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Abstract

Background: Chromatin immunoprecipitation (ChiP) followed by microarray hybridization (ChIP-chip) or high-
throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription
factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has
been done to compare histone modification profiles generated by the two technologies or to assess the impact of
input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset
consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase Il (RNA Polll), and six
histone modifications across four developmental stages of Drosophila melanogaster.

Results: Both technologies produce highly reproducible profiles within each platform, ChiP-seq generally produces
profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of
peaks identified by the two technologies can be significantly different, but the extent to which they differ varies
depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation
among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both
differences in experimental condition and sequencing depth. We further show that using an inappropriate input
DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting
the importance of having high quality input DNA data for normalization in ChIP-seq analysis.

Conclusions: Our findings highlight the biases present in each of the platforms, show the variability that can arise
from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply

sequenced input DNA libraries for ChIP-seq analysis.

Background

Chromatin immunoprecipitation (ChIP) followed by
genomic tiling microarray hybridization (ChIP-chip) or
massively parallel sequencing (ChIP-seq) are two of the
most widely used approaches for genome-wide identifi-
cation and characterization of in vivo protein-DNA
interactions. They can be used to analyze many impor-
tant DNA-interacting proteins including RNA poly-
merases, transcription factors, transcriptional co-factors,
and histone proteins [1]. Indeed these genome-wide
ChIP analysis approaches have led to many important
discoveries related to transcriptional regulation [2-4],
epigenetic regulation through histone modification [5],
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nucleosome organization [6,7], and interindividual varia-
tion in protein-DNA interactions [8,9].

ChIP-chip first appeared in the literature about
10 years ago and was one of the earliest approaches to
performing genome-wide mapping of protein-DNA
interactions in organisms with small genomes, such as
yeast [2,10]. Currently, various tiling microarray plat-
forms of common model organisms are well supported
by commercial vendors, and many bioinformatics tools
have been developed for ChIP-chip analysis [11-14].
Fueled by rapid development of the second generation
high-throughput sequencing technologies in the past
few years, ChIP-seq has emerged as an attractive alter-
native to ChIP-chip [1]. For instance, ChIP-seq generally
produces profiles with higher spatial resolution, dynamic
range, and genomic coverage, allowing it to have higher
sensitivity and specificity over ChIP-chip in terms of
protein binding site identification. Further, ChIP-seq can
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be used to analyze virtually any species with a
sequenced genome since it is not constrained by the
availability of an organism-specific microarray. Many
current ChIP-seq protocols can work with a smaller
amount of initial material compared to ChIP-chip
[15,16]. Moreover, ChIP-seq is already a more cost-
effective way of analyzing mammalian genomes, and the
cost effectiveness will likely become more apparent as
the cost of high-throughput sequencing technology con-
tinues to drop. These factors have led to the rapid adop-
tion of ChIP-seq technology.

However, despite the widespread use of both ChIP-
chip and ChIP-seq, only a few small-scale studies have
attempted to quantitatively compare these technologies
using real data. Euskirchen et al. [17] compared the
STAT1 binding sites identified by ChIP-chip and ChIP-
PET (paired-end ditag sequencing by Sanger sequencing
technology) and found that there was a good overall
agreement between the two technologies, particularly at
identifying highly ranked enrichment regions. They
nonetheless noted specific discrepancies in regions asso-
ciated with repetitive elements, which can be attributed
to lack of microarray probe coverage or misalignment of
ChIP-PET reads. More recently, a number of studies
compared genome-wide transcription factor binding
datasets generated from ChIP-chip with those generated
from ChIP-seq [18-22] (see Additional file 1: Table S1).
The general conclusions from these studies were that
binding profiles generated from ChIP-chip and ChIP-seq
were largely correlated at the genome-wide level, and
that ChIP-seq had superior sensitivity and specificity
over ChIP-chip in terms of binding site identification as
determined by motif enrichment or quantitative PCR
validation. It was also found that the strongest peaks
were more likely to be detected by both technologies.
However, only a few pairs of ChIP-chip/ChIP-seq pro-
files were analyzed in these studies, and their focus was
mainly on the ability to identify narrow enrichment
regions using specific peak calling algorithms. As shown
previously [23] and in this study, peak identification can
be strongly dependent on the analysis algorithm, so
other more general comparison metrics should be used.

In addition, little is known about the technology-
specific variation for analyzing histone modification
data. ChIP-based histone modification data is commonly
used to reconstruct average signal profiles, or “epige-
netic signatures,” of key genomic regions such as the
transcription start and end sites, but the impact of using
ChIP-chip versus ChIP-seq data for constructing epige-
netic signatures is largely unknown. Furthermore, it is
also important to understand technology-specific biases
associated with high-throughput sequencing. Recent stu-
dies indicated that the distribution of cross-linked and
sonicated DNA fragments (input DNA) was affected by
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chromatin structure, copy number variation, occurrence
of genomic repeats, mappability, genomic location, gene
expression activity, and genomic GC content variation
[24-26]. Since input DNA is commonly used as a back-
ground control for a ChIP-seq experiment, it is impor-
tant to assess how such variation affects the analysis of
ChIP-seq data.

Therefore a thorough understanding of the technolo-
gical variation between ChIP-chip and ChIP-seq is
important in experimental design and data analysis. In
this study, we compiled and analyzed 31 pairs of ChIP-
chip/ChIP-seq profiles of technical replicates across
eight immunoprecipitation (IP) factors (CBP, RNA Polll,
and six histone modifications) at four developmental
stages of the common fruit fly Drosophila melanogaster
(Table 1) as part of the model organism Encyclopedia of
DNA Elements (modENCODE) project [27]. In addition,
our compiled dataset comprises another 62 ChIP-chip
profiles (biological replicates) in the same set of biologi-
cal conditions (i.e., three ChIP-chip biological replicates
at each developmental stage/IP combination), nine
sequencing profiles of input DNA, and four pairs of
ChIP-seq/ChIP-seq replicates (Table 2). Agilent’s tiling
microarray (Agilent custom 3X244K Dmel Whole Gen-
ome Tiling Microarray) and Illumina’s Genome Analy-
zer II platforms were used to generate the ChIP-chip
and ChIP-seq data, respectively. All data used in this
study were generated as part of the modENCODE pro-
ject, and are accessible from NCBI GEO (accession
numbers: GSE15292, GSE16013, and GSE20000). The
goal of this study was to quantify reproducibility within

Table 1 Summary of the ChIP-chip and ChIP-seq profiles
analyzed in this study

ChlIP-chip and ChIP-seq replicates
E-0-4 h E-12-16 h E-16-20 h
chip seq «chip seq chip seq
CBP 3 — 3
H3K27Ac
H3K27Me3
H3K4Me1
H3K4Me3
H3K9Ac
H3K9Me3
Polll
INPUT

E-20-24 h
chip seq
3

IP factor

*¥ oW W W W W W w
* W W w w w w w
* W W W W W w w
* W W w w W w w

1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

For each combination of developmental stage and IP factor, three biological
samples were profiled by ChIP-chip, and one of these samples was
independently profiled by ChIP-seq. Therefore we have three biological ChIP-
chip/ChlIP-chip replicates, and one technical ChIP-chip/ChIP-seq replicate pair
for every biological condition. *Although no independent microarray profiles
of input DNA were available, we extracted input DNA profiles from the input
channel (of the two-channel microarray) for each ChIP-chip profile. We
therefore have 31 x 3 = 93 INPUT-chip profiles in this collection, where all
INPUT-chip profiles within each time point are technical replicates.
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Table 2 Summary of the additional ChIP-seq profiles
analyzed in this study

ChlIP-seq replicates only

IP factor E-4-8 h AdultMale AdultFemale S2 cell
seq seq seq seq
CBP 2 2 2 —
CTCF — — — 2
INPUT 1 1 1 2

Details of the four additional pairs of ChIP-seq/ChIP-seq (biological) replicates
analyzed in this study. The two CTCF ChIP-seq profiles were technical
replicates, whereas all other ChIP-seq pairs were biological replicates.

and between profiles generated using ChIP-chip and
ChIP-seq approaches, and to pinpoint the source of var-
iation between the technologies, which ultimately should
provide useful information for experimental design and
data analysis.

Results

Analysis of input DNA profiles

To understand the technological differences between
sequencing-based and microarray-based ChIP data, we
first analyzed the profiles of cross-linked and sonicated
DNA fragments (input DNA) generated by microarray
(INPUT-chip) and high-throughput sequencing
(INPUT-seq). Since the input DNA profile should be
independent of the antibody used for ChIP, this compar-
ison can give insight into the specific differences
between these two profiling technologies. We obtained
INPUT-chip data from the background channel of our
two-channel microarray data. While this microarray
platform uses competitive hybridization, the two chan-
nels in our Agilent microarray have been shown to be
relatively independent as saturation in either channel is
very rare [28]. Out of all the INPUT-chip profiles that
we extracted, we only present the analysis of eight
representative profiles here (two from each of the four
developmental time points) since most of the INPUT-
chip profiles are very similar (Additional file 2: Figure
S1). The eight INPUT-chip profiles were then compared
with the nine INPUT-seq profiles collected in this study
(Additional file 1: Table S3).

One of the most striking observations is that INPUT-
chip and INPUT-seq profiles appear to be substantially
different, even though the same input DNA material
was used for microarray hybridization and sequencing
(Figure 1). The relative magnitude and location of the
peaks seem to be consistent across the INPUT-chip pro-
files from multiple experiments. However, the patterns
in the nine INPUT-seq profiles appear to be more vari-
able. We can visually identify many regions that have
inconsistent signal enrichment across multiple INPUT-
seq profiles (highlighted in Figure 1a). A clustering ana-
lysis was performed to quantify this observation. We

Page 3 of 12

found that all eight INPUT-chip profiles clustered clo-
sely to one another (Figure 1b). This result shows that
the background DNA distribution measured from
microarray and high-throughput sequencing is different.
All INPUT-chip and seven out of nine INPUT-seq pro-
files correlated positively with genomic GC content at
the genome-wide level (Figure 1b), as well as around the
transcription start sites (TSS) and transcription end sites
(TES) (Figure 1c). The strength of the correlation with
GC is highly consistent among INPUT-chip profiles, but
highly variable among the INPUT-seq profiles (Figure
1b-c and Additional file 2: Figure S2). Notably, the
INPUT-seq profiles obtained at E-16-20 h (E16) and
E-20-24 h (E20) do not correlate with GC content.

We also note that INPUT-seq with higher sequen-
cing depth (>4 million mapped reads) tend to cluster
together more tightly than those with lower sequen-
cing depth, suggesting that there may be a relationship
between sequencing depth and input DNA variability.
To test this hypothesis, we generated 11 additional
INPUT-seq profiles by subsampling sequencing reads
from the most deeply sequenced input DNA sample
(AdultMale; AM) at different sampling proportion
(Figure 1d and Additional file 2: Figure S3). As
expected, profiles with higher sequencing depth tend
to cluster more strongly together, and their correlation
with GC content variation is more consistent. How-
ever, the GC content correlation only becomes much
weaker only at a very low sequencing depth (<2 mil-
lion reads; Figure 1d). This indicates that low sequen-
cing depth is not the only factor affecting INPUT-seq
quality. Moreover, some INPUT-seq with relatively low
sequencing depth (EO and AF, <4 million reads) can
give consistent input DNA profiles. This implies that
INPUT-seq variability may also be attributed to other
experimental factors. Although further studies are
required to dissect the full range of experimental fac-
tors affecting variability of input DNA libraries, it
could be affected by variations in the sample prepara-
tion (e.g., different chromatin preparation and sonica-
tion), run-to-run variation of the sequencer,
sequencer-to-sequencer variation for the same model,
and a host of other variables in experiments. The high
variability among INPUT-seq profiles is indeed a criti-
cal issue, since large variability contributes to instabil-
ity of density estimation in a ChIP-seq profile, which
will affect downstream data analysis. As will be shown
in subsequent sections of this paper, an INPUT-seq
with unusually weak correlation with GC content can
impact construction of average profiles at important
genomic locations. It is thus imperative to sequence
the input DNA to sufficient depth and to ascertain
that the obtained profile is consistent with those from
similar experiments.
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Figure 1 Comparison of input DNA profiles obtained by microarray and sequencing technologies. (a) A genome browser view of input
DNA profiles of chromosome 2R of D. melanogaster at various developmental stages measured by microarray (INPUT-chip; blue) and sequencing
(INPUT-seq; red). (b) A heat map that summarizes the Spearman correlation coefficient between every pair of the nine INPUT-seq and eight
INPUT-chip profiles along with genome-wide GC content. The number of mappable reads (in million) is written next to the name of each
INPUT-seq profile. (c) The average signal profiles of INPUT-seq and INPUT-chip around transcription start sites (TSSs) and transcription end sites
(TESs) are largely consistent, and their variation along these genomic regions generally coincide with GC content variation. (d) We generated 11
additional profiles from one of the INPUT-seq samples (AM) by subsampling the reads at different proportions (90%,80%,..,10%,5%,1%). A heat
map summary representation of the Spearman correlation coefficient between every pair of sub-sampled INPUT-seq profiles and GC content is
shown here. (e) The relationship between sequencing depth and genomic coverage. The curve shows how sequence read subsampling (ie.,
reducing sequencing depth) affects genomic coverage. The genomic coverage of the nine INPUT-seq datasets and our Agilent microarray are

also shown in the plot.

Genomic coverage is another key consideration when  trend constructed from the randomly subsampled data
choosing between ChIP-chip and ChIP-seq. The geno-  corroborates the observed genomic coverage of the
mic coverage of ChIP-chip is limited by the microarray other eight real INPUT-seq datasets (Figure le).
probe design, and the coverage of ChIP-seq is depen-
dent on sequencing depth. The genomic coverage Comparison of profile characteristics
achieved by our Agilent microarray is about 70%. Using ~ We then compared the characteristics of ChIP-chip and
the sub-sampled INPUT-seq data, we show that ChIP-seq profiles. To compare the profiles generated by
INPUT-seq generally provides higher genomic coverage the two technologies, we divided the genome into 1 kb
at sequencing depth as low as one million reads. This non-overlapping bins and defined the enrichment level
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at each bin as the average of log ratio of the IP channel
over the input channel (see the Methods section for
details). We refer to a signal distribution of a ChIP pro-
file as its distribution of enrichment values of all the
bins. First, we aimed to characterize the average signal-
to-noise ratio for profiles generated by the two technol-
ogies. We used the (truncated) skewness of the signal
density profile after removing signals from the highest
and lowest 5% of the distribution as a measure of sig-
nal-to-noise ratio of a profile. Skewness is a measure of
asymmetry of a distribution and a positive skewness
indicates that the tail on the right side is longer, imply-
ing a good signal-to-noise ratio. In almost all cases, a
ChIP-seq profile has a higher skewness than its corre-
sponding ChIP-chip profile of the same biological
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condition (Figure 2 and Additional file 1: Table S4). We
note that the difference of skewness is dependent on the
IP factor which could be due to different antibody qual-
ity and prevalence of histone modification or binding
events. The same conclusion can be drawn even if a dif-
ferent bin size was used (Additional file 2: Figure S4).
Our results confirmed the general observation that
ChIP-seq usually produces a more distinctive signal pro-
file than ChIP-chip.

Next, we characterized the enrichment regions within
each ChIP profile. To perform a fair comparison, we
would like to use an algorithm that performs peak call-
ing on ChIP-seq and ChIP-chip data using the same
criteria. Currently, many commonly used peak calling
algorithms are specifically designed for analyzing
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Figure 2 Comparison of the characteristics of ChIP-chip and ChIP-seq profiles. Figures (a) and (b) summarize the skewness of the signal
distributions of all the ChIP-chip and ChiIP-seq profiles. A ChiP profile with a good signal-to-noise ratio should have a signal distribution that is
positively skewed (i.e, skewness >0). Higher skewness implies a better signal-to-noise ratio. In almost all cases, a ChIP-seq profile has higher
signal skewness than its corresponding ChiP-chip profile. Figures (c) and (d) show the ratios of the number and mean width of the enrichment
regions identified by ChlIP-chip and ChiIP-seq using our heuristic approach (see the Methods section of this paper). In almost all cases, we can
identify larger number and narrower peaks in a ChIP-seq profile than its corresponding ChIP-chip profile.
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ChIP-chip or ChIP-seq data, but not both. To overcome
this limitation, we identified peaks from both ChIP-chip
and ChIP-seq profiles using the same genome-scanning
heuristic (see the Methods section). Our results indicate
that we can almost always discover a larger number of
peaks and narrower peaks using data generated from
ChIP-seq compared to ChIP-chip when analyzing the
same biological sample, and this conclusion is consistent
regardless of the stringency of the identification criteria
used (Figure 2 and Additional file 2: Figure S5). In prac-
tice, we can probably identify an even larger number of
narrow peaks in ChIP-seq data if we explicitly make use
of strand-specific information within the peak calling
procedure (beside only shifting each read towards its 5’
end by a constant number of base pair), so the current
analysis provides a lower bound on the effectiveness of
ChIP-seq compared to ChIP-chip. Taken together, our
results demonstrate that ChIP-seq provides higher spa-
tial resolution and signal-to-noise ratio.

Genome-wide signal reproducibility within and between
technologies

Further, we estimated the reproducibility between ChIP-
chip and/or ChIP-seq profiles at the genome-wide level
(1 kb bins). To avoid biases due to differences in geno-
mic coverage and sequence mapping (Figure le), we
exclude genomic regions that do not contain any micro-
array probes and regions with unusually high variability
across multiple INPUT-seq profiles. The Pearson corre-
lation coefficient, r, was used as a measure of correla-
tion, since it is more sensitive than the Spearman
correlation coefficient for comparing the tail of two sig-
nal distributions, which is particularly important in ana-
lyzing ChIP enrichment signal profiles. The correlation
between ChIP-chip replicate pairs and between ChIP-
seq replicate pairs is generally high (median » = 0.85
and 0.82, respectively), indicating that both technologies
can produce reproducible results. As expected, the
cross-platform correlation between replicate pairs of
ChIP-chip and ChIP-seq profiles are more modest
(median r = 0.41; Additional file 1: Table S5). Similar
conclusions can be reached even if we use different bin
sizes for calculating inter-profile correlation (Additional
file 2: Figure S6). A representative scatter plot compar-
ing each pair of technologies is shown in Figure 3b-d.
We also observe a positive correlation between the
skewness and inter-profile reproducibility (Additional
file 2: Figure S7), suggesting more sensitive antibodies
may produce more consistent profiles between the two
technologies.

Construction of average signal profile at TSS and TES
Construction of average ChIP signal profiles around
important genomic features such as TSS and TES is a
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common way to visualize signal enrichment around
these features. Therefore, we investigated the reproduci-
bility of average TSS and TES profiles (2 kb up and
2 kb downstream) for every pair of replicate ChIP pro-
files (Additional file 2: Figure S8). The average profiles
of most replicate pairs are highly consistent. However,
there are a few pairs that are significantly different,
especially the profiles of H3K27Me3 and H3K9Me3 at
both stage E-16-20 h and E-20-24 h (Additional file 2:
Figures S8c and S8g). Without external validation, it is
impossible to determine whether the average signal pro-
files generated by ChIP-chip or ChIP-seq are more accu-
rate. Nonetheless, two lines of evidence led us to believe
that the average signal profiles from ChIP-chip were
more likely to be accurate. First, all three ChIP-chip
replicates at these time points had very consistent aver-
age profiles. Second, the ChIP-seq average signal profiles
at these biological conditions resembled the trend of GC
content variation at TSS and TES (Figure 1c). The unu-
sually low correlations between GC contents and the
INPUT-seq profiles of E-16-20 h and E-20-24 h (Figure
1b and Additional file 2: Figure S2b) prompted us to
hypothesize that the observed discrepancy was due to a
misrepresentation of GC content variation by the
respective INPUT-seq profiles. Both H3K27Me3 and
H3K9Me3 are repressive marks that are usually depleted
at TSSs and TESs so any variation in background sub-
traction is likely much more pronounced than other his-
tone marks that have strong signal enrichment at these
genomic features. To test our hypothesis, we replaced
the corresponding INPUT-seq background with the
INPUT-seq from the AdultFemale sample, since it has
the highest correlation with GC content variation. After
the replacement, the average signal profiles generated by
ChIP-seq and ChIP-chip at these two developmental
stages agree (Figure 4 and Additional file 2: Figure S9).
This result is striking since it shows that using different
INPUT-seq as negative control of the same ChIP-seq
profile can lead to substantially different interpretation
of the data.

Effect of using different input profiles in ChIP-seq data
normalization

Having observed the impact of INPUT-seq in construct-
ing average TSS and TES profiles, we asked whether
using different INPUT-seq profiles for background nor-
malization significantly affects ChIP-seq peak calling
results. We used SPP [29] to call peaks for 10 of our
ChIP-seq samples (CBP, H3K9Ac, H3K9Me3, H3K27Ac,
H3K27Me3 at E16-20 h and E20-24 h) where each ChIP
profiles was normalized against four different INPUT-
seq as background (the input from the matching time
point, AdultFemale, AdultMale, and E-4-8 h). These
INPUT-seq profiles were chosen because they have
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different sequencing depth and correlation with GC
content (Figure 1b). A comparison of the number of
peaks and median peak width is shown in Figure 5. We
observed a large difference in number of peaks being
called for any ChIP-seq sample when different INPUT-
seq was used as background. In the extreme case (E-16-
24 h, H3K9Me3 ChIP), the number of peaks can
changes from zero to nearly 40,000 at a FDR of 5% (Fig-
ure 5a). In general, more statistically significant peaks
(FDR < 0.05) were detected when normalizing against a
deeply sequenced input DNA sample (AdultMale and E-
4-8 h in this experiment), although the absolute magni-
tude of the difference varies among ChIP datasets. The
difference in peak number likely indicates a difference
in detection power. For each ChIP sample, we calculated
the proportion of overlap between each pair of peak sets
generated by four different input DNA background (ie,
six comparisons per ChIP sample). We found that the
mean proportion of overlap with respect to the smaller
peak set is about 95%, indicating that the differences in
number of detected peak is likely due to different power

to call weaker peaks. We observed that the strong peaks
(ie, those with low detection FDR) were more likely
detected in different peak sets (see Additional file 2: Fig-
ure S10 for an example). The median width of the
detected peaks is also affected by using different
INPUT-seq as background (Figure 5b). This analysis
showed that the normalization using different INPUT-
seq may have a significant, and underappreciated,
impact on peak calling.

Assessing variation due to the use of different peak
callers

Another important source of variation in analysis of
ChIP-chip and ChIP-seq profiles originates from the use
of different analysis algorithms. A large number of pub-
licly available ChIP-chip and ChIP-seq analysis tools
have been developed to date [23,30], and all of them uti-
lize different methods for tag shifting, profile normaliza-
tion, smoothing, peak identification, and calculation of
false discovery rate. It is therefore not too surprising to
find that different peak callers can generate quite
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Figure 4 lllustration of how variability in an INPUT-seq profile
can affect reconstruction of average signal profile at TSS and
TES. The top panel shows the average signal profiles at the TSS and
TES for the ChiIP-chip and ChiIP-seq profiles of H3K27Me3 at E-16-20
h. These ChiP-chip and ChiP-seq profiles differ quite substantially,
and the ChIP-seq profiles resemble that of the GC content variation
(Figure 1¢). We subsequently reprocessed the ChIP-seq sample by
using the INPUT-seq at AdultFemale as background for
normalization since this profile has a strong correlation with GC
content variation, which more likely reflect the actual technology-
specific biases of our sequencing platform. After this procedure, the
average signal profiles of ChIP-chip and ChiP-seq look much more
alike, indicating that the original INPUT-seq at E-16-20 h does not
appropriately capture the technology-specific variation at these sites.

different results in terms of binding site identification,
particularly when dealing with peaks with weak signals
[23,31]. Using our compendium of ChIP-chip and ChIP-
seq datasets, we could assess how much variation in
peak identification can be attributed to the use of differ-
ent profiling technology and use of different peak call-
ers. In this study, we analyzed our ChIP-chip profiles
using two peak callers: MA2C [13] and Splitter [32] and
analyzed our ChIP-seq profiles using another two peak
callers: MACS [20] and SPP [29] (see Additional file 1:
Table S8). These peak callers were chosen because they
are widely used, publicly available, and generally show
good performance in previous comparative studies
[30,31]. We calculated the overlap of the top 1,000
peaks of four of the factors (CBP, H3K4Mel, H3K4Me3,
and H3K27Me3) across multiple developmental stages.
The four IP factors were chosen as they were represen-
tative profiles containing broad peaks (CBP and
H3K27Me3) and narrow peaks (H3K4Mel and
H3K4Me3). Here, we only present the results of com-
paring the top 1,000 peaks, since this is a biologically
reasonable number of high-confidence enrichment sites
in these profiles. The general conclusion of this analysis
is robust against a variety of peak calling thresholds
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(Additional file 2: Figure S11). Concordance between
two peak sets was measured by the average proportion
of overlapping peaks. As shown in Figure 6, the compar-
isons based on profiles of H3K4Mel and H3K4Me3
yielded expected results, in which the intra-platform
concordance is higher than cross-platform concordance
(i.e., peak sets generated by two peak callers on the
same profile are more concordant than peak sets gener-
ated by two peak callers on two profiles). However, the
intra-platform concordance can be as low as the inter-
platform concordance when analyzing the profiles of
H3K27Me3 and CBP, implying that variation in peak
calling algorithms can be as large as the use of different
profiling technologies for some IP factors. The observa-
tion that current peak calling algorithms produce less
concordant results for ChIP profiles with broad domains
(CBP and H3K27Me3) than those with sharp peaks
(H3K4Mel and H3K4Me3) may suggest that they are
less consistent at identifying broad enrichment regions,
which may be an interesting subject for further
investigation.

Discussion

ChIP-seq is an attractive alternative to ChIP-chip due to
its many practical advantages. However, to date there is
a lack of systematic comparison between ChIP-chip and
ChIP-seq based on a large dataset from multiple IP fac-
tors. Using a compilation of replicate ChIP-chip and
ChIP-seq datasets generated as part of the modEN-
CODE project, we had an unprecedented opportunity to
conduct such a systematic comparison. Through com-
paring the characteristics of the profiles generated by
ChIP-chip and ChIP-seq, we showed that ChIP-seq gen-
erates profiles with higher signal-to-noise ratios and a
larger number of more localized peaks. This is consis-
tent with many previous observations that ChIP-seq
generates profiles with higher spatial resolution and
dynamic range. Not surprisingly, we found that inter-
technology (i.e., ChIP-chip vs. ChIP-seq) reproducibility
was lower than intra-technology reproducibility (ChIP-
chip vs. ChIP-chip or ChIP-seq vs. ChIP-seq). We only
had access to four ChIP-seq/ChIP-seq replicate profiles
across two IP factors (CBP and CTCF) in this study, so
the estimate of intra-platform reproducibility of ChIP-
seq may be less accurate than that of ChIP-chip.
Nonetheless, the overall magnitude of intra-platform
reproducibility should still be instructive.

Another important lesson was that variability due to
the use of different peak callers can be as substantial as
different profiling technologies. Only a small number of
representative peak callers were selected in this study,
since it was not our primary goal to compare perfor-
mance of different algorithms. Instead, our goal was to
estimate to what extent peak detection variability might
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calling was performed with SPP using the same parameters. Clearly

as background control. In general, more peaks are identified as statistically significant (FDR < 0.05) when normalized with an INPUT-seq library

with higher sequencing depth, although the magnitude of the diffe

peak detection is significantly affected by using different input DNA library

rences vary across different ChiP datasets.

Comparison of top 1,000 peaks discovered by each pair of algorithms

be attributed to the use of different profiling technolo-
gies (microarray or sequencing) and use of different
peak calling algorithms. The observation that a higher
variability in peak detection is associated with broad
enrichment domains is interesting, and it requires
further assessment using larger numbers of peak callers.

Perhaps one of the most striking findings is that there
is high variability among different INPUT-seq compared
to INPUT-chip. The differences between INPUT-seq
profiles do not seem to correlate with the developmental
stages, but rather to sequencing depth (Figure 1b and
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Additional file 2: Figure S3). Nonetheless, sequencing
depth alone does not account for all the observed varia-

Figure 6 Variability due to peak calling algorithms. We bility. Samples EO, E16, E20 and AF all have low sequen-

compared the average proportion of overlapping peaks identified
by two ChiP-seq peak callers (red) and two ChiIP-chip peak callers
(blue) for the ChIP-seq and ChIP-chip profiles, respectively.

cing depth (< 4 million mapped reads), yet AF and EO
have strong correlation with GC content, whereas E20

Interestingly, the variation in peak identification concordance due to and E16 have little correlation with GC content (Figure

the use of different algorithms can be as large as technological
differences, which is especially clear in the comparison of CBP and
H3K27Me3 profiles.

1b and Additional file 2: Figure S3). This suggests that
variation in experimental conditions may also contribute

to such variability. Our results demonstrate that it is
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important for the input DNA background to capture
technology-specific biases, such as GC content variation,
as this may have impact on the construction of average
signal profiles at important genomic sites. Such average
signal profiles have been used as features for building
computational models of transcription factor binding or
regulatory elements [33,34], so it is important to ensure
that the average signal profiles are accurate. In addition,
we also show that the quality of input DNA profile used
for background normalization when calling peaks for a
ChIP-seq dataset is critical (Figure 5). The observation
that more peaks were being called when a ChIP-seq
dataset was normalized against a more deeply sequenced
INPUT-seq suggests that increasing the sequencing
depth in the INPUT-seq data may lead to higher statisti-
cal power in ChIP-seq peak detection. Currently the
importance of input DNA in ChIP-seq analysis is largely
underappreciated and most researchers do not even
bother to check for the consistency of the input profiles.
This work provides quantitative evidence that the suc-
cess of a ChIP-seq analysis may depend on the quality
of input library as much as the quality of ChIP library.
Since using an appropriate input DNA profile as back-
ground is critical, we believe that obtaining high quality
and deeply sequenced input DNA profile is necessary,
and that INPUT-seq quality should be assessed more
carefully during data analysis.

We recognize there are several limitations in our
study. First, we only compared ChIP-chip profiles gener-
ated from one commercial platform (Agilent tiling
microarray) with ChIP-seq profiles generated from one
sequencing platform (Illumina GAII). Although strictly
speaking we can only make conclusion about these plat-
forms, we believe that the key lessons learned in this
study are instructive for analyzing data generated from
other platforms. We note that the Agilent platform uses
long oligonucleotides as probes (50-60 mers) and has
relatively low noise level compared to other platforms
[17,31]; Illumina’s GAII sequencing platform is currently
the most widely used platform for ChIP-seq, so our ana-
lysis should be of interest to many users. Second, unlike
previous comparative studies using transcription factor
binding data (Additional file 1: Table S1) or “spike in”
experiments [31], we do not have external validation of
the true enrichment regions, which prohibited us from
assessing detection sensitivity and specificity. Nonethe-
less, we believe that our conclusions, drawn from ana-
lyzing many pairs of replicate ChIP-chip/seq profiles,
should be reasonably robust.

Conclusions

Our findings highlight the differences between ChIP-
chip and ChIP-seq, and show the variability that can
arise from both technology and analysis methods. We
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demonstrate the importance of obtaining high quality
and deeply sequenced input DNA libraries for ChIP-seq
analysis, which has fundamental implication to experi-
mental design and data analysis.

Methods

ChlIP-chip and ChlIP-seq protocols

Chromatin immunoprecipitations have been performed
as described previously [35]. Briefly, the biological mate-
rial is homogenized in the presence of 1.8% formalde-
hyde. The cross-linked chromatin is sonicated using a
Bioruptor (Diagenode) to an average size of 500 bp. Pre-
cleared chromatin extract is incubated overnight at 4°C
with the specific antibody and immunoprecipitated with
protein-A Sepharose beads. After purification of the
DNA and amplification of the libraries by linker-
mediated PCR, the samples are labeled by incorporating
Cy3 or Cy5 conjugated dUTPs. Labeled IP and Input
samples are hybridized onto the Agilent 1X244K arrays
using a TecanHS4800Pro at 67°C for 24 h. Details
related to this custom microarray platform can be found
in Additional file 1: Table S9. The non amplified ChIP
samples have been used directly for sequencing by
Solexa Genome Analyzer following Illumina protocols
for libraries generation, cluster generation and
sequencing.

Data preprocessing

For each set of Agilent microarray data, the processed
intensity value of the IP and input channels were
extracted from the raw data file. For each lane of Illu-
mina sequencing data, the raw sequence reads (36 bp
single end) were extracted. Bowtie [36] was used to map
both the microarray probe sequences and the Illumina’s
short reads onto the reference D. melanogaster genome
assembly (dm3, FlyBase built 5.22). This procedure
ensured that there was no systematic bias due to map-
ping to different version of the genome assembly. All
microarray probe sequences can be uniquely mapped to
the genome, and the proportion of mappable reads in
our ChIP-seq data is available in Additional file 1: Table
S2. For preprocessing of ChIP-seq data, the mapped
reads of an IP library and its corresponding input DNA
libraries from the same developmental stage were pro-
cessed by an R package called SPP [29]. In particular,
we used SPP to filter out uninformative reads, remove
read anomaly and estimate the average fragment length
by the cross-correlation profile (Additional file 1: Table
S7). We then divided the genome into many 50 bp non-
overlapping bins, and each bin i is associated with a
genomic coordinate x; (corresponding to the center of
the bin) and an intensity value y; An enrichment value
in a bin is the log ratio of the smoothed signal intensity
(or smoothed read count for ChIP-seq) of the IP sample
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over the INPUT sample. We used a Gaussian smoother
with a bandwidth of 50 for signal smoothing. Specifi-
cally, the Gaussian smoother takes the form

()]
= o]
j

where x’; and y’; are the center of the genomic coordi-
nate and intensity value of probe j in the same chromo-
some. In practice due to computation constraints, we
only consider the 400 closest probes from bin i (200
probes upstream and 200 probes downstream) for
smoothing which already give a close approximation to
the full Gaussian smoother. Profiles at this 50 bp resolu-
tion were used for construction of average profiles of
TSS and TES. For other analyses presented in this
study, we combined the enrichment value of every 20
adjacent 50 bp bins (by averaging) to obtain a ChIP pro-
file at the 1 kb resolution. To avoid biases in estimation
of genome-wide correlation between two profiles, we
first excluded genomic regions that did not contain
microarray probes and had high variability in INPUT-
seq variability. INPUT-chip and INPUT-seq profiles
were obtained in a similar manner, except we used the
log, (intensity from input profile) as a measure of
enrichment value.

Unless specified otherwise, all data analysis in this
study was performed using the R statistical programming
environment [37]. All the signal density profiles were
visualized using the Integrated Genome Browser [38].

Construction of average signal profile at TSS and TES

We used the gene model annotation from FlyBase [39]
to define transcription start and end sites. We only
included genes with a minimum length of 2 kb (7,231 of
15,186 genes) to exclude short genes in our analysis.
The 80 bins (50 bp each) surrounding every relevant
genomic feature (corresponding to 2 kb upstream and
2 kb downstream of the feature) were taken and aver-
aged. The resulting average profiles were scaled such
that the mean and the variance of signal in each profile
were zero and one, respectively.

Characterization of enrichment signals in ChIP-chip and
ChlIP-seq profiles

We calculated skewness of a signal density profile using
the following formula:

n i=1

I IEREE
|:n21—1(xi_x) :l

skewness(xy,X5,..., X)) =
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where x; is the enrichment value of bin i of a genome.
We specifically removed bins with enrichment value at
the lowest or the highest 5% of the distribution to
remove potential outliers.

We devised a simple heuristic method to detect
“peaks” that can be identified by ChIP-chip and ChIP-
seq profiles in a consistent manner. This method con-
sists of two steps: (1) identify candidate enrichment
regions using ad hoc criteria, and (2) assign a p-value to
each candidate enrichment region. For step 1, we iden-
tify all bins with an enrichment value above x + ks,
where x and s are, respectively, the sample mean and
standard deviation of a signal density per chromosome,
and k is an arbitrary parameter. We present the results
for k = 0 in this paper, but we have also performed ana-
lysis with k = -1 and k = 4, and the conclusion of the
analyses is largely similar (Additional file 2: Figure S5).
Adjacent bins are merged to form candidate enrichment
regions. For step 2, we assign a statistical significance, p,
to each enrichment region to be p = P(l >L), where [ is
the sum of enrichment values of all the bins in the can-

didate enrichment region, L ~ N(mx,ms?), and m is

the number of bins in this enrichment region. To
account for multiple comparison, we calculated a false
discovery rate (FDR) value for each enrichment region
using the method of Benjamini and Hochberg [40], and
all the enrichment regions with an FDR less than 0.05
were considered statistically significant. We then charac-
terize each set of enrichment regions from a profile by
its number and median width of the enrichment regions.

Additional material

Additional file 1: Supplemental tables. This file contains
supplementary tables.
Additional file 2: Supplemental figures. This file contains
supplementary figures.
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