extension (Table 3).

The results for each mode of analysis of the presented
test model, using default parameters, are available in the
folder ‘Biological_Model_Test” of the TRAM distribu-
tion, allowing the user to explore the model following
variation of analysis parameters.

Individual gene expression values, summarized for
each of the two pools ‘A’ and ‘B’, can be visualized and
sorted in the ‘Cluster’ results layout. Amongst the first
12 genes with the highest ‘A’/’B’ ratio (PF4V1, PF4,
GP1BA, PPBP, RGS18, CMTMS, SLC44A1, VWF,
SH3BP5, HSPC159, ITGA2B and HBG1, ranging from
34.22 to 11.92 expression ratio, in this order, between
CD34+ and Mk cells), 7 were placed in one significantly
over-expressed segment or gene cluster by the transcrip-
tome mapping analysis.

The CD34 gene was under-expressed in Mk cells
compared to CD34+ cells, as expected (mean ratio
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across all samples was 0.29, within the lowest 2.5th per-
centile of ‘A’/’B’ ratios).

Discussion

Here, we have described an original software named
TRAM, designed to create and analyze transcriptome
maps for any organism, based on gene expression data
in a general form and able to generate a relational, fully-
indexed map database, usable on Macintosh and Win-
dows operating systems-based computers. The ‘Map’
mode allows the identification of chromosomal regions
of defined size (with the possibility of using a sliding
window) whose expression is defined as the gene
expression average of the genes contained in the seg-
ment. This segment, also, must contain a specified num-
ber of loci transcribed beyond a desired threshold. The
wide flexibility of the parameters required for the build-
ing of the Map (e.g., the independence of the threshold
value chosen to consider each gene as over/under-
expressed from the threshold value set to define a geno-
mic segment as over/under-expressed) makes an open
exploration of the expression data feasible at different
levels; in addition, an estimate of statistical significance
for the definition of a segment as over/under-expressed
can then be obtained. This type of analysis considers the
global expression of all genes in the region, regardless of
their exact reciprocal position: in fact, it has been
shown, for example for genes belonging to the same
functional pathway, that clustering is loose and indivi-
dual genes may be spread, despite remaining closer to
each other than expected by chance [4]. In addition, we
added a complementary mode of data visualization and
analysis, the ‘Cluster’ mode, where the window width is
defined by a number of clustered genes rather than
nucleotide range. This method can consider the gene-
by-gene order in the region and can provide results
about clusters of over/under-expressed genes that are
adjacent or separated by a small user-defined number of
not over/under-expressed genes within the cluster. All
TRAM data and results tables are widely interconnected
by simple navigation buttons, as well as linked to the
relevant entries available on line (via automatic opening
of the default web browser).

The novelty of the tool is supported by several argu-
ments. Firstly, the uniqueness of TRAM general basic
architecture, which dynamically integrates an advanced
and flexible relational database with parsing and meta-
analysis capability, a map graphic displayer and a two-
modes ('Map’ and ‘Cluster’) analyzer searching for sig-
nificantly over/under-expressed genomic regions, start-
ing from any source of global gene expression profiles
data (Figure 1). The TRAM data model is also unique in
two other aspects: users are given direct access to
expression numerical values, which are always visualized
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near the horizontal expression bar used to visualize the
expression intensity of chromosomal segments or clus-
tered genes localized on the map; moreover, the users
do not need to provide genomic coordinates for the
investigated genes, whose location is resolved by the
pre-setup gene database table. A series of buttons allows
an easy, transparent tracking of gene expression mea-
surements from raw input data to normalized values, up
to expression intensity display on the map.

In addition, TRAM makes original specific data man-
agement and analysis tools available such as: a parser
which is able to find the best and updated gene/RNA
cluster name suitable to be assigned to a probe identifier
(e.g., the parser locally resolves all ~7 millions human
RNA sequence accession numbers included in the latest
available H. sapiens UniGene version); a novel effective
method for the normalization of data derived from plat-
forms with highly different number of probes (scaled
quantile) which allows more samples to be included in a
biologically homogeneous sample pool and maximizes
gene expression information that may be extracted from
each sample; the statistical analysis, based on individual
chromosome data summary in addition to genome data
summary, emphasizing local effects expected on the
basis of the behaviour of single chromosomes with
respect to chromatin organization and gene expression
regulation.

Finally, a powerful feature of TRAM is its ability to
compare, within the same analysis, the transcriptome
maps derived from two datasets (or two pools of data-
sets) related to different biological conditions (indicated
as ‘A’ and ‘B’), such as two tissues or cell types, two
developmental stages, normal vs pathological cells or
cells maintained in absence or in presence of a sub-
stance. The generation of a transcriptome map of the
relative ‘A’/’B’ ratio expression, allows the easy investiga-
tion of regional differential expression without the need
to generate the results separately for the two datasets or
pool of datasets and to devise additional calculations to
compare them.

TRAM was able to generate original results of relevant
biological interest in the ab initio modelling of differen-
tiation from CD34+ stem cells to megakaryocyte (Mk)
cells in a meta-analysis of a total of 28 publicly available
microarray datasets obtained from different sources.
Many genes with a fundamental role in Mk/platelet biol-
ogy, known since early classical studies (see “Results” sec-
tion), were shown to significantly colocalize in genome
segments or in clusters of adjacent genes. Moreover,
additional regions significantly over/under-expressed
during megakaryocytopoiesis were identified (Table 2
and Table 3). These results are original compared to the
data analysis presented in the relative primary works
from which expression data were derived [19-24]. This
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may be ascribed to the lack of data integration in the ori-
ginal studies (analysis was typically applied only to the
datasets produced in the context of the work itself)
[19-24], to the lack of a search for local enrichment of
over/under-expressed genes [20-24], to the use of a dif-
ferent analysis pipeline when a localization study was
performed (in particular, use of gene lists as a starting
point rather than the actual mean expression value of the
genes in a region) [19], or to the different biological
model considered (when the study was not intended to
investigate differential expression during differentiation
of CD34+ cells toward Mk cells) [21,23,24].

EST clusters can be mapped to the region of interest in
addition to known genes by exploiting an original integra-
tion between NCBI UniGene and UCSC Genome Browser
data (Table 2 and Table 3). This feature offers useful hints
for the functional investigation of uncharacterized tran-
scripts, on the basis of their presence, and in case of their
over/under-expression, within genomic regions differen-
tially expressed in a certain biological context.

While feasibility of integration of gene expression pro-
file data, obtained from different experimental platforms
or investigators, is highly desirable to build transcrip-
tome maps representing all information available for a
certain biological condition, the occurrence of systema-
tic errors associated with each experimental situation
requires advanced methods of inter-sample data normal-
ization, such as the widely accepted quantile normaliza-
tion [25]. However, this method may cause loss of data
due to the removal of all genes whose expression values
are missing for any dataset in order to obtain a fully
filled data matrix, representing each sample as a column
and the values for each gene as a row (for an example
of this filtering see [26]). Alternatively, some Authors
retain all data values in quantile normalization by pla-
cing missing values at the end of each sorted column
[27]. In such cases, all available data are analyzed but
with an artefact due to the misalignment of values
included in similar classes of expression level, compared
to their sample of origin (Figure 4). The original method
of scaled quantile we propose here in order to properly
manage data derived from platforms with different num-
ber of analyzed genes, has proven to be effective, allow-
ing maximization of information that can be extracted
from all pertinent available data.

Interestingly, after selecting for the analysis only sam-
ples homogeneous with respect to the used experimental
platform, a decrease in sensitivity was observed, thus
showing the effectiveness and usefulness of analysis
starting from multiple sources. For example, by per-
forming the analysis only on the datasets obtained with
commonly used Affymetrix U133A microarray (GPL96
GEO platform) among those listed in Table 1, only 5 vs.
18 significantly over/under-expressed chromosomal
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Quantile Scaled quantile
Rank A1 A2 Rank A1 A2
1 V1 V1 1 V1
2 V2 V2 2 V2 V1
3 V3 V3 3 V3
4 V4 V4 4 V4 V2
5 V5 V5 5 V5
6 V6 V6 6 V6 V3
7 V7 V7 7 V7
8 V8 V8 8 V8 V4
9 V9 9 V9
10 V10 10 V10 V5
11 V11 11 V11
12 V12 12 V12 V6
13 V13 13 V13
14 V14 14 V14 V7
15 V15 15 V15
16 V16 16 V16 V8

Figure 4 Scaled quantile normalization: concept. If two data
columns with different numbers of values, derived from two A1 and
A2 samples, respectively, are individually sorted by magnitude of
expression to obtain the mean value for all values with the same
rank, i.e. in the same row (quantile normalization), the highest
values in the sample A2 will be aggregate to the intermediate
values in the sample A1. Proportional scaling of A2 ranks aligns
them to A1 values located in analogous ordered positions with
respect to each sample whole distribution (scaled quantile inter-
sample normalization), allowing low, intermediate and high values
to be aggregated with suited corresponding values from the other
sample(s).

segments, and 68 vs. 73 gene clusters were found, com-
pared to the analysis integrating data from the whole
available pool of samples.

A variation of analysis parameters allows the explora-
tion of data from different points of view. The final sta-
tistical significance test will provide the actual reliability
of the corresponding results independently of the para-
meters selected to define the thresholds for considering
segments and genes as over/under-expressed (selection
performed at the start of the data analysis by descriptive
statistics). For example, lowering the threshold to con-
sider segments and genes as over/under-expressed will
retrieve a larger number of differentially expressed
regions but this will be taken into account during the
calculation of the statistical significance of each result
where only a minor fraction of these regions will have a
q-value (p-value corrected for FDR) < 0.05. It is note-
worthy that, among the first 12 individual genes with
the absolute highest ‘A’/’B’ ratio between CD34+ and
Mk cells, 7 were placed in one significantly over-
expressed segment or gene cluster by the transcriptome
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mapping analysis. In addition, valuable information may
also be extracted by using the capability of TRAM to
numerically describe the normalized and summarized
intensity of transcription along each chromosome. In
this way a user could readily search, find and sort
regions with no positive expression values despite con-
taining known genes ("expression deserts”).

Taken together, the described features of TRAM make
it difficult to compare in details this tool with all other
tools that, to our knowledge, are described in the litera-
ture as being capable of transcriptome mapping and
analysis. This is because TRAM is actually a suite of dif-
ferent and strictly integrated data parsing and displaying
as well as analysis tools. In particular, the existing soft-
ware reviewed in the “Background” section, accept gene
lists as an input (lists are to be obtained through differ-
ent dedicated tools), so they cannot represent and ana-
lyze the gene expression level changing along the
chromosome. Neither will they generate differential
expression maps comparing two different biological con-
ditions such as the one we have discussed in our biolo-
gical model showing progression from CD34+ cells to
megakaryocytes. The local differential gene expression
between two conditions is a function offered by the “R”
library MACAT [28], whose Authors used a set of pub-
licly available microarray data [29] related to human T-
(n = 43) and B-cell (n = 205) paediatric acute lympho-
blastic leukaemias as biological test example. Only one
chromosomal region in chromosome 6 was found to be
differentially expressed between T- and B-leukaemia
cells. This was a biologically meaningful finding since
HLA genes are localized in this region and they are
known to be under-expressed in T-cells vs. B-cells [28].
TRAM was able to replicate this result by using default
analysis parameters. In addition, TRAM was able to
individually list the loci under-expressed in T-cells pre-
sent in this region (6p21.3, coordinates 32,2500,000-
33,000,000, q-value < 0.000002, under-expressed genes:
HLA-DRA, HLA-DRBI1, HLA-DQAI, HLA-DQBI1, TAP2
- involved in antigen presentation -, HLA-DMB, HLA-
DMA). Moreover, TRAM has been able to identify three
additional differentially expressed chromosomal regions,
each of which contained several genes over-expressed in
T-cells, one on chromosome 1 (1q22-q23, q-value =
0.000007, genes: CD1D, CDIA, CD1B, CDIE) and two
on chromosome 11 (11q12.2, g-value < 0.0007, genes:
CCDC86, GPR44, a chemoattractant receptor homolo-
gous molecule expressed on T-helper type 2 cells, and
CDS5; 11q23, g-value < 0.0007, genes: CD3E, CD3D and
CD3G@). These regions are of remarkable biological and
clinical interest because they contain clusters of genes
related to CD1, CD5 and CD3, respectively; these are
well known as main and universally used specific surface
markers of T-cells. In the “Cluster” mode, TRAM
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identifies 35 gene clusters significantly over- (n = 16) or
under-expressed (n = 19) in leukaemic T-cells compared
to B-cells, including several other genes known to be T-
or B-cell specific (data not shown). Finally, MACAT is
limited to the analysis of Affymetrix microarray, further
underlining the need for a tool open to all platforms as
well as to cross-platform analysis.

The batch effects are the systematic differences between
batches (groups) of samples in microarray experiments
due to technical reasons, such as variability in materials,
protocols or operators, possibly introducing a bias able to
confound true biological differences (recently reviewed by
Luo and coll. [30]). The TRAM data model described
appears to be intrinsically resistant to the influence of
batch effects, for the following reasons: the TRAM locus-
centred data model does not attempt to separate sub-
groups within a sample pool, because it is assumed that
the samples come from the same biological condition (e.g.
cell type, disease) for which only one aggregate value per
locus is obtained and considered; the TRAM algorithm is
non-parametric at different levels of normalization and
analysis and this is expected to reduce the noise due to dif-
ferent value scales; the biological model discussed above
deliberately used data from different platforms, protocols
and operators, showing results coherent with the current
biological knowledge and even better with respect to the
results obtained analyzing data deriving from a single plat-
form. However, if the user suspects that batch effects
could confound the results, in particular if two single and
distinct batches of samples are loaded as pool ‘A’ and ‘B’,
respectively, it could be useful to attempt removing batch
effects from the raw data using one of the existing tools
[30] prior to importing data in TRAM.

While this manuscript was being revised, two novel
software were described in addition to those reviewed in
the “Background” section, able to analyze local enrich-
ment of over/under-expressed genes. CROC [31] also
uses the hypergeometric distribution to find genomic
regions or gene clusters enriched in over/under-
expressed genes, and supports calculations based on
both whole genome data and individual chromosome
values. However, like the previously published REEF tool
[10], it accepts gene name lists as an input and it is not
designed to parse, normalize and map original expres-
sion data and to display the corresponding quantitative
transcriptome maps. The Integrated Genome Browser
[32] can load expression data and visualize them along
an x axis representing the chromosome sequence. How-
ever, it lacks any function of data integration, normaliza-
tion and analysis (Figure 1), being essentially a graphical
display tool for expression data, like the previously pub-
lished program ChromoViz [33].

The large agreement of TRAM results, obtained with-
out any a priori specific assumptions, with classical
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biological knowledge about megakaryocytopoiesis, shows
that TRAM can perform integrated analysis of expres-
sion data from multiple platforms producing high confi-
dence lists of over/under-expressed chromosomal
segments and clustered genes. In conjunction with our
previous implementation of a GenBank format full par-
sing system [34] (currently undergoing complete rede-
signing within FileMaker Pro 7 architecture) and
UniGene Tabulator [35], TRAM may also contribute to
the building of a novel, relational, multi-purpose, user-
friendly and modular platform for the large-scale inte-
grated analysis of genomic and post-genomic data.

Conclusions

We have here described a unique package able to create
and analyze transcriptome maps by integrating gene
expression profile data from multiple sources and gener-
ating a relational, fully-indexed database-structured map,
usable on Macintosh as well as on Windows operating
systems-based computers, features that are non com-
monly available in other applications.

TRAM provides a simple and intuitive system for the
display and analysis of gene expression data within a sin-
gle solution, including built-in multiple gene identifier
conversion modules, intra-sample and inter-sample data
normalization, map comparison between two biological
conditions, graphical display and highly flexible data ana-
lysis (by both descriptive and inferential statistics) that
has proven to generate results of biological interest.

The current release of TRAM software is freely avail-
able at TRAM home page [36]. We also distribute pre-
configured implementations ready for analysis of Homo
sapiens (human), Mus musculus (mouse) and Danio
rerio (zebrafish) gene expression profiles.

Methods

Database development

TRAM was developed within the FileMaker Pro envir-
onment. This is a database management system with a
user-friendly graphical interface usable on Macintosh
and Windows operating systems-based computers. All
data import, expression analysis and results of graphical
output functions are obtained combining FileMaker Pro
scripts and calculated fields (i.e. fields automatically cal-
culating their result processing value from other fields
by a pre-defined formula). No additional plug-in or soft-
ware are required. A specific advantage of this platform
as a transcriptome map generator and analyzer is the
relational database environment at its core. As a conse-
quence, each dataset in any table (e.g. gene expression
values, gene names, expression value of chromosomal
segments or gene clusters) is structured as a series of
records that may be easily sought according to the
desired criteria and then sorted, exported, and possibly
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related to other database tables. In this way, the graphi-
cal display of the map allows the user to maintain full
control over the original expression data values at the
basis of the map.

The freely distributed licensed runtime application
allows full data import and export in several formats, as
well as full record management and analysis script
execution. Only for the creation of new fields, further
calculation or additional relationship definition an origi-
nal copy of FileMaker Pro version 10 (or higher) pack-
age is required.

TRAM set up

In order to link gene identifiers to the corresponding
gene symbols/gene names, it is possible to import in
TRAM any text data file containing essential description
(e.g., probe identifiers list and matching gene symbols or
GenBank sequence accession numbers) for each experi-
mental platform used to assess gene expression level in
the examined samples (Figure 1). A typical use is loading
a GEO [37] Platform file, in order to parse expression
datasets obtained using that platform. Pre set-up human,
mouse and zebrafish versions are distributed following
loading of the most used GEO Platforms for those organ-
isms. In order to uniform the assignment of gene identi-
fiers to standard gene symbols, in absence of an available
official gene symbol or an Entrez Gene [38] name, the
UniGene [39] Cluster identifier (UniGene ID) is used as
the gene name, if available, while the GenBank accession
number is used, if provided, in absence of any match to
an Entrez Gene or UniGene entry (Figure 1).

TRAM 1.0 distribution was set up using data available
at January 2011, downloading from Entrez Gene the
gene localization data and parsing from UniGene tables,
allowing the conversion of any RNA or expression
sequence tag (EST) GenBank accession number into the
corresponding gene symbol [35]. In the case of human
UniGene latest available version (build #228), about
7 millions RNA and EST code data were imported in
TRAM.

In addition, localization of EST clusters, which are
sequences not characterized as official genes but repre-
sented in the transcriptome, was derived from UCSC
“ESTSs” track in the UCSC Genome Browser [40], which
is also imported and processed during the TRAM set-
up. A relationship between UniGene and UCSC ESTs
data allows to determine the minimal available start
genomic coordinate and maximum available end geno-
mic coordinate for each set of ESTs belonging to the
same UniGene cluster. These coordinates are operatively
considered the limits of the locus while constructing the
transcriptome map. Clusters containing ESTs mapped
on different chromosomes are not further considered in
the building of the map, as well as those with ESTs
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mapping on very distant positions on the same chromo-
some. To this aim, we set a rather conservative limit of
250,000 bp for TRAM, considering that the Entrez Gene
set of 27,018 human genes, that is the largest known,
has a mean size of 46,210 bp and a standard deviation
of 107,161 bp, therefore our limit is equivalent to con-
sidering a size range within mean plus or minus 2 SD
(approximately 95% of values in a Gaussian distribu-
tion). This correction effectively removes approximately
3,000 transcripts, erroneously mapped to regions of sev-
eral Mb or tens of Mb. The user retains the possibility
to inspect the list of EST clusters with a genomic exten-
sion greater than 250 kb present in a given chromosome
segment, even if they are not considered in the creation
of the transcriptome map.

Expression data import, parsing and normalization

Each series of data related to a TRAM ‘Sample’ is
defined as a ‘distinct biological sample’. For example, a
sample should be a single channel in the case of two
channels experiment, each channel data being imported
as a distinct data file. The expression data file may be
any tabulated (tab-delimited) text file containing two
columns separated by a “TAB’ character (tabulator key,
ASCII9): a gene identifier and a numerical expression
value, respectively. Gene symbol, Entrez gene name, cus-
tom identifier, GEO Platform probe ID or GenBank
accession number are accepted as gene identifiers: the
first two by default, the others provided that the soft-
ware has been appropriately set up.

The expression value is usually the pre-processed
intensity value (i.e., the value assigned to the spot as it
has been processed by the software of the specific
experimental platform used, for example, following
background subtraction for a microarray spot). An inter-
nal utility interactively assists the user in the preparation
of text files in the required format, starting from raw
expression data. Batch import of a large number of data
files is possible. Each sample or set composed of any
number of samples may be imported in one of two
pools, ‘A’ or ‘B’, relative to two different biological con-
ditions that may be then easily compared.

TRAM is able to perform some useful data normaliza-
tion methods (Figure 1) to allow comparison of gene
expression data obtained by different biological samples
and/or by different experimental platforms.

Intra-sample (e.g., intra-array) normalization works
within each distinct sample data, while inter-sample (e.
g., inter-array) normalization is simultaneously applied
to the desired sample set.

The user may select different combinations between
these types of normalization.

Intra-sample normalization methods are ‘Mean’ or
‘Median’ (each value is expressed as the percentage of
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the corresponding sample mean or median value,
respectively; this is equivalent to the classic “global nor-
malization” in the microarray data analysis [41]) and
‘Max’ (each value is expressed as the percentage of the
corresponding sample maximum value, equivalent to the
classic “scale normalization”). These methods rescale
values within each data set using a standard internal
reference for each sample. Inter-sample normalization
method is the commonly used “quantile” algorithm [25].
Implementation of this algorithm in the database struc-
ture at the core of TRAM is realized as follows: each
intra-sample normalized value is given a rank following
sample data sorting in ascendant order, then the mean
value for all the values with the same rank across all
samples is calculated. This mean value is assigned as the
expression value to each gene with the same rank in
each sample. An original variant of this method imple-
mented in TRAM is described below. The inter-sample
normalization methods rescale values across a whole
sample set, allowing inter-sample comparison.

The summary of gene expression values, under the
current mode of normalization, may be viewed as an
indexed database table summarizing all data points
available in the sample pool for each locus. The mean
value of the data points available for each locus is con-
sidered the expression value for the respective gene and
it is used in the subsequent analysis.

Scaled quantile normalization

The quantile method assumes that each sample has the
same number of values. However, datasets obtained
from different platforms used to assess the gene expres-
sion profile, may have highly different numbers of
values. In this case, applying the quantile method to the
matrix resulting after aligning and sorting values from
each sample (represented as a column) gives raise to
artefacts, in that the highest values of a sample are sum-
marized with intermediate values of samples with a
greater number of values (Figure 4). To correct for
this artefact, we applied the following formula in
TRAM: Scaled Rank = Rank * Max Rank/Max Sample
Rank, were ‘Rank’ is the rank (position in the ranking)
of the value in the sample data column sorted in ascen-
dant order, ‘Max Rank’ is the highest rank present in
the whole sample dataset, and ‘Max Sample Rank’ is the
highest rank assigned within each considered sample.
The result of the calculation is rounded to the nearest
integer number. The adjusted rank is then used to cal-
culate the mean value across all genes which had the
same rank assigned (Figure 4). In the case that the
experimental platforms have the same number of fea-
tures, the scaled quantile is identical to quantile. Com-
parability of values is best attained if previous intra-
sample normalization has been performed too.
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Generation and analysis of transcriptome maps

In the ‘Map’ mode of analysis, TRAM will generate a
graphical map of the transcriptome showing a vertical
line representing each chromosome (Figure 2). An
expression value is associated to each segment of the
line, whose size is determined by a window (in bp) set
by the user. A differentially coloured horizontal bar is
displayed for each chromosomal segment, with a length
proportional to the expression value assigned to the
relative segment. This value is the mean for all available
expression data related to genes included in each seg-
ment. The available settings for this analysis are: Win-
dow, which defines the length for a segment; Sliding
window shift, which defines the overlapping region
between a segment and the next one; Percent (segment),
which defines the threshold required to consider a seg-
ment as over/under-expressed, in terms of inclusion of
the segment expression value within the highest/lowest
(n) percent of segment expression values; Percent
(gene), which defines the threshold expression value to
consider a gene as over/under-expressed, in terms of
inclusion of the gene expression value within the high-
est/lowest (n) percent of gene expression values; Num-
ber of genes in the window, which defines the minimum
number of over/under-expressed genes required to mark
the segment with the tag of over/under-expressed,
respectively.

The calculation of statistical significance of the over/
under-expression of the segment is performed as
described in the “Statistical analysis” Methods section
below.

Search for clusters of neighbouring over/under-expressed
genes

In the ‘Cluster’ mode of analysis, TRAM will search for
sets of at least two contiguous/neighbouring genes, all
expressed beyond a defined ‘n’ threshold, i.e. with
expression values higher than the (100 - ‘n’) percentile
or lower than the ‘n’ percentile. In this mode, results are
centred on individual differentially expressed loci with-
out any bond about the length of the over/under-
expressed region.

The available settings for this analysis are: Percent
(gene), which defines the thresholds required to con-
sider a gene as over/under-expressed, in terms of inclu-
sion of the gene expression value within the highest/
lowest (n) percent of gene expression values; Gap, which
defines the maximum number of non over/under-
expressed genes allowed to be localized between two
over/under-expressed genes in a cluster (if Gap = 0,
only strictly contiguous genes will be considered to be
in cluster); Gene Type, which defines if TRAM, while
constructing the linear map of genes, will use only
genes with an official gene symbol assigned, or will use
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also genes with at least an Entrez Gene identifier avail-
able, or will use any locus with at least a UniGene clus-
ter identifier, even in absence of an official or Entrez
Gene symbol.

The statistical significance of the results is calculated
as described in the “Statistical analysis” Methods section
below.

Statistical analysis

To assess the statistical significance of the results,
TRAM uses the hypergeometric distribution to test the
probability ‘P’ that colocalization of over/under-
expressed genes within the same chromosomal segment
(Map’ analysis mode) or in the same cluster of contigu-
ous genes ('Cluster’ analysis mode) may be due to
chance. To this aim, calculations are performed as pre-
viously described [10].

The ‘P’ value needs to be corrected to account for
False Discovery Rate (FDR) due to the high number of
segments or genes in a genome. The ‘Q’ field in TRAM
displays the p-value corrected for FDR. Q (q-value) for
each chromosomal segment or cluster of contiguous
genes is defined as Q = (p*N)/i, where ‘p’ is the p-value
of the segment or of the cluster, ‘N’ is the total number
of segments or cluster considered (i.e., all those tagged
as over/under-expressed under the criteria defined by
the user selected analysis settings) and ‘i’ is the number
of windows with a p-value not higher than ‘p’ [10].
Results are considered statistically significant for Q <
0.05.

Depending on the type of analysis selected by the
user, TRAM may perform statistical significance com-
putation taking into account all genes in the genome
or, in order to emphasize local chromosomal effects,
taking into account only the genes located in the same
chromosome the chromosomal segment or gene clus-
ter belongs to.

The results discussed above, regarding the outcome of
the normalization methods implemented in TRAM,
were obtained using descriptive statistical analysis func-
tions of the software JMP 5 for Mac OS X (SAS Insti-
tute, Cary, NC).

Biological model test

To test the software, we performed a meta-analysis of a
dataset obtained by gene expression profiling of human
hematopoietic progenitor cells, searching for up- or
down-regulated chromosomal segments and gene clus-
ters in human megakaryocyte (Mk) cells, the precursors
of platelets, compared to CD34+ hematopoietic undif-
ferentiated stem cells. After searching in the GEO data-
base, we selected 9 human Mk samples and 19 human
CD34+ cell samples, using the following criteria: homo-
geneity of cell type, derivation from different Authors
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works and representation of microarray platforms with
different technology and number of spots (Table 1)
[19-24]. The default analysis parameters were: expres-
sion values normalized both intra-sample (by percentage
of sample mean) and inter-sample (by scaled quantile
method); 2.5th percentile upper and lower threshold to
define over- or under-expression, for both segments and
genes, with respect to whole genome gene set; require-
ment of at least 3 over/under-expressed genes to define
a segment accordingly; window (segment) of 500,000 bp
(with shift of 250,000 bp). The wideness of the window
and the minimum number of over/under-expressed
genes required to lie in the window ('n’) should be reci-
procally adjusted so that the mean number of all genes
included in a segment (shown at the end of the Seg-
ment Map) would exceed ‘n’. In our human genes data
set, setting a window to 500,000 bp led to segments
containing a mean of 4.3 genes, while lowering the win-
dow to 250,000 bp led to a mean of 2.7 genes (segments
with no gene value are ignored in the calculation of
mean). In the ‘Cluster’ mode, all available genes includ-
ing UniGene clusters of transcripts were selected to
construct the map, and the Gap was set equal to 1. The
test was run on March 2010, using Entrez Gene
and UniGene data available at the time (UniGene
build #222).
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