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Abstract

Background: Zinc Finger Nucleases (ZFNs) have tremendous potential as tools to facilitate genomic
modifications, such as precise gene knockouts or gene replacements by homologous recombination. ZFNs can
be used to advance both basic research and clinical applications, including gene therapy. Recently, the ability to
engineer ZFNs that target any desired genomic DNA sequence with high fidelity has improved significantly with
the introduction of rapid, robust, and publicly available techniques for ZFN design such as the Oligomerized
Pool ENgineering (OPEN) method. The motivation for this study is to make resources for genome modifications
using OPEN-generated ZFNs more accessible to researchers by creating a user-friendly interface that identifies
and provides quality scores for all potential ZFN target sites in the complete genomes of several model
organisms.

Description: ZFNGenome is a GBrowse-based tool for identifying and visualizing potential target sites for OPEN-
generated ZFNs. ZFNGenome currently includes a total of more than 11.6 million potential ZFN target sites,
mapped within the fully sequenced genomes of seven model organisms; S. cerevisiae, C. reinhardtii, A. thaliana,

D. melanogaster, D. rerio, C. elegans, and H. sapiens and can be visualized within the flexible GBrowse environment.
Additional model organisms will be included in future updates. ZFNGenome provides information about each
potential ZFN target site, including its chromosomal location and position relative to transcription initiation site(s).
Users can query ZFNGenome using several different criteria (e.g., gene ID, transcript ID, target site sequence). Tracks
in ZFNGenome also provide “uniqueness” and ZiFOpT (Zinc Finger OPEN Targeter) “confidence” scores that
estimate the likelihood that a chosen ZFN target site will function in vivo. ZFNGenome is dynamically linked to
ZiFDB, allowing users access to all available information about zinc finger reagents, such as the effectiveness of a
given ZFN in creating double-stranded breaks.

Conclusions: ZFNGenome provides a user-friendly interface that allows researchers to access resources and
information regarding genomic target sites for engineered ZFNs in seven model organisms. This genome-wide
database of potential ZFN target sites should greatly facilitate the utilization of ZFNs in both basic and clinical
research.

ZFNGenome s freely available at: http://bindr.gdcb.iastate.edu/ZFNGenome or at the Zinc Finger Consortium
website: http://www.zincfingers.org/.
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Background

The ability to efficiently modify the genome of an
organism with a high degree of specificity would
advance both research with model organisms and
human gene therapy clinical trials [1-3]. In recent stu-
dies, zinc finger nuclease (ZFN)-mediated genomic mod-
ification rates of 3% - 100% for specific genes have been
reported in zebrafish, Arabidopsis, and rat [4-16]. More-
over, ZFNs are being evaluated in human gene therapy
clinical trials for treating AIDS [11,17-19]. Thus, ZFNs
are emerging as premier tools for site-specific genomic
modification in both animals and plants.

Engineered ZFNs consist of two zinc finger arrays
(ZFAs), each of which is fused to a single subunit of a
non-specific endonuclease, such as the nuclease domain
from the Fokl enzyme, which becomes active upon
dimerization [20,21]. Typically, a single ZFA consists of
3 or 4 zinc finger domains, each of which is designed to
recognize a specific nucleotide triplet (GGC, GAT, etc.)
[22]. Thus, ZFNs composed of two “3-finger” ZFAs are
capable of recognizing an 18 base pair target site; an 18
base pair recognition sequence is generally unique, even
within large genomes such as those of humans and
plants. By directing the co-localization and dimerization
of two Fokl nuclease monomers, ZFNs generate a func-
tional site-specific endonuclease that creates a double-
stranded break (DSB) in DNA at the targeted locus [23]
(Figure 1A).

In eukaryotes, repair of DSBs in DNA is primarily
accomplished via one of two pathways, homologous
recombination (HR) and non-homologous end-joining
(NHEJ) (Figure 1A). Depending on the desired modifica-
tion, either pathway can be exploited in ZFN-mediated
genomic engineering. Because HR relies on homologous
DNA to repair the DSB, gene targeting can be achieved
by supplying an exogenous “donor” template. This results
in replication of the “donor” DNA sequence at the target
locus, a process that has been utilized to introduce small
mutations or large insertions [4,9,12,13,16,24-27]. In con-
trast, NHE] is an error-prone repair process and hence is
ideal for generating mutations that can result in gene
knockouts or knock-downs when the ZFN-mediated DSB
is introduced into the protein coding sequence of a gene
[5-9,11,28,29].

Oligomerized Pool Engineering (OPEN) is a highly
robust and publicly available protocol for engineering
zinc finger arrays with high specificity and in vivo func-
tionality [9,30,31]. OPEN has been successfully used to
generate ZFNs that function efficiently in plants [13,15],
zebrafish [6], and human somatic [9] and pluripotent
stem cells [16]. OPEN is a selection-based method in
which a pre-constructed randomized pool of candidate
ZFAs is screened to identify those with high affinity and
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specificity for a desired target sequence. Significantly
higher in vivo success rates have been reported using
OPEN-generated ZFNs, compared with ZFNs generated
using the more traditional modular assembly approach
[32-34]. Resources for generating ZFNs using OPEN
have been developed and made publicly available by the
Zinc Finger Consortium [9,31,35]. Currently, OPEN
reagents include modules that recognize all 16 possible
GNN triplets (i.e., DNA triplets beginning with G, fol-
lowed by any nucleotide in the second and third posi-
tions), as well as several TNN triplets. Thus, all DNA
sites that contain only GNN and/or select TNN triplets
can potentially be targeted using the OPEN protocol [9].

To facilitate use of OPEN ZFNs for genome modifica-
tion, we have developed ZFNGenome, a resource that
displays potential ZFN target sites in a genome browser
built on the user-friendly GBrowse platform [36]. We
analyzed the complete sequenced genomes of seven
model organisms and identified all sequences that are
potentially targetable using currently available OPEN
ZFN reagents. ZFN reagents were obtained from Joung
and colleagues [9], and ZFN target sites were identified
using software implemented in the ZiFiT web server
[37,38]. ZENGenome thus allows users to quickly evalu-
ate “pre-identified” ZFN target sites for any desired gene
or region of interest.

To our knowledge, ZFNGenome represents the first
compendium of potential ZFN target sites in sequenced
and annotated genomes of model organisms. The
current version includes ZFN target sites in seven
organisms: Saccharomyces cerevisiae (budding yeast),
Chlamydomonas reinhardtii (green algae), Arabidopsis
thaliana (thale cress), Caenorhabditis elegans (nema-
tode), Drosophila melanogaster (fruit fly), Danio rerio
(zebrafish), and Homo sapiens (human). Additional
model organisms, including three plant species; Glycine
max (soybean), Oryza sativa (rice), Zea mays (maize),
and three animal species Tribolium castaneum (red
flour beetle), Mus musculus (mouse), Rattus norvegicus
(brown rat) will be added in the near future.

Construction and Content

The motivation for implementing ZFNGenome, sum-
marized in Figure 2, was to create a user-friendly inter-
face between two valuable open-source genomic
resources: i) established genome browsers, with asso-
ciated genomic DNA sequences, annotations and other
resources available for model organisms; and ii) ZFN
design software tools and experimental reagents made
available by the Zinc Finger Consortium. ZFNGenome
integrates these resources by allowing users to visualize
all potential ZEN target sites in a chosen gene or geno-
mic region of a sequenced model organism, with flexible
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Figure 1 ZFNs generate site-specific double-stranded breaks that can be used for homologous recombination or mutagenesis.
(A) ZFNs are composed of two arrays that recognize 9-12 base pairs each. Two arrays with three fingers, F1-F2-F3, that recognize nine base pairs
each are shown. Each array is fused to one half of a nonspecific Fokl endonuclease (green). Upon dimerization, the Fokl endonuclease is
activated and creates a double-stranded break at sites flanked by the DNA binding sites recognized by the zinc finger arrays. Scissors and arrows
denote the cut sites. (B) In most cells, double-stranded breaks (DSBs) are repaired by one of two major pathways. If a donor template is
available, homologous recombination can result in engineered nucleotide substitutions at the target site (left). Alternatively, DSBs can be
repaired by non-homologous end-joining, an error-prone mechanism that frequently results in small deletions or insertions at the site of
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Figure 2 An overview of the ZFNGenome architecture. ZFNGenome creates a user-friendly interface for visualizing all potential ZFN target
sites in seven model organisms by integrating the genomic information from genome browsers of sequenced and annotated genomes with
the tools of the Zinc Finger Consortium. This interface allows researchers using these model organisms to easily determine whether ZFNs are
available for the design and execution of targeted genome modifications.

|

viewing options and annotated genomic features pro-
vided in a GBrowse interface.

Table 1 lists the organisms for which complete geno-
mic sequence data were analyzed in this study, along
with the data sources for genomic DNA sequences and
annotations. The number of potential OPEN target sites
identified is shown for each organism. To identify all
potential OPEN ZEN target sites, annotated complete

genome sequence files were scanned using the ZiFiT
algorithm [38], which was modified to accommodate the
sequences of an entire chromosome. Only sites for
which ZFNs can be engineered using currently available
OPEN reagents and spacer distances between the two
ZFAs of 5, 6 or 7 base pairs were included [9]. Because
OPEN selections are performed in a Dam+/Dcm+
E. coli strain, genomic target sequences that contain

Table 1 Model organism genomes analyzed and the number of OPEN ZFN target sites identified

Organism Source' Total # of Total # of ZFN targetable Avg. # ZFN GC
OPEN transcripts? transcripts? target sites Content
target sites” per transcript?
# %
Saccharomyces cerevisiae SGD 31,822 6,685 5,810 87 55 383
Chlamydomonas reinhardtii ChlamyCyc 330,136 15,496 14423 93 229 58.1
Arabidopsis thaliana TAIR 171,409 33,200 30,193 91 57 355
Caenorhabditis elegans WormBase 112,725 28,202 23,861 85 47 342
Drosophila melanogaster FlyBase 185,863 21,736 20,259 93 9.2 409
Danio rerio Ensembl 214,809 27,305 25918 95 83 359
Homo sapiens Ensembl 670,597 71913 66,170 92 10.1 37.1

'Data Source URLs: SGD - http://www.yeastgenome.org/.

ChlamyCyc - http://chlamyto.mpimp-golm.mpg.de/chlamycyc/index.jsp.

TAIR - http://www.arabidopsis.org/.

WormBase - http://www.wormbase.org/.

FlyBase - http://flybase.org/.

Ensembl Danio rerio - http://uswest.ensembl.org/Danio_rerio/Info/Index.
Ensembl Homo sapiens- http://uswest.ensembl.org/Homo_sapiens/Info/Index.

2Transcripts” refers to protein encoding transcripts mapped onto chromosomes (i.e., scaffolds are not included).

Note: For Chlamydomonas reinhardtii the average number of ZFN target sites per transcript is very high. This likely reflects the increased GC content of this

genome.
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potential dam or dcm methylation sites were excluded
from consideration, as were sites that lacked a GNN
subsite. Previous studies have shown that most success-
ful OPEN sites contain at least one GNN [31].

ZFNGenome utilizes GBrowse 1.7 [36] to display iden-
tified potential OPEN target sites, along with basic gen-
ome annotations, such as genes, transcripts, exons,
introns, and 5’ and 3’ UTRs. ZFNGenome is hosted on
an Apache2 web server and uses a MySQL DB linked to
a GBrowse front end via open source adaptors available
in BioPerl (version 1.6) [39]. The ZFN target sites can
be exported for use as annotations in other GBrowse-
based genome browsers such TAIR and WormBase. As
described below, each ZFN target site is hyperlinked to
ZiFDB [40].

Resources available in ZFNGenome

Users can choose the model organism of interest from
the ZFNGenome homepage, http://bindr.gdcb.iastate.
edu/ZFNGenome, by choosing an organism from the
left hand column of the front page or via the “Data
Source” dropdown menu from within an organism’s
ZFNGenome page (Figures 3A and 3B). Figure 3B is a
screenshot of the output displayed in response to a
search for ZEN target sites in the Saccharomyces cerevi-
siae genome. Several standard GBrowse tracks are dis-
played by default (genes, transcripts, coding regions,
etc.). The OPEN Zinc Finger Nuclease Sites track shows
that within the 2.187 kb region illustrated (gene
YLR219W) there are 17 potential ZFN target sites
located in the coding region of this gene. A “uniqueness
score” is reflected in the color-coding of ZFN target
sites in this track: blue sites are unique; purple sites are
present in 2-9 copies; red sites are present in more than
9 copies within the genome of the organism displayed.
Because OPEN reagents are available to recognize all
possible GNN and some TNN triplets, we have included
a track illustrating analysis of the GC content of the
DNA. Clicking on any genomic feature illustrated below
the sequence reveals additional information about that
feature. For example, in the OPEN Zinc Finger Nuclease
Site track, clicking on (AGCAGCGTCNNNNNNN-
GAAGGTGTG) opens a page containing more informa-
tion about the site, as illustrated in Figure 3D. The
“Note” sections on this page provide links to ZiFDB
[40], a repository for zinc finger arrays that have been
experimentally validated, and ZiFiT [37], a tool for iden-
tifying potential ZFP and ZFN target sites. A hyperlink
to NCBI BLAST [41] can be used to examine additional
ZEN sites (if any) in the genome of interest. The
ZiFOpT Score track is provided to help users rank
potential ZFN target sites according to the likelihood
that they will function successfully. The ZiFOpT score
is based on a naive Bayes classifier that predicts whether
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or not a given ZFN site will be active in vivo [42].
Potential ZFN target sites are also color-coded in the
ZiFOpT Score track: blue sites are most likely to be
active in vivo; purple sites are less likely to be active; red
sites are predicted to be inactive. By clicking on features
in other tracks, an investigator can access the exact
sequence, chromosomal position and sources of reagents
needed to experimentally target the chosen site. Users
may customize the GBrowse display by choosing which
feature(s) to display (using the -/+ buttons on the left),
and defining the order in which features are displayed
by dragging and dropping the features within the brow-
ser window. The ZFN tracks can be exported back into
the “home” GBrowse website for a model organism by
clicking on the “share the track” button (details provided
in the Tutorial, Figure 3C). Users can also utilize Help,
Instruction, and Tutorial functions within the browser
windows to obtain more information about navigating
ZFNGenome.

To evaluate the reliability of data presented in
ZFNGenome, we compared our results with other pub-
lished data. Two types of data are presented in ZFNGe-
nome: annotated genomic features and potential ZFN
target sites. The sources from which we acquired the
genomic features are listed in Table 1. These are widely
considered to be the “gold standard” data sources for
the model organisms analyzed because they are carefully
annotated and repeatedly evaluated by the curators and
users of these databases. These source databases are also
extensively used by investigators utilizing the various
model organisms and are therefore familiar to users. To
identify potential errors that may have been introduced
during pre-processing or data analysis, we performed
quality assurance tests as follows: i) for each organism,
several 5 kb segments of genomic sequence were ran-
domly selected from each chromosome; 2) selected
chromosomal DNA sequences were individually re-
scanned using the ZiFiT web server [37] to identify
potential OPEN ZFN sites; 3) sites identified by the
ZiFiT server were directly compared to the results for
the corresponding region obtained from the ZFNGe-
nome database; genomic features were checked against
the original database. To improve the user interface and
documentation, we incorporated suggestions from at
least one expert scientist for each of model organisms
included in ZFNGenome.

Utility and Discussion

Currently available ZFNs can target 80 - 95% of protein
coding transcripts in 7 model organisms

The results presented in Table 1 illustrate both the
power and current limitations of OPEN ZFN engineer-
ing technology and identify gaps where further improve-
ment is needed. Most striking is the relatively high level
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Figure 3 Examples of resources available in ZFNGenome. (A) The ZFNGenome Homepage is shown. From here, the user can select a model
organism from the seven shown in the left hand column. In addition, links to the ZFNGenome Tutorial and Help pages are provided. (B) A
screenshot of the result of a search of the S. cerevisiae gene YLR219W is displayed. Key areas of the browser include the search box and the
“Scroll/Zoom” areas at the top. The “Overview” and “Detail” panels serve as controls for visualizing the genome. This search shows the single
coding region of this gene has 17 potential ZFN target sites, color-coding according to their “uniqueness” and “ZiIFOpT” scores (see text).
Additional information on each of the tracks can be obtained by clicking on details of the track. For example, clicking on one of the OPEN Zinc
Finger Nuclease Sites links the user to details about that specific ZFN target. (C) The ZFNGenome Tutorial offers instructions on navigating the
database. The Tutorial can be accessed from the Homepage or from any GBrowse page within ZFNGenome. Help and Instruction links are
provided from the GBrowse pages. (D) Clicking on a ZFN target site opens a new window that provides links to ZiFDB, which provides
additional information for each zinc finger array, ZiFiT the zinc finger design software that includes the OPEN design method and zinc finger

pools, and the BLAST server at National Center for Biotechnology Information (NCBI).
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of coverage currently achievable. This ranges from 85%
of protein coding transcripts in Caenorhabditis elegans
to 95% of protein coding transcripts in Danio rerio. Also
noteworthy is the number of potential target sites avail-
able within any given transcript: in the model organisms
examined to date, each transcript contains, on average
5 - 23 target sites (Table 1). The current lack of OPEN
ZEN reagents for targeting TNN, ANN and CNN tri-
plets is a limitation, especially in organisms with AT
rich genomes. However, even in Arabidopsis (35.5% GC)
more than 91% of the protein coding transcripts are
potentially targetable. As more ZFN reagents for target-
ing additional triplets become available, the applicability
of ZEN technology will continue to increase.

The first study in which the entire genome of a model
organism was analyzed to identify potential target sites
for ZFNs focused on the zebrafish, Danio rerio [6]. In
that study, identified ZFN target sites were published in
the form of 26 supplemental tables (one for each chro-
mosome). Although this information has apparently pro-
ven useful for members of the zebrafish community,
ZFNGenome was developed in an effort to make such
large datasets searchable and more readily accessible to
a broader group of researchers working in zebrafish as
well as other model organisms.

Because the experimental generation and testing of
ZFNs using the OPEN protocol is not a trivial under-
taking, the utility of a method to discriminate between
ZFN target sites that are likely to function successfully
in vivo and those that are not, cannot be over-empha-
sized. Our analysis discussed above reveals that, on
average, every transcript in the zebrafish genome con-
tains ~ 8 potential ZFN target sites (see Table 1). In
ZFNGenome, the incorporation of “uniqueness” and
ZiFOpT “confidence” scores (42) should help improve
the time and cost-effectiveness of genomic modification
experiments utilizing ZFNs.

In the first implementation of ZFNGenome, we used
GBrowse version 1.67 with a BerkeleyDB back end to
display all potential ZFN target sites found in Arabidop-
sis [15]. A total of 381,497 sites were identified, 171,409
of which were located within coding regions (an average
of 5.7 sites per targetable transcript). The current
version of ZFNGenome (2.0) includes S. cerevisiae,
C. reinhardtii, A. thaliana, C. elegans, D. melanogaster,
D. rerio, and H. sapiens. In addition, it has been imple-
mented in the newer GBrowse 1.7 with a MySQL data-
base, which results in a more dynamic and user-friendly
interface. GBrowse 1.7 is a robust and highly customiz-
able browser available from the Generic Model Organ-
ism Database project (GMOD) [36]. A noteworthy
feature is the ability to share tracks with other
GBrowse-based resources. To date ~119 implementa-
tions of GBrowse are available http://gmod.org/wiki/
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GMOD_Users. Users accustomed to using popular
model organism resources, such as TAIR for Arabidop-
sis [43] or FlyBase for Drosophila [44], can simply
export tracks containing ZFN target sites from ZFNGe-
nome and into their browser of choice for further
analysis.

Related Resources

Several existing databases house information on ZFPs
and associated binding sites. ZiFDB http://bindr.gdcb.
iastate.edu/ZiFDB contains information about engi-
neered zinc finger arrays and individual modules that
have been experimentally evaluated for function in vivo
[40]. ZifBase http://web.iitd.ac.in/~sundar/zifbase/ is a
repository that includes information about both natu-
rally occurring and engineered zinc finger proteins [45].
Sequences of ZFP binding sites are also collected in
TRANSFAC [46] http://www.biobase-international.com/
index.php?id=transfac and JASPAR http://jaspar.genereg.
net/ [47]. Tools for predicting the DNA target sites for
a selected ZFP include ZIFIBI http://bioinfo.hanyang.ac.kr/
ZIFIBl/frameset.php, a hidden Markov model based pre-
dictor that takes into account the interdependence
between positions -1, +3 and +6 of a chosen ZFP to pre-
dict its potential DNA binding site(s) [48]. Also, Persikov
et al. [49] have used support vector machines (SVMs) to
predict and rank potential ZFP binding sites for a
selected ZFP.

Several web-based tools for identifying potential ZEN
binding sites within a given DNA sequence are currently
available. Zinc Finger Tools http://www.scripps.edu/mb/
barbas/zfdesign/zfdesignhome.php can be used to iden-
tify target sites for zinc finger arrays composed of avail-
able modules (16 GNN, 15 ANN, 15 CNN), generated
by the Barbas laboratory, within any given DNA
sequence up to 10 kb in length [50]. ZifBase tools
http://web.iitd.ac.in/~sundar/zitbase/ can identify target
sites in a given DNA sequence, with the option of using
target site triplet composition (i.e., the number of GNN,
CNN, TNN and ANN triplets) as a selection criterion.
TagScan http://www.isrec.isb-sib.ch/tagger/tagscan.html
is capable of performing searches for either exact or
nearly exact matches (< 2 mismatches) between a given
query sequence, such as a ZFP target site, and a large
database, such as a genomic sequence database [51].
ZiFiT http://bindr.gdcb.iastate.edu/zifit/ is similar to
ZFTools in that it allows users to identifying target sites
for ZFNs. ZiFiT also can identify sites potentially targe-
table with ZFPs made from zinc finger modules devel-
oped and/or characterized by the Barbas lab, Sangamo
BioSciences, Inc., and Toolgen http://www.toolgen.com.

In contrast to all of these existing web-based tools,
which identify potential ZFN target sites within a user-
provided DNA sequence (typically < 10 kb),
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ZFNGenome is a comprehensive repository that con-
tains all potential ZFN sites targetable using available
OPEN reagents in the complete genomic sequences of
7 model organisms. To help users distinguish between
high and low quality potential ZFN target sites,
ZFNGenome provides two metrics: a “uniqueness”
score showing the number of times a sequence is
found within the given genome and a ZiFOpT score
providing a prediction of the likelihood that a given
ZFN will be active in vivo.

Planned future development

ZFNGenome will be updated regularly to incorporate
revisions in genomic DNA sequences and annotations,
and to take into account new potential ZFN target sites
that can be considered when new reagents, such as
additional OPEN pools, become available. The genomes
of several other established and emerging model organ-
isms currently in the pipeline include: maize, rice, soy-
bean, red flower beetle, mouse, and rat. We also intend
to implement additional features, including capabilities
for identifying target sites for ZFNs made by other pub-
licly available engineering methods such as modular
assembly.

Conclusions

OPEN is a robust, publicly available, experimental plat-
form for the generation of engineered ZFNs that func-
tion with high specificity in vivo. ZFNGenome was
developed to enhance and broaden the applicability of
ZFNs for genomic modification by providing an online
resource that contains all potential target sites for
OPEN-generated ZFNs in the sequenced genomes of
several model organisms. ZFNGenome has a user-
friendly interface and is seamlessly integrated with other
publicly available Zinc Finger Consortium resources,
such as ZiFiT, ZiFDB, and ZiFOpT. ZFNGenome should
be a valuable resource for scientists and clinicians who
wish to exploit the powerful technologies for genome
modification now available as a result of recent develop-
ments in ZFP design and engineering.

Availability and Requirements

ZFNGenome is freely available over the web at http://
bindr.gdcb.iastate.edu/ZFNGenome or through “Soft-
ware Tools” at the Zinc Finger Consortium website:
http://www.zincfingers.org/.

List of Abbreviations Used

OPEN: Oligomerized Pool ENgineering; ZF: Zinc Finger; ZFA: Zinc Finger
Array; ZFP: Zinc Finger Protein; ZFN: Zinc Finger Nuclease; ZiFOpT: gnc
Finger OPEN Targeter; DSB: double stranded breaks; HR: homologous
recombination; NHEJ: non-homologous end joining; GMOD: generic model
organism database project; SVMs: support vector machines; ZiFDB: Zinc
Finger Database.
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