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Abstract

Background: Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The
molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large
scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a
custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during
winter hibernation in comparison to summer active animals.

Results: We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter
and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver.
These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein
motif 3 (Rbm3), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of
protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing
cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in
bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of
amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small
mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty
acid b oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate
catabolism, cellular respiration and detoxification pathways.

Conclusions: Our findings show that modulation of gene expression during winter hibernation represents
molecular mechanism of adaptation to extreme environments.

Background
Hibernation is an adaptive strategy involving regulated
metabolic suppression used by taxonomically diverse
mammalian species to conserve energy during periods
of low food availability [1,2]. The molecular and genetic
basis of hibernation physiology in mammals has only
recently been studied using large scale genomic
approaches. Genome-wide approaches reveal the signifi-
cance of transcriptional changes by identifying func-
tional groups of co-regulated differentially expressed
genes within metabolic and signaling pathways. Recent
studies of differential gene expression at the genomic
scale on several species of small hibernating mammals

have detected expression changes for hundreds of genes
and identified groups of co-regulated genes involved in
carbohydrate and lipid metabolism, detoxification, and
molecular transport when comparing animals sampled
in different stages during hibernation and non-
hibernating periods [3-6].
The black bear (Ursus americanus) provides a distinct

example of hibernation in mammals. Unlike small ani-
mals (<5 kg) such as hamsters, ground squirrels, and
marmots, that reach body temperatures near 0°C during
torpor, hibernating black bears (30-200 kg) maintain
core body temperatures above 30°C [7] and remain cap-
able of moving throughout hibernation [8]. Bears do not
eat, drink, defecate, or urinate throughout a 3-6 month
hibernation season [9]. Heart rate in hibernating bears
decreases from 60 bpm to 16 bpm [10]. Metabolic rate
in hibernating bears is reduced by 20-50%, and it takes
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several weeks after emergence for metabolic rate to
return to normal levels [7].
We recently developed a collection of expressed

sequence tags (ESTs) specifically for U. americanus, and
used the resulting pilot version of microarray with 3,200
probes to detect gene expression differences in liver and
skeletal muscle sampled during hibernation compared to
in animals sampled during summer [11]. We found a
highly significant enrichment during hibernation of the
protein biosynthesis category by over-expressed genes in
both liver and skeletal muscle. These results demon-
strated efficiency of our approach to generating genomic
resources and fabricating custom microarrays for non
model species. We, therefore, extended gene discovery
study and generated additional 32,000 ESTs for the black
bear [12]. In the present study, we used a more represen-
tative set of 9,600 cDNA probes to identify more co-
regulated functional groups of differentially expressed
genes in liver. To obtain the first insight into transcrip-
tional changes in heart of hibernating bears, we used the
complete set of 12,800 probes available for the black bear
[12]. We focus on pathway analysis identifying functional
groups of co-regulated genes rather than on expression
of individual genes to assess the biological significance of
transcriptional changes associated with hibernation in
black bears. Liver and heart play an important role in
homeostasis and transcriptional changes in these vital
organs have been recently reported for small hibernators
[4,6]. To investigate any general patterns in transcrip-
tional profiles during mammalian hibernation, we com-
pare functional groups of differentially expressed genes
detected in hibernating bears to changes reported for
small mammalian hibernators.

Results
Body temperature, metabolism and heart rate
As previously reported, hibernating bears had core body
temperatures of 34.2 ± 0.5°C (mean ± SD, n = 6) and
minimum rates of oxygen consumption of 0.083 ±
0.008 ml g-1 h-1 (n = 5), when measured over at least a
0.5 h interval 2-9 hours before euthanasia [11]. Heart
rate (HR) derived by counting beats within a 240 s on
ECG recording during this period was 14.4 ± 2.4 b/min.
(mean ± SD, n = 6) and showed pronounced respiratory
related sinus arrhythmia. In four hibernating bears for
which post-immobilization measurements were made,
body temperature decreased from 34.2 ± 0.7°C to 33.3 ±
1.1°C (p < 0.05) and HR increased from 13.4 ± 2.2 to
82.9 ± 22.8 b/min (p < 0.05). Sinus arrhythmia was
absent in anesthetized bears. Bears lost 4.7 ± 0.8% (n =
6) of their body mass per month during the 4-5 month
hibernation period. Metabolic rates measured in two
fasted and anesthetized summer active bears were 0.252
and 0.213 ml g-1 h-1 and averaged 0.233 ml g-1 h-1; body

temperatures were 37.18 and 37.13°C [11] and HR was
102.3 and 97.2 b/min and averaged 99.7 b/min. Immedi-
ately prior to tissue sampling, metabolic rate of hiber-
nating bears was 36-49%, and body temperature
averaged 3.75°C lower compared to values in summer
bears [11] while HR was at about the same level due to
the effect of anesthesia.

Difference in gene expression
For heart, signals from 2,594 of 3,200 probes (81.1%) on
the first bear array showed median intensities that were
above the level of two backgrounds, whereas 6,860 of
9,600 (71.5%) probes showed significant signals on the
second bear array (see Material and Methods for the
array description). In order to define genes that were
differentially expressed in hibernating compared to sum-
mer active bears, we used P < 0.01 and log2FC > 0.5
where FC is fold change, the mean expression value in
the hibernating bears divided by the mean expression
value in the summer active bears, as the cutoff for
differentially expressed genes (as described in Methods).
A total of 245 genes, 3.3% of all unique genes with signif-
icant signals (7,359 genes), were differentially expressed
in heart during hibernation (Additional file 1, Table S1).
The maximal change of 7.28 fold (log2FC = 2.86) was
detected for RNA binding protein motif 3 (Rbm3), but
most genes (74%) demonstrated moderate changes in
expression less than two fold (log2FC < 1). Of the signifi-
cantly differentially expressed genes, we identified 183
(75%) that were over-expressed and 62 (25%) genes that
were under-expressed in heart during hibernation.
For liver, 6,860 of 9,600 (71.5%) probes showed signifi-

cant signals on the second bear array, and 319 genes of
these, 6.2% of all unique genes with significant signal
(5,092 genes), were differentially expressed in liver dur-
ing hibernation (Additional file 1, Table S1). There were
165 (52%) significantly over-expressed genes and 154
(48%) under-expressed genes in liver sampled during
hibernation compared to in summer. Phosphoenolpyru-
vate carboxykinase (Pck1) showed the largest positive
expression change of 10.91 fold (log2FC = 3.448), and
aldehyde dehydrogenase (Aldh1l1) was 17.94 fold down
regulated (log2FC = -4.168), but most genes (74%)
demonstrated modest expression changes that did not
exceed two fold (|log2FC| < 1).
To validate the microarray results, we conducted

quantitative real-time PCR tests for 32 randomly
selected genes that were identified as differentially
expressed by the array hybridizations. Expression
changes of 28 (87.5%) out of 32 genes identified on the
array were confirmed by the RT PCR tests (Table 1)
with significant positive correlation (r = 0.83, p < 0.001)
between fold change values of supported genes (Table 1,
Figure 1). High consistency between microarray
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experiments and RT PCR tests is in agreement with the
mean false discovery rate of 12% for the list of differen-
tially expressed genes.
The expression of 33 genes was changed in common

in both liver and heart (Table 2) of which 24 genes were
elevated in both tissues. RNA binding motif protein 3
(Rbm3) showed high positive expression change in both
liver and heart during hibernation. Most genes (70%) up
regulated in both tissues are involved in lipid catabolism
(3 genes) and protein biosynthesis (14 genes, Table 2).
Among five genes down regulated in both heart and
liver, three genes are involved in amino acid catabolism.
Five genes demonstrated transcriptional changes in
opposite directions in liver and heart.

Pathway analysis
The Gene Ontology analysis revealed a highly significant
enrichment of the protein biosynthesis (translation) cate-
gory in the biological processes and the RNA binding in
the molecular function by over-expressed genes in both
heart and liver during hibernation (Tables 3, 4). Four addi-
tional categories demonstrated significant enrichment in
liver: up regulated genes in the fatty acid beta-oxidation
pathway and under expressed genes in amino acid catabo-
lism, cholesterol metabolism and cellular respiration cate-
gories during hibernation. The molecular function
categories with significantly elevated proportion of down
regulated genes in liver included catalytic processes:
oxidoreductase and transaminase activities (Table 3).

Table 1 Gene expression differences tested by microarray and real-time PCR in bear heart and liver

Gene Symbol Gene Name RT-PCR Microarray

P log2FC P log2FC

HEART

Acadvl Acyl-Coenzyme A dehydrogenase, very long chain 0.034 0.122 <0.001 0.747

Dnajc8 DnaJ (Hsp40) homolog, subfamily C, member 8 0.008 0.270 <0.001 0.698

Gapdh Glyceraldehyde-3-phosphate dehydrogenase 0.140 n/a 0.008 0.620

Mbip MAP3K12 binding inhibitory protein 1 0.580 n/a 0.001 0.884

Rbm3 RNA binding motif protein 3 <0.001 2.349 <0.001 2.863

Rpl35a Ribosomal protein L35a 0.009 0.550 <0.001 1.857

Rpl7 Ribosomal protein L7 0.004 0.533 <0.001 1.243

Rps27 Ribosomal protein S27 0.009 0.600 0.001 0.720

Adk Adenosine kinase 0.015 -0.164 0.006 -0.534

Aldh6a1 Aldehyde dehydrogenase 6 family, member A1 <0.001 -0.974 0.001 -0.893

Ank1 Ankyrin 1, erythrocytic <0.001 -1.234 <0.001 -1.440

Gstz1 Glutathione transferase zeta 1 0.031 -0.343 0.001 -0.605

Ube2v1 Ubiquitin-conjugating enzyme E2 variant 1 0.001 -0.327 0.004 -0.600

LIVER

Gpc3 Glypican 3 <0.001 2.307 <0.001 1.965

Rplp2 60S acidic ribosomal protein P2 <0.001 1.378 0.003 1.627

Cmtm8 CKLF-like MARVEL transmembrane domain-containing protein 8 0.170 n/a <0.001 1.525

Pc Pyruvate carboxylase 0.130 n/a 0.002 1.390

Crip2 Cysteine-rich protein 2 <0.001 1.064 0.001 1.285

A2m Alpha 2 macroglobulin 0.003 1.287 0.004 1.249

Rpl36 60S ribosomal protein L36 0.002 0.963 0.004 1.223

Brp44l Brain protein 44-like protein 0.002 1.638 0.009 1.198

Naca Nascent-polypeptide-associated complex alpha polypeptide variant <0.001 0.714 0.001 1.182

Fgfr2 Fibroblast growth factor receptor 2 precursor <0.001 1.055 <0.001 1.130

Tbca Tubulin cofactor a 0.001 0.579 0.001 1.122

Rps6 Ribosomal protein S6 0.001 0.677 0.010 1.079

Comt Catechol-O-methyltransferase <0.001 -0.741 0.001 -1.817

Arg1 Arginase 0.016 -1.418 0.009 -2.050

Phyh Phytanoyl-CoA 2-hydroxylase 0.002 -1.328 0.004 -2.105

Tinag Tubulointerstitial nephritis antigen <0.001 -1.822 <0.001 -2.141

Ugt3a2 UDP glycosyltransferase 3 family, polypeptide A2 <0.001 -4.034 <0.001 -2.949

Fmo5 Flavin-containing monooxygenase 5 0.001 -2.631 0.002 -3.002

Pitrm1 Pitrilysin metalloprotease 1 0.027 -0.421 0.001 -3.360

Inconsistent significance levels for some genes are in bold.
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Significant enrichment of the biological processes
categories by differentially expressed genes was validated
and supported by the results of gene set enrichment
analysis (GSEA; Figures 2, 3). GSEA ranks all genes with
significant signals on the array therefore its results are
not affected by the selection of genes above cutoffs for

significance of expression differences and false discovery
rate [13].

Differential expression of selected genes in liver
Some important genes involved in metabolic pathways
demonstrated expression differences between hibernating

Figure 1 Selection of genes differentially expressed during hibernation in heart (A) and liver (B) tissue in black bears. Expression values
are normalized to the mean in summer active animals. Solid bars show expression values obtained in real-time PCR, open bars in microarray
experiments, error bars are SDs.
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and summer active bears. Among 116 genes involved in
lipid biosynthesis, expression of diacylglycerol O-
acyltransferase (Dgat2), 7-dehydrocholesterol reductase
(Dhcr7), emopamil binding protein (Ebp), farnesyl dipho-
sphate synthase (Fdps ), propionyl Coenzyme A carboxy-
lase (Pccb) all decreased during winter hibernation.
GSEA revealed significant enrichment (FDR = 0.006) of
the lipid biosynthesis category by genes with lower
expression levels in hibernating bears as compared to
summer active animals. Expression of long-chain fatty
acyl elongase (Elovl2) involved in biosynthesis of long
chain fatty acids for catabolism through b oxidation

increased during winter hibernation. Expressions of
phosphoenolpyruvate carboxykinase (Pck1) and fructose-
1,6-bisphosphatase 1 (Fbp1 ), main control enzymes in
the regulation of gluconeogenesis, were elevated during
hibernation. In contrast, an important glycolytic gene,
pyruvate dehydrogenase beta (Pdhb) and transketolase
(Tkt) involved in the pentose phosphate pathway were
down regulated in liver during hibernation.
Genes involved in protein catabolism did not show

coordinated transcriptional change during hibernation.
Among 140 genes involved in protein catabolism,
leucine aminopeptidase 3 (Lap), calpastatin (Cast),

Table 2 Differentially expressed genes shared between liver and heart in hibernating bears

Gene Symbol Gene Name P,
Liver

log2FC,
Liver

P,
Heart

log2FC,
Heart

Fatty Acid Catabolism (4 genes)

Aarsd1 Alanyl-tRNA synthetase domain containing 1 0.006 0.638 0.006 0.838

Acadm Medium-chain specific acyl-CoA dehydrogenase, mitochondrial precursor 0.001 0.510 <0.001 1.138

Acadvl Acyl-Coenzyme A dehydrogenase, very long chain 0.001 0.842 <0.001 0.747

Hadha Trifunctional enzyme alpha subunit, mitochondrial precursor 0.007 0.586 0.008 0.556

Protein Biosynthesis (13 genes)

Rps18 40S ribosomal protein S18 0.001 0.899 0.002 1.144

Rps29 Ribosomal protein S29 0.006 0.802 0.001 0.843

Rbm3 RNA binding motif protein 3 <0.001 2.681 <0.001 2.863

Rpl18a 60S ribosomal protein L18a <0.001 0.606 0.002 0.607

Rpl22 Ribosomal protein L22 0.006 1.398 0.004 0.923

Rpl24 Ribosomal protein L24 0.005 0.935 0.003 0.725

Rpl27a Ribosomal protein L27a-like 0.004 1.349 0.008 0.927

Rpl30 Ribosomal protein L30 0.004 0.862 0.002 1.010

Rpl35a 60S ribosomal protein L35a 0.001 0.937 <0.001 1.857

Rpl7 60S ribosomal protein L7 0.008 0.767 <0.001 1.243

Rplp2 60S acidic ribosomal protein P2 0.003 1.627 0.001 0.732

Rps23 Ribosomal protein S23 <0.001 1.213 0.001 1.793

Rps24 Ribosomal protein S24 0.008 0.802 0.002 1.000

Amino Acid Catabolic Processes (3 genes)

Aldh6a1 Aldehyde dehydrogenase 6 family, member A1 0.006 -1.086 0.001 -0.893

Got1 Aspartate aminotransferase <0.001 -1.014 0.002 -0.644

Lap3 Leucine aminopeptidase 3 protein 0.008 -0.943 0.001 -0.771

Other GO Categories (13 genes)

Cd2bp2 CD2 (cytoplasmic tail) binding protein 2 0.005 0.981 0.008 0.614

Cdk2 Cyclin-dependent kinase 2 0.001 0.755 0.005 0.827

Cd2bp2 CD2 (cytoplasmic tail) binding protein 2 0.005 0.981 0.008 0.614

Hnrnpa1 Heterogeneous nuclear ribonucleoprotein A1 0.004 1.418 0.006 1.048

St7 Suppression of tumorigenicity 7 0.001 0.909 0.003 0.965

Tinp1 TGF-beta-inducible nuclear protein 1 0.010 0.678 <0.001 0.813

Cyp1a2 Cytochrome P450, family 1, subfamily A, polypeptide 2 0.007 -2.290 0.005 -0.594

Phyh Phytanoyl-CoA 2-hydroxylase 0.004 -2.105 0.008 -0.865

Gbe1 Glycogen branching enzyme 0.007 -0.641 0.002 0.838

Glrx3 Glutaredoxin-3 0.004 -0.595 0.001 1.011

Kif21a Kinesin family member 21A 0.010 1.000 0.009 -0.504

Mnat1 Menage a trois homolog 1, cyclin H assembly factor 0.007 -0.675 0.006 1.067

Ppm1k Protein phosphatase 1K 0.005 1.107 0.007 -0.615
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proteasome 26S subunit (Psmc2) and proteasome
subunit, beta type (Psmb1) were down regulated while
YME1L1 gene (Yme1l1), ubiquitin protein ligase E3A
(Ube3a), ubiquitin specific peptidase 7 (Usp7) and F-box
and leucine-rich repeat protein 4 (Fbxl4) were over
expressed in liver during hibernation.

Differential expression of selected genes in heart
In common with liver (Table 2), there were three over
expressed genes (Acadvl, Acadm, Hadha) that are
involved in fatty acid beta oxidation in the heart of
hibernating bears. Among 44 genes involved in amino
acid catabolism, three genes shared with liver (Aldh6a1,
Got1, Lap3) and glutathione transferase zeta 1 (Gstz1)
were under expressed in heart during hibernation.
Although five out of 190 genes involved in protein

catabolism were up regulated in heart during hiberna-
tion, similar to liver, this category did not demonstrate
significant enrichment (FDR = 1.00). Over expressed
protein catabolism genes included selenoprotein S (Sels),
ornithine decarboxylase antizyme 1 (Oaz1), proteasome
(prosome, macropain) 26S subunit (Psmc3), proteasome
(prosome, macropain) subunit alpha type 3 (Psma3) ubi-
quitin specific peptidase 11 (Usp11).

Discussion
Hibernating bears were sampled in March after at least 4
months of continuous hibernation and while in the absence
of food and water. In Alaska black bears begin to emerge
from hibernation in late April [14], thus, hibernating bears

in this study were 3-6 weeks from emergence and the
beginning of their return to summer levels of metabolism.
All bears included as summer active or hibernating animals
showed physiology and behavior that was expected for bear
during summer and winter seasons, respectively.
Anesthesia was necessary for transport of the bears

from their den and it was associated with a slight
increase in metabolic rate compared to that measured in
their dens. However, anesthesia used for immobilization
of hibernating bears increased heart rate to the level
observed in summer bears.
Black bears demonstrate a balanced proportion of up

(52%) and down (48%) regulated genes that are differen-
tially expressed in liver during hibernation. This con-
trasts to hibernating ground squirrels where 90% of
differentially expressed genes are down-regulated in
liver during hibernation [4]. This finding may reflect a
greater level of homeostatic activity that is required by
livers of hibernating bears compared to ground squir-
rels, since bears overwinter while maintaining relatively
higher body temperatures and rates of metabolism than
do small mammal hibernators [15-17]. The proportion
of differentially expressed genes up-regulated during
hibernation was even higher (75%) in bear heart and
this is consistent with increased proportion (48%) of
over expressed genes in heart of ground squirrels during
torpor [18]. Increase in the transcription level for a
number of genes in heart comparing to liver seems to
be the general trend in the transcriptional changes for
hibernating mammals.

Table 3 Gene Ontology categories significantly enriched with differentially expressed genes

GO Category Total genes
on array

Changed
genes

Enrichment FDR

Biological Process

HEART

Translation (GO:0006412) 319 32↑ 3.334 <0.001

LIVER

Fatty acid beta-oxidation (GO:0006635) 22 5↑ 6.805 0.036

Translation (GO:0006412) 266 28↑ 3.152 <0.001

Amino acid catabolic process (GO:0009063) 36 12↓ 10.202 <0.001

Cholesterol metabolic process (GO:0008203) 34 7↓ 5.951 <0.001

Cellular respiration (GO:0045333) 47 7↓ 4.559 0.024

Molecular Function

HEART

RNA Binding (GO:0003723) 455 35↑ 2.500 <0.001

LIVER

RNA Binding (GO:0003723) 362 28↑ 2.326 <0.001

Transaminase activity (GO:0008483) 10 5↓ 15.468 0.001

Oxidoreductase activity, acting on the aldehyde or oxo group of donors (GO:0016903) 20 6↓ 9.281 0.001

Monooxygenase activity (GO:0004497) 27 7↓ 8.020 0.001

Electron carrier activity (GO:0009055) 98 11↓ 3.472 0.003

Arrows indicate direction of gene regulation in hibernating black bears. FDR is false discovery rate.
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Table 4 Genes in significant Gene Ontology categories of the biological processes

GO category Gene Name Gene
Symbol

P value Fold Change
(Log2FC)

HEART

Up-regulated

Translation (GO:0006412) RNA binding motif protein 3 Rbm3 <0.001 2.863

Ribosomal protein L35A Rpl35a <0.001 1.857

Ribosomal protein S23 Rps23 0.001 1.793

Ribosomal protein L7A Rpl7a 0.002 1.287

Ribosomal protein L7 Rpl7 <0.001 1.243

Eukaryotic translation elongation factor 1 beta 2 Eef1b2 0.001 1.187

Ribosomal protein S3 Rps3 0.005 1.166

Ribosomal protein L10A Rpl10a 0.003 1.156

Eukaryotic translation initiation factor 5A Eif5a <0.001 1.147

Ribosomal protein S15A Rps15a 0.008 1.116

Ribosomal protein L27 Rpl27 0.003 1.099

Lysyl-trna synthetase Kars <0.001 1.075

Ribosomal protein S4, X-linked Rps4x 0.001 1.018

Ribosomal protein S13 Rps13 0.003 1.012

Ribosomal protein L30 Rpl30 0.002 1.010

Ribosomal protein S24 Rps24 0.002 1.000

Ribosomal protein, large, P0 Rplp0 0.001 0.936

Ribosomal protein L27A Rpl27a 0.008 0.927

Ribosomal protein L22 Rpl22 0.004 0.923

Ribosomal protein L36A-like Rpl36al 0.005 0.917

Ubiquitin A-52 residue ribosomal protein fusion product 1 Uba52 0.009 0.915

Eukaryotic translation initiation factor 3, subunit G Eif3g 0.001 0.910

Ribosomal protein L5 Rpl5 0.002 0.900

Eukaryotic translation initiation factor 3, subunit F Eif3f 0.003 0.884

Ribosomal protein L10A Rpl10 0.008 0.863

Alanyl-trna synthetase domain containing 1 Aarsd1 0.006 0.838

Ribosomal protein, large, P2 Rplp2 0.001 0.732

Ribosomal protein L24 Rpl24 0.003 0.725

Ribosomal protein S27 Rps27 0.001 0.720

Eukaryotic translation initiation factor 2, subunit 3 gamma Eif2s3 0.004 0.668

Density-regulated protein Denr 0.007 0.651

Ribosomal protein L18A Rpl18a 0.002 0.607

LIVER

Up-regulated

Fatty acid beta-oxidation (GO:0006635) Acyl-Coenzyme A dehydrogenase, short/branched chain Acadsb 0.010 0.922

Acyl-Coenzyme A dehydrogenase, very long chain Acadvl 0.001 0.842

Hydroxyacyl-Coenzyme A dehydrogenase, beta subunit Hadhb 0.008 0.711

Hydroxyacyl-Coenzyme A dehydrogenase, alpha subunit Hadha 0.007 0.586

Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain Acadm 0.001 0.510

Translation (GO:0006412) Ribosomal protein L36 Rpl36 0.004 1.223

Ribosomal protein L23 Rpl23 0.003 1.002

Nascent polypeptide-associated complex alpha subunit Naca 0.001 1.182

Eukaryotic translation elongation factor 1 delta Eef1d 0.001 1.170

Translocated promoter region (to activated MET oncogene) Tpr <0.001 1.116

Ribosomal protein S6 Rps6 0.010 1.079

Ribosomal protein S20 Rps20 0.002 0.990

Ribosomal protein L34 Rpl34 <0.001 0.929

Ribosomal protein L9 Rpl9 0.005 0.829

Ribosomal protein S16 Rps16 0.001 0.808
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Protein biosynthesis and catabolism of nitrogen
compounds
It has been recently shown that the coordinated induc-
tion in transcriptional level of protein biosynthesis genes
in liver and skeleton muscle is a distinctive feature of
the transcriptome in hibernating black bears comparing
to small mammalian hibernators [11]. This conclusion is
supported by the present study that identifies elevated
expression of 19 protein biosynthesis genes in addition
to 28 translation genes over expressed in liver during
hibernation [11]. Similar to liver, we found elevated
expression of 32 protein biosynthesis genes that gener-
ate significant enrichment of the translation category in
heart during hibernation. Molecular function category of
RNA binding is significantly enriched by over expressed
genes in both liver and heart as RNA-binding proteins
positively regulate the translation of RNA. Elevated
expression of protein biosynthesis genes implies induc-
tion of translation in liver and heart during hibernation.

A net increase in plasma protein concentration was
found in hibernating brown and black bears [19,20], and
this supports elevated protein synthesis in liver during
hibernation. Bears have a unique ability to preserve
muscle mass [8,21] and retain strength [22] through
prolonged periods of inactivity and starvation during
hibernation. The induction of protein biosynthesis in
liver was suggested as molecular adaptation that contri-
butes to ability to reduce muscle atrophy over prolonged
periods of immobility during hibernation [11]. Decrease
in protein synthesis was shown to be the main factor
responsible for starvation-induced cardiac atrophy in
non-hibernating mammals [23]. Transitional changes
detected in our study imply the induction of protein
biosynthesis in the heart of hibernating black bears and
suggest an adaptive mechanism that reduces cardiac
atrophy during prolonged fasting.
Comparing to other genes in the heart of hibernating

bears, RNA binding motif protein 3 (Rbm3) demonstrated

Table 4 Genes in significant Gene Ontology categories of the biological processes (Continued)

Mediator complex subunit 8 Med8 0.004 0.683

Ribosomal protein L28 Rpl28 0.001 0.617

Protein kinase C, alpha Prkca 0.004 0.572

Isoleucyl-trna synthetase Iars 0.007 0.565

Down-regulated

Amino acid catabolic process (GO:0009063) Arginase, liver Arg1 0.009 -2.050

Glutamic-oxaloacetic transaminase 1, soluble Got1 0.003 -1.287

Coenzyme A carboxylase, beta polypeptide Pccb <0.001 -1.176

Aldehyde dehydrogenase 6 family, member A1 Aldh6a1 0.006 -1.086

Methylcrotonoyl-Coenzyme A carboxylase 2 (beta) Mccc2 0.001 -1.052

Leucine aminopeptidase 3 Lap3 0.008 -0.943

Branched chain keto acid dehydrogenase E1, beta Bckdhb <0.001 -0.937

Glutamic-oxaloacetic transaminase 2, mitochondrial Got2 0.001 -0.819

Aminoadipate aminotransferase Aadat 0.008 -0.812

Indoleamine 2,3-dioxygenase 2 Indol1 0.003 -0.810

Yippee-like 5 Ypel5 <0.001 -0.670

3-hydroxyisobutyryl-Coenzyme A hydrolase Hibch 0.004 -0.657

Cholesterol metabolic process (GO:0008203) Cytochrome P450, family 7, subfamily a, polypeptide 1 Cyp7a1 0.001 -2.838

Farnesyl diphosphate synthase) Fdps <0.001 -1.204

Acetyl-Coenzyme A acetyltransferase 2 Acat2 0.001 -1.166

Cytochrome P450, family 27, subfamily A, polypeptide 1 Cyp27a1 0.001 -1.082

Paraoxonase 1 Pon1 0.005 -0.708

7-dehydrocholesterol reductase Dhcr7 0.001 -0.658

Emopamil binding protein ( Ebp 0.020 -0.463

Cellular respiration (GO:0045333) Cytochrome c, somatic Cycs 0.002 -1.139

Mitochondrial ribosomal protein S35 Mrps35 0.004 -0.859

Coenzyme Q5 homolog, methyltransferase Coq5 0.001 -0.783

NADH dehydrogenase (ubiquinone) Fe-S protein 1 Ndufs1 0.003 -0.640

Aconitase 1 Aco1 0.001 -0.627

Succinate dehydrogenase complex, subunit C Sdhc 0.004 -0.617

Pyruvate dehydrogenase (lipoamide) beta Pdhb 0.008 -0.558

Symbols of genes changed in both liver and muscle are in bold.
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Figure 2 Gene set enrichment analysis results for the translation category. The translation category is enriched by up regulated genes in
heart (A, false discovery rate (FDR) of <0.001) and liver (B, FDR = 0.046) of hibernating black bears. An expression data set sorted by correlation
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the maximum induction in expression. This cold induced
RNA binding protein is the only gene consistently over
expressed across different tissues in hibernating ground
squirrels [4-6] and black bears [11]. It was suggested that
RNA binding protein 3 protects mRNA transcripts in
hibernating ground squirrels [4,6]. Taking into account
coordinated induction of protein synthesis genes found in
our study, over-expression of this protein biosynthesis
gene may promote translation in heart of hibernating
black bears. There is evidence showing that Rbm3 facili-
tates global protein synthesis under mild hypothermia at
32°C by binding to 60S ribosomal subunits and lowering
abundance of microRNAs that dampen translation in
human cell lines [24]. Over-expression of Rbm3 was sug-
gested as part of compensatory mechanism to preserve
mass of muscle undergoing disuse atrophy [25].
Under the condition of prolonged fasting, protein ana-

bolism is directly related to metabolism of amino acids.
Our results revealed coordinated down regulation of
genes involved in amino acid catabolism and transami-
nase activity during hibernation. This finding implies a
reduction in amino acid catabolism in hibernating black
bears. Reduction in catabolism of amino acids is consis-
tent with coordinated under expression of genes
involved in amino group utilization through the urea
cycle previously reported in hibernating bears [11] and
significant decrease in the urea concentration in blood
that was repeatedly observed during hibernation
[21,26,27]. Under no dietary intake of amino acids,
reduced amino acid catabolism and urea production
suggest redirection of amino acids from catabolic path-
ways to enhanced protein biosynthesis.

Fuel shift, cellular respiration and detoxification in liver
We found a coordinated induction of genes involved in
fatty acid b oxidation in liver during hibernation. These
transcriptional changes are consistent with physiological
data showing that hibernating bears primarily use energy
stored in fat [20], and this is further supported by
respiratory quotient values near 0.7 that we observed in
our hibernating bears [11]. In contrast, genes involved
in lipid biosynthesis were down regulated in liver, as
bears fasted throughout winter. Similar to black bears,
evidence for induction of lipid catabolism were reported
at transcriptional [4,6] and proteomic levels [28] in
hibernating ground squirrels. In relation with lipid
metabolism, our study also revealed transcriptional sup-
pression of genes involved in cholesterol metabolism in
liver during hibernation. The two cytochrome P450
genes (Cyp7a1 and Cyp27a1) catalyzing the first reac-
tion in the cholesterol catabolic pathway in the liver,
which converts cholesterol to bile acids, and oxidizing
cholesterol intermediates were both down regulated dur-
ing hibernation. Reduction in the cholesterol catabolism

is supported by the elevation in cholesterol serum level
that has been consistently observed in hibernating black
bears [9,29].
A shift from glucose catabolism to glucose synthesis

that provides an energy source for brain and other tis-
sues in fasting conditions was observed at the mRNA
and protein levels in liver of hibernating ground squir-
rels [6,28]. Similar to small mammalian hibernators, we
detected over expression of the two key glucogenic
enzymes (Pck1, Fbp1) as well as down regulation of
important glycolytic (Pdhb) and the pentose phosphate
shunt (Tkt) enzymes in liver during hibernation. These
results taken together with under expression of glucoki-
nase (Gck) catalyzing the irreversible step in glycolysis
[11] suggest induction of glucose synthesis and reduc-
tion of glucose catabolism in liver of hibernating bears.
Glycolysis is the first step of cellular respiration. Genes
involved in cellular respiration demonstrated coordi-
nated under expression in liver during hibernation.
Apart from glycolytic enzymes, down regulated cellular
respiration genes include key enzymes (Sdhc, Aco1) of
the tricarboxylic acid cycle and genes involved in elec-
tron transport (Cycs, Coqs, Ndufs1). Molecular function
category of electron carrier activity is significantly
enriched by under expressed genes in liver as part of
cellular respiration and oxidoreductation. Coordinated
down regulation of cellular respiration genes in the
liver, which plays the central role in metabolic homeos-
tasis is consistent with the reduction of metabolic rate
(20-50%) in hibernating bears.
Detoxification is an important function of the liver.

We detected coordinated repression of genes involved
in oxidoreductase activity, acting on the aldehyde or oxo
group of donors and monooxygenase activity categories
of molecular function. In these categories down regu-
lated genes include a number of cytochrome P450
genes, flavin containing monooxygenases, aldehyde
dehydrogenases that catalyze the oxidation of potentially
toxic xenobiotics and metabolites with electron-deficient
carbon centers (electrophilic compounds). These tran-
scriptional changes are similar to expression differences
detected in small hibernators [4,6], and they imply that
detoxification function of the liver is depressed during
hibernation, probably as a result of prolonged food
deprivation.

Conclusions
Elevated expression of multiple protein biosynthesis
genes is a prominent feature of the transcriptome of
hibernating black bears in all organs studied to date in
black bears. Induction of protein synthesis may be
related to adaptive mechanisms reducing cardiac and
muscle atrophies over extended periods of low metabo-
lism and immobility during hibernation in bears.
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Transcriptional reduction of genes involved in amino
acid catabolism suggests redirection of amino acids
from catabolic pathways to elevated protein biosynthesis.
We inferred functional changes by comparing tran-

scripts abundance between hibernating and summer
active bears. Due to post transcriptional regulatory
mechanisms, protein abundance can be different from
corresponding gene expression on the mRNA level
[6,28]. However, functional significance of transcrip-
tional changes detected in our study for the most
important groups of co-regulated genes such as protein
biosynthesis, catabolism of nitrogenous compounds and
lipid metabolism is supported by independent lines of
evidence coming from physiology and biochemistry of
hibernating bears. Another point of support is that
mammals generally demonstrate surprisingly high corre-
lation between gene expression at mRNA and protein
levels. The most comprehensive survey to date in model
species revealed significant positive correlation between
transcript and corresponding protein quantities for
71.4% of genes [30]. It is also notable that for another
mammalian hibernator, significant correlation (Pearson’s
r = 0.62; P < 0.001) was found between expression on
the mRNA and protein levels when comparing summer
active and hibernating arctic ground squirrels [28].
Ongoing shotgun proteomic analysis will further validate
functional significance of transcriptional changes
reported here, identify regulatory changes undetectable
on transcript level and, thus, provide more understand-
ing of the molecular basis of hibernation in bears.

Methods
Animals
We analyzed heart and liver tissue from black bears
that were reported on in a previous study [11]. Bears
(31-143 kg) were captured May-July from the field in
Alaska. Bears were held individually in a shaded outdoor
holding facility in Fairbanks. In order to diminish effects
of gender and age on intra-group variation in gene
expression, only males > 2 years old were used in these
experiments. Non-hibernating bears (n = 5) were feed-
ing and active when they were euthanized and sampled
for tissues between late May and early October. We
stopped feeding bears 24 hours before these animals
were euthanized. Hibernating bears were sacrificed for
tissue sampling between 1-27 March (n = 6), about one
month before their expected emergence from hiberna-
tion. These animals were without food since October
27. Animal protocols were approved by the University
of Alaska Fairbanks Institutional Animal Care and Use
Committee (protocols no. 02-39, 02-44, 05-55, 05-57)
and USAMRMC Animal Care and Use Review Office
(proposal Number 05178001).

Physiological monitoring and tissue harvesting
For monitoring of physiological conditions, bears were
instrumented as previously described [11]. Briefly, core
body temperature, ECG and EMG was monitored with
radio telemetry. Beginning in late November, bears were
housed in individual outdoor enclosures on the Univer-
sity of Alaska Fairbanks campus that had dens and
straw material for nests. Dens were closed with a break-
away door, air was drawn though the dens, and oxygen
consumption and RQ monitored with an open flow
respirometry system. The procedure for tissue harvest-
ing was a previously described [11]. On the day of tissue
harvesting, bears were immobilized between 9:30-15:00
using Telazol (8-10 mg/kg) and transported to a
necropsy suite in a nearby building. Oxygen consump-
tion in immobilized bears was checked on a subsample
of animals with an open flow respirometry system dur-
ing blood sampling just prior to euthanasia via a tra-
cheal tube, and ECG was recorded for at least 40s on a
chart recorder or recorded at 400 Hz sampling fre-
quency with data acquisition system (LabGraph with
Scientific Solutions LAbmaster TM40-PGL board).
Between the first disturbance of bears and the beginning
of tissue sampling 40-65 minutes elapsed. Bears were
euthanized by an intravenous injection of pentobarbital
with death assessed by termination of heart beats as
assessed with a stethoscope. Tissues were sampled
immediately and frozen in liquid nitrogen within
12 min. Heart tissue was sampled from the apex.

RNA preparation
RNA was extracted from frozen tissues stored at -80°C
by using RNeasy Kit (Qiagen). All RNA samples were
treated with DNase I (Qiagen). RNA quality was
assessed with an Agilent 2100 Bioanalyzer and concen-
tration was measured by using Nanodrop ND-1000.

Developing genomic resources
Normalized, subtracted cDNA libraries were constructed
from brain, liver, testis, heart and skeletal muscle. We
used SMART template-switching protocol and primer
extension PCR [31], normalization and subtraction [32]
as described [11]. Details of the cDNA libraries con-
structed for this study are available at the Black Bear
Gene Index Project [33]. Expressed sequence tags (EST)
were sequenced from the 5’-end with the universal M13
forward primer. After filtering off low quality reads, vec-
tor contamination and mtDNA inserts, 38,328 high-
quality ESTs were clustered and then assembled into
4,925 unique Tentative Consensus (TC) sequences and
12,719 singleton ESTs using the TCICL software pack-
age [34] and annotated by searching against a non-
redundant protein database. The ESTs and resulting TC
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sequences used in this study are available from the
Black Bear Gene Index, release 4.0 [32]. Genomic analy-
sis of the bear EST collection was reported elsewhere
[12]. In addition to the first bear array (BA01) contain-
ing 3,200 probes [11], 9,600 unique annotated cDNA
inserts were PCR amplified and printed on the second
bear array (BA02) with a Biorobotics arrayer in the
Microarray core facility, the Wistar Institute [35].

Hybridization
Total of 11 heart RNA samples from six hibernating and
five summer active bears were hybridized in the same
experiment with the two bear arrays (BA01; BA02 corre-
sponding to GPL8249 and GPL13263 platforms in Gene
Expression Omnibus database) that contain total of
12,800 cDNA probes. Six hibernating and five summer
active bears RNA liver samples were hybridized with the
9,600 probe BA02 only as results for liver from the
3,200 BA01 had been reported elsewhere [11]. Samples
of total RNA were linearly amplified with Illumina
TotalPrep RNA Amplification Kit (Ambion), labeled
with [33P]dCTP and hybridized with array filters as pre-
viously described [11,36]. All RNA samples from one
tissue were amplified, labeled and hybridized in the
same batch. After hybridization and washing filters were
exposed to phosphorimager screens for four days and
scanned at 50-μm resolution in a Storm Phosphorima-
ger. Images were analyzed by using the ImaGene pro-
gram (Biodiscovery).

Microarray data analysis
Only spots with no flags were included in the analysis.
Background correction was done by subtracting local
background median density from signal median density.
Background corrected signals were divided by their
median on the array to obtain the normalized median
densities representing the normalized expression values.
One-way ANVOA test was used to select genes that
exhibited significant differences between hibernating
and summer active bears. A p-value < 0.01 and |log2
fold change| > 0.5 were set as cutoffs for significant dif-
ferent expressed genes, corresponding to the mean false
discovery rate (FDR) around 10 - 13%. The FDR was
calculated using random permutation as described by
Storey and Tibshirani [37]. The FDR was defined as the
number of significant selected genes divided by the aver-
age of the number of significant genes under permuta-
tions. The genes demonstrating significant hybridization
signal on the arrays were classified according to their
Gene Ontology (GO) categories of the biological pro-
cesses and molecular functions. For each probe with a
significant expression value, a gene identifier was
obtained by blast search of the probe EST against the
NCBI human RefSeq Data Base [38]. When a blast score

was ≥100 the probe was assigned to that corresponding
human gene symbol. For ESTs that mapped to more
than one human reference sequence, we selected the hit
with the highest blast score. If one gene had multiple
probes on the array, we selected the probe with the
smallest ANOVA p-value to represent the gene. Lists of
all significant genes on the array and differentially
expressed genes were loaded to GO miner [39]. The
enrichment in each GO category was estimated as the
proportion of differentially expressed genes relative to
the expected proportion on the array. The GO gene sets
with fewer than five differentially expressed genes
detected were omitted from the analysis [40]. Significant
GO categories with the same members have been
selected on the basis of the GO hierarchical tree struc-
ture: if a parent term and its child term were signifi-
cantly enriched by the same set of differentially
expressed genes, narrow and more specific child cate-
gory rather than broad parent term was considered. The
significance of enrichment for each GO category was
estimated by one-sided Fisher exact test. The false dis-
covery rate was assessed by resampling the total signifi-
cant genes on the array [18,40]. In addition to GO
miner analysis, we verified enrichment in significant GO
categories of the biological processes by using Gene Set
Enrichment Analysis [41]. Unlike GO miner, GSEA esti-
mates enrichment by taking into account all of the
genes with significant signals in an experiment without
constrain of arbitrary cutoffs for significance of expres-
sion differences, false discovery rate and fold-change
[13]. Genes were ranked according to the extent of the
correlation between their expression values and the phe-
notype class (hibernating or summer active) by using
the signal to noise ratio. We calculated an enrichment
score (ES) that reflects the degree to which genes
involved in category are overrepresented at the extremes
(top or bottom) of the entire ranked list of genes. The
false discovery rate was estimated by using phenotype-
based permutation test [13]. All microarray data were
submitted to NCBI Gene Expression Omnibus (GEO)
with accession number GSE27875.

Quantitative real-time PCR
We validated the microarray experiments by 352 quanti-
tative real-time PCR tests using the same total RNA
samples. Nineteen genes were validated in liver and 13
genes in heart tissue. Prmt1 was selected as a reference
gene for heart based on the stability of expression values
across all samples obtained from the microarray experi-
ments and then tested by RT PCR. All bear samples
showed similar expression values with low standard
deviation in multiple RT-PCR tests. Hnrpf was used as a
reference gene for liver [11]. Conditions for cDNA
synthesis, primer design (Additional file 1, Table S2)
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and real time PCR amplifications were described else-
where [11]. Negative control RT PCRs with no template
were taken to exclude contamination, and controls with
no reverse transcriptase but all other components were
taken to exclude false amplification from genomic DNA.
Specificity of amplification was checked with the melting
curve analysis and agarose gel electrophoresis. Four 10-
fold dilutions of a sample with mixed cDNA were used
for a standard curve for each primer set for calculating
RT PCR efficiency. We calculated the fold-change in
level of expression of a target gene relative to a refer-
ence gene for each sample and then compared the
values for hibernating and summer active bears using
Student’s t-test [42,43].

Additional material

Additional file 1: Supplementary tables. Table S1 List of differentially
expressed genes identified in this study. Listed genes demonstrate
significant expression differences between hibernating and summer
active black bears in heart and liver tissues. Genes are ranked by log2FC
(Fold Change), P is a significance level. Positive significant genes are up-
regulated (positive values of log2FC) and negative significant genes are
down-regulated (negative values of log2FC) in hibernating animals.
Complete description of the black bear EST collection can be found in
The Black Bear Gene Index at http://compbio.dfci.harvard.edu/tgi/cgi-bin/
tgi/T_release.pl?gudb=bear. Table S2 Primer sequences used for the real-
time PCR tests in this study.
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