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Abstract

yet been performed.

the similar pathways.

miRNAs and their evolution in animals.

Background: MicroRNAs (miRNAs) are key posttranscriptional regulators of gene expression that are implicated in
many processes of eukaryotic cells. It is known that the expression profiles of host miRNAs can be reshaped by
viruses. However, a systematic investigation of marine invertebrate miRNAs that respond to virus infection has not

Results: In this study, the shrimp Marsupenaeus japonicus was challenged by white spot syndrome virus (WSSV).
Small RNA sequencing of WSSV-infected shrimp at different time post-infection (0, 6, 24 and 48 h) identified 63 host
miRNAs, 48 of which were conserved in other animals, representing 43 distinct families. Of the identified host
miRNAs, 31 were differentially expressed in response to virus infection, of which 25 were up-regulated and six
down-regulated. The results were confirmed by northern blots. The TargetScan and miRanda algorithms showed
that most target genes of the differentially expressed miRNAs were related to immune responses. Gene ontology
analysis revealed that immune signaling pathways were mediated by these miRNAs. Evolutionary analysis showed
that three of them, miR-1, miR-7 and miR-34, are highly conserved in shrimp, fruit fly and humans and function in

Conclusions: Our study provides the first large-scale characterization of marine invertebrate miRNAs that respond
to virus infection. This will help to reveal the molecular events involved in virus-host interactions mediated by

Keywords: Invertebrate miRNAs, WSSV, Sequencing, EST assembly, Virus-host interaction, GO analysis, Evolution

Background

MicroRNAs (miRNAs) are a large class of small non-
coding RNAs that are found in diverse eukaryotic organ-
isms. They range in size from 18 to 26 nucleotides and are
cut sequentially from the stem regions of long hairpin
transcripts by two RNase III proteins, Drosha and Dicer
[1-3]. The mature miRNA strand is liberated from the
miRNA:miRNA* duplex and incorporated into the RNA-
induced silencing complex, where it controls the expres-
sion of cognate mRNA through degradation or translation
repression [4-8]. It is known that miRNAs have important
roles in many eukaryotic cellular pathways, including
developmental timing, cell differentiation and prolifera-
tion, apoptosis, energy metabolism, cancer and immune
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defense [1,3,9-13]. Host miRNAs are believed to be key
regulators of virus-host interactions [14-16]. To date, how-
ever, information about the pathways mediated by host
miRNAs or their evolution is limited.

It has been reported that infections of some mamma-
lian viruses can alter the host miRNA expression pro-
files, and the expression patterns of some host miRNAs
change markedly over the time course of viral infection
[15,16]. These changes reflect that the host miRNAs may
have important roles in the virus-host interactions.
These miRNAs may be involved in the host immunity to
the virus invasion, or in virus infection to create favor-
able intracellular environments for virus replication. A
systematic investigation of marine invertebrate miRNAs
whose expression is altered in response to virus infection
has not yet been performed [17]. Invertebrates, which do
not possess a lymphocyte-based adaptive immune sys-
tem, rely entirely on innate immunity.
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Since the first miRNAs, lin-4 and let-7, were identified
in Caenorhabditis elegans as potential regulators of animal
development [18,19], 15,172 miRNAs have been discov-
ered from various organisms (miRNA Registry, Release
17.0, April 2011), including mammals, plants, insects,
nematodes and viruses. These miRNAs have been identi-
fied through computational or experimental approaches
[20]. Many miRNAs are conserved among related species,
suggesting that their functions may be evolutionarily con-
served [1,21-23]. Using phylogenetic conservation and the
criterion of a precursor hairpin structure (a characteristic
hairpin structure with small internal loops, with the ma-
ture miRNA embedded in the stem of the hairpin), various
computer programs have been developed to predict miR-
NAs, such as TargetScan [24], miRanda [25], MiRAlign
[26] and Srnaloop [27]. However, the computational
approaches are limited to organisms whose whole genome
sequences are available. Recently, the high-throughput se-
quencing approach has successfully been used to identify
miRNAs from various organisms [28-30]. Although this
approach may omit the miRNAs with low abundance, it
remains the approach of choice for identification of miR-
NAs in organisms whose whole genome sequences are un-
available [31]. Despite the large number of miRNAs that
have been deposited in the miRBase database, this data-
base is likely to be far from saturated as abundant miRNAs
are still undiscovered from unexploited organisms. To
date, identifications of miRNAs are limited to non-marine
species, and very little information is available about the
miRNAs of marine organisms.

In this study, the shrimp miRNAs involved in virus infec-
tion were investigated. Shrimps are one of the most import-
ant groups of species in marine aquaculture. In the past few
decades, worldwide shrimp culture has been threatened by
viral diseases, especially that by the white spot syndrome
virus (WSSV) [32]. Owing to the lack of a true adaptive im-
mune response system like that of vertebrates, invertebrates
rely completely on the innate immune system to resist virus
invasion. The miRNAs of invertebrates in general and mar-
ine invertebrates in particular, in response to virus infection,
remain to be studied. In the present study, the miRNAs of
WSSV-challenged shrimp (M. japonicus) were character-
ized. The results showed that 31 shrimp miRNAs defended
against virus infection by regulating immune pathways.
Some miRNAs were highly conserved in shrimp, fruit fly
and humans and function in the similar pathways. Our
study provides clues to the molecular events mediated by
host miRNAs in host-virus interactions.

Results
Sequence analysis of shrimp miRNAs in response to WSSV
infection
To get an overview of the host miRNAs expressed in re-
sponse to virus infection, the small RNAs of WSSV-
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infected shrimp at various times after infection were
sequenced. After removal of mRNA, rRNA, tRNA, snRNA
and snoRNA sequences, high-throughput sequencing gen-
erated a total of 35,588,792 raw sequences, of which
25,009,711 reads were mappable to miRBase 15.0 or to the
shrimp GenBank expressed sequence tag (EST) database
(Additional file 1). However, no sequence mapped to the
WSSV genome sequence. The analyses showed that the
majority of the non-redundant sequences were 20-24
nucleotides (nt) in length, which is typical for products pro-
cessed by the enzyme Dicer (Figure 1). Direct sequencing
also revealed that the sequences at the 3" ends of the miR-
NAs (52.7% of total reads) appeared to be more heteroge-
neous than those at the 5 ends (18.9% of total reads),
suggesting that the 5" ends of miRNAs have key roles in
target recognition, such as roles as seed sequences.

To characterize the shrimp miRNA homologs, the
miRNA sequences were compared using BLAST with miR-
Base 15.0 with an E-value similarity cutoff of 1e—10. This
revealed that 48 miRNAs [GenBank: JQ706251- JQ706298]
were mapped to other known arthropod miRNAs and pre-
miRNAs in miRBase 15.0. But the mapped pre-miRNAs
could not be mapped to shrimp ESTs. Therefore, these
sequences were identified as conserved miRNAs of shrimp
and could be classified into 43 distinct families (Table 1
and Additional file 2). The remaining miRNAs with no
homolog were compared using BLASTN with the
shrimp EST database, allowing one or two mismatches
between each pair of sequences. Hairpin structures were
predicted in the mapped ESTs using the Mfold program.
According to this criterion, a total of 15 miRNAs [Gen-
Bank: JQ706299-]Q706313] with no homolog in other
animals were identified (Table 1 and Additional file 3),
which might be specific to shrimp or not yet discovered
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Figure 1 Size distribution of small RNAs found by sequencing.
The symbols represented the time post- infection in hours.
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Table 1 Shrimp miRNAs up-regulated or down-regulated in response to WSSV infection at different time post-infection

Time post-infection

miRNAs conserved in animals

miRNAs with no homologue

Oh

6 h

24 h

48 h

miR-1, miR-7, miR-9, miR-10a, miR-10%, miR-33, miR-34 miR-71, miR-79, miR-92a,
miR-92b, MiR-100, MiR-133 miR-184, miR-252, miR-71*, miR-let7, miR-2a, miR-2b
miR-2¢, MiR-8, miR-12, miR-87, miR-190, miR-193 miR-263a, miR-275, miR-276,
miR-276b, MiR-279, miR-281 miR-282, miR-305, miR-315, miR-317, miR-750,
miR-965 MiR-993, miR-1000, miR-276a*, miR-281-2%, miR-8*

miR-1, miR-7, miR-9, miR-10a, miR-10%, miR-33, miR-34 miR-71, miR-79, miR-92a,
miR-92b, MiR-100, MiR-133 miR-184, miR-252, miR-71* miR-let7, miR-2a, miR-2b
miR-2¢, MiR-8, miR-12, miR-87, miR-190, miR-193 miR-263a, miR-275, miR-276,
miR-276b, miR-279, miR-281 miR-282, miR-305, miR-315, miR-317, miR-750,
miR-965 MiR-993, miR-1000, miR-276a*, miR-281-2%, miR-8* miR-252b, miR-278,
miR-981, miR-bantam, miR-2001

miR-1, miR-7, miR-9, miR-10a, miR-10%, miR-33, miR-34 miR-71, miR-79, miR-92a,
miR-92b, MiR-100, MiR-133 miR-184, miR-252, miR-71*, miR-let7, miR-2a, miR-2b
miR-2¢, MiR-8, MiR-12, miR-87, miR-190, miR-193 miR-263a, miR-275, miR-276,
miR-276b, miR-279, miR-281 miR-282, miR-305, miR-315, miR-317, miR-750,
miR-965 MiR-993, miR-1000, miR-276a*, miR-281-2%, miR-8* miR-252b, miR-13a,
miR-981, miR-bantam, miR-2001

miR-1, miR-7, miR-9, miR-10a, miR-10%, miR-33, miR-34 miR-71, miR-79, miR-13a,
miR-92b, MiR-100, MiR-133 miR-184, miR-252, miR-71*, miR-let7, miR-2a, miR-2b
miR-2¢, MiR-8, miR-12, miR-87, miR-190, miR-193 miR-263a, miR-275, miR-276,
miR-276b, miR-279, miR-281 miR-282, miR-305, miR-315, miR-317, miR-750,
miR-965 MiR-993, miR-1000, miR-276a*, miR-281-2%, miR-8* miR-252b, miR-278,

mMiR-S1, MiR-S2 mMiR-S3, miR-S5 miR-S6,
miR-S10 mMiR-S12, miR-S15

miR-S2

mMiR-ST, MiR-S2 mMiR-S3, miR-54 miR-S5,
MiR-S6 MiR-S7, miR-S8 miR-59, miR-S10
miR-S11, MiR-S12 miR-S13, miR-S14 miR-S15

mMiR-ST, MiR-S2 mMiR-S3, miR-54 miR-S5,
MiR-S6 MiR-S7, miR-S8 miR-59, miR-S11
miR-S12, miR-S13 miR-S14

miR-981, miR-bantam, miR-2001

in other animals. At different times after infection, dif-
ferent but overlapping sets of shrimp miRNAs were
expressed (Table 1), indicating changes in host miRNA
expression during virus infection.

Host miRNAs involved in virus infection

To characterize the host miRNAs involved in virus in-
fection, the expression profiles of miRNAs of virus-free
and WSSV-infected shrimp at various times after infec-
tion were compared. To assess the significance of the
observed changes in miRNA counts between the two
different libraries, the Audice-Claverie test, the Fisher
exact test, and the Chi-squared 2x2 test were used,
with a Bonferroni correction for multiple comparisons.
A p-value<0.01 indicated that differences in the
miRNA counts were statistically significant. The results
showed that the expression patterns of many miRNAs
did not significantly change in response to the WSSV
infection, but 31 miRNAs (total counts >200) were dif-
ferentially expressed by more than twofold with a statis-
tical significance of p <0.01 (Figure 2a and Table 2).
Comparison with the expression patterns of miRNAs at
0 h after infection showed that 25 miRNAs were signifi-
cantly up-regulated by more than twofold: miR-1, miR-
100, miR-133, miR-184, miR-190, miR-193, miR-252,
miR-263a, miR-275, miR-276a*, miR-281-2% miR-2a,
miR-2b, miR-2¢, miR-315, miR-317, miR-34, miR-7,
miR-71, miR-8%, miR-87, miR-965, miR-993, miR-let7
and miR-S2. Six miRNAs (miR-279, miR-33, miR-79,
miR-9, miR-S5 and miR-S12) were significantly down-
regulated by more than twofold.

To confirm the involvement of these miRNAs in WSSV
infection, 18 of them were selected at random for Northern
blots. These showed expression patterns similar to those
found by sequencing (Figure 2b); however, a little inconsist-
ency was shown in miR-133, miR-193 and miR-2c com-
pared with the results of sequencing, possibly owing to the
low sensitivity of digoxigenin (DIG)-labeled oligodeoxynu-
cleotide probes or for other unknown reasons.

Pathways mediated by miRNAs

To facilitate the prediction of the miRNA target gene,
shrimp ESTs (162,926 EST reads) were assembled. The
results showed that the assembled ESTs could be used for
the miRNA target gene prediction. To reveal the interac-
tions between the host miRNAs and virus genes, a total of
232 3’ untranslated regions (UTRs) from the WSSV gen-
ome were used for target gene prediction. Analyses with
the TargetScan and miRanda algorithms revealed the tar-
gets of 17 of the miRNAs that responded to virus infection
(Table 3). The target genes were related to immune
responses, gene expression regulation, signal transduction
and metabolism. Some miRNAs, such as miR-34 and miR-
S$12, could target 7—8 genes. One of the predicted viral tar-
get genes of miR-7 was wsv477, an early gene that might
have a key role in DNA replication and virus proliferation
[33]. The miR-7 might act as a regulator of components of
the immune system to inhibit virus replication through
their direct interaction with viral mRNA. However, fewer
viral genes than host genes were targeted by host miRNAs
(Table 3), suggesting that the short typical length of viral 3’
UTRs evolved to minimize the effects of the host miRNAs.
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Figure 2 Expression of shrimp miRNAs in response to viral infection. (a) The miRNA expression profiles of WSSV-challenged shrimp at
different time post-infection (0, 6, 24 and 48 h). The numbers on the right indicated the log10 of the number of copies of miRNAs. Miss, no copy
detected. (b) Northern blots of selected shrimp miRNAs. Total RNA extracted from the lymphoid organs of the virus-free and WSSV-infected
shrimp at different time post-infection (0, 6, 24 and 48 h) were blotted with DIG-labeled oligodeoxynucleotide probes. The probes were shown at
the left. U6 was used as a loading control.

To get an overview of the pathways mediated by host  apoptosis, the Toll-like receptor signal pathway, antimicro-
miRNAs, the target genes of miRNAs predicted by Tar-  bial humoral response, endocytosis, RNA interference
getScan were selected for gene ontology (GO) analysis. The ~ (RNAI), response to viruses, virus-host interactions and
results indicated that most of the target genes are involved  regulation of innate immune response (Figure 3a). More-
in host immunity, including the small GTPase-mediated over, a set of phagocytosis-related genes, such as myosin,
signaling transduction pathway, autophagy, phagocytosis, actin, Arp2-Arp3 (Arp2/3), the serine/threonine kinase
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Table 2 Expression patterns of up-regulated or down-
regulated shrimp miRNAs after WSSV infection

MiRNA name Counts of Ratio of counts to 0 hpi at
0 hpi 6 hpi 24hpi 48 hpi
up-regulation with >2 fold
miR-1 1292519 153 1.21 2.74
miR-2a 97 2.85 242 3.62
miR-2b 37 0.86 0.7 5.1
miR-2c 15 0.56 0.73 2346
miR-7 6 15.16 16 14.16
miR-34 9 174.55 120.11 18.77
miR-71 590 285 2.19 9.03
miR-87 229 523 232 2.96
miR-100 5550 0.8 0.69 20.89
miR-133 27 46.89 44.52 16.63
miR-184 1082 8.16 6.4 451
miR-190 389 367 2.79 6.69
miR-193 3 24.6 133 426
miR-252 7 36.29 34.14 8.14
miR-263a 23 2561 19.74 6.7
miR-275 364 18.74 10.28 87.04
miR-315 151 2.15 154 12.16
miR-317 121 3.79 263 9.02
miR-965 39 1.58 1.79 246
miR-993 69 7.19 4.1 16.07
miR-let7 6075 46.76 40.88 18.64
miR-281-2* 1885 4.1 13.26 6.38
miR-8* 787 6.42 3.82 13
miR-276a* 459 146 1.09 14.15
miR-S2 6 1.16 37 0.83
Down-regulation with >2 fold
miR-33 631 0.04 0.03 1.29
miR-79 895 0.04 0.03 0.19
miR-9 6175 0.05 0.05 0.15
miR-279 2752 0.71 0.85 0.24
miR-S5 1063 0 0.06 0
miR-S12 376 0 0.67 0.03

Array data for 31 host miRNAs with high-quality data (total counts >200) at
different time points after WSSV infection. hpi, hours post infection.

PAK and several members of the small G protein family,
were enriched among the target genes of miR-79, suggest-
ing that phagocytosis is an important immune strategy
deployed by the host against virus infection [34]. Autop-
hagy is an evolutionarily conserved mechanism of lyso-
somal degradation of unwanted cytoplasmic constituents,
as well as of intracellular pathogens [35]. The GO analysis
revealed that four genes targeted by miR-2 were classified
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into the autophagy subcategory, including the endogenous
autophagosome marker protein microtubule-associated
protein 1 light chain 3 (LC3), suggesting that miR-2 had
important roles in the autophagy pathway.

The complementary binding between seed sequences
of miRNAs and binding sites in target mRNAs might be
conserved across species and might contribute to the
functional conservation of miRNAs. Phylogenetic ana-
lysis, target gene prediction and pathway analysis showed
that, among the 13 conserved miRNAs (miR-1, miR-100,
miR-10a, miR-124, miR-125, miR-184, miR-33, miR-34,
miR-7, miR-9, miR-92a, miR-92b and miR-let7), several
highly conserved miRNAs (miR-1, miR-7 and miR-34)
targeted the same or similar genes leading to the same
pathways in shrimp, fruit fly and human (Figure 3b).
This indicated that the beneficial miRNAs might be con-
served during evolution because they aid survival.

Discussion

As is well known, virus infection can disturb and subvert
the host cellular processions and functions at several
levels, such as changes in the expression of cellular tran-
scripts, including miRNAs, and effects on the cell cycle or
apoptosis of virus-infected cells [36]. During virus-host
interactions, cellular miRNAs, which are key regulators of
gene expression, are crucial [14]. However, we have not yet
achieved a comprehensive view of the gene expression
regulation mediated by miRNAs during virus-host interac-
tions in marine invertebrates. In this study, an invertebrate
shrimp was challenged by the DNA virus WSSV so as to
characterize the host miRNAs involved in the response to
virus infection. The results showed that 31 host miRNAs
are involved in virus-host interactions, most of which are
concerned with host immune responses. Our study pro-
vides the first large-scale characterization of marine inver-
tebrate miRNAs and the pathways mediated by them in
response to virus challenge.

Similar phenomena have been reported in mammals, the
miRNA profiles of which are reshaped by hepatitis C virus
(HCV), human immunodeficiency virus-1, human cyto-
megalovirus and Epstein—Barr virus [16,37-39]. The host
miRNAs might be associated with the regulation of host
immune systems or viral life cycles. RNAi knockdowns of
Drosha and Dicer, two crucial proteins in animal miRNA
biogenesis, resulted in a decrease in mature host miRNAs,
which led to increased sensitivity of host to virus infection
[15,40]. Some host miRNAs might thus represent antiviral
miRNAs. When some putative antiviral miRNAs were
blocked by locked nucleic acid-modified antisense oligori-
bonucleotides, the hosts failed to inhibit viral replication
[11,41]. In some cases, host miRNA expression might be
promoted by viruses to reshape the host intracellular
environment to benefit viral replication [42]. In our study,
phylogenetic analysis showed that the miR-1, miR-7 and
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Table 3 Target genes of miRNAs predicted by TargetScan and miRanda algorithms

miRNA overlapping genes

miR-1 KRAB domain-containing zinc finger protein

miR-12 acyl-CoA binding domain containing 7

miR-133 ubiquitin-conjugating enzyme E2 A

miR-13a O-methyltransferase; fibroinase; Mn superoxide dismutase; DNA-binding nuclear protein p8; peroxin-11 C

miR-2001 Scavenger receptor class B; glycoprotein 25 |; vp28 (WSSV)

miR-263a Dihydropteridine reductase; Tetraspanins-like protein

miR-275 Peritrophin A; calcium and integrin binding protein CIB

miR-276b Vacuolar ATP synthase

miR-278 eukaryotic translation initiation factor 3 subunit

miR-279 ubiquitin protein ligase; Exoskeletal protein

miR-281 eukaryotic translation elongation factor 1 alpha (eEF-1a); elongation factor EF-1 alpha subunit

miR-282 ribose 5-phosphate isomerase A; small subunit ribosomal protein Sée

miR-2a Melanization interacting protein; Fortilin binding protein 1; O-methyltransferase

miR-317 hfb2 protein; (R)-3-amino-2-methylpropionate-pyruvate transaminase; Eukaryotic initiation factor 1A;
maleylacetoacetate isomerase; hfb2 protein

miR-34 solute carrier family 37 (glycerol-3-phosphate transporter), member 2; Rpl6, NV12167; ribosomal protein
L6; K02934 large subunit ribosomal protein L6ée; ubiquitin protein ligase; K10573 ubiquitin-conjugating
enzyme E2 A; Nuclear autoantigenic sperm protein; similar to elongase, putative; E3 ubiquitin ligase

miR-7 eukaryotic translation initiation factor 4A2; translation initiation factor elF-4A; wsv477 (WSSV)

miR-71 actin 1; microsomal signal peptidase; signal peptidase complex subunit 3

miR-8* hfb2 protein

miR-87 alanine-glyoxylate transaminase

miR-92a Eukaryotic initiation factor 1A; maleylacetoacetate isomerase

miR-let7 rab11; T-complex protein 1 subunit gamma

miR-S1 Astacin

miR-S10 Rnps1 protein; RNA-binding protein with serine-rich domain 1; nuclear distribution protein NUDGC;
isopentenyl-diphosphate delta isomerase 1

miR-S12 ribosomal protein L5; Glucosyl/glucuronosyl transferase (Fragment); myosin heavy chain; Cationic
trypsin-3 precursor Pretrypsinogen IIl; trypsin; eukaryotic translation initiation factor 2B; ribosomal
protein L13A; microsomal glutathione S-transferase; glutathione S-transferase; methionyl aminopeptidase

miR-S13 similar to ribosomal protein L28; K02903 large subunit ribosomal protein L28e

miR-S14 putative beta-NAC-like protein; phosphatidylserine receptor

miR-S3 acireductone dioxygenase; ubiquitin C-terminal hydrolase; Duplex-specific nuclease

miR-S5 phosphatidylserine receptor; cystatin B

miR-S6 Glucosyl/glucuronosyl transferase

miR-S9 3-hydroxyisobutyryl-CoA hydrolase

miR-34 are highly conserved in shrimp, fruit fly and
human and function in similar pathways. Our analyses
predicted that miR-7, one of the miRNAs highly conserved
between invertebrates and vertebrates, could target the
mitogen-activated protein kinases (MAPKs), a situation
identical to that in humans [43-45]. Recent studies
revealed that MAPKs were activated by invading HCV, the
orthopoxvirus vaccinia virus and visna virus, which aided
viral replication [43-45]. Our analysis indicated that the
WSSV early gene wsv477 was also targeted by host miR-7,
suggesting that host might inhibit virus infection by

targeting viral transcripts with host miRNAs. It could thus
be inferred that the functions of the conserved miRNAs
have been preserved in animals during evolution. Because
of the long evolutionary time since the divergence of
shrimps and humans, studies on invertebrates would
greatly benefit from even limited knowledge about shrimp
virus-host interactions.

In our study, Solexa high-throughput deep sequencing
was used to reveal the miRNAs involved in virus-host
interactions. A total of 63 miRNAs were obtained, but
no viral miRNA was revealed. This might be because of
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the small amounts of viral miRNAs. To characterize the
viral miRNAs, an miRNA microarray could be used in
the further studies.

Conclusions

Our study provides the first large-scale characterization
of marine invertebrate miRNAs in response to virus in-
fection. The results showed that a total of 63 miRNAs of
shrimp were obtained, 31 out of which were differentially
expressed in response to virus infection. Among the dif-
ferentially expressed miRNAs found, miR-1, miR-7 and
miR-34 are highly conserved and mediate similar path-
ways, suggesting that some beneficial miRNAs have been
preserved in animals during evolution. Invertebrates
could therefore be good candidates for increasing our
still limited knowledge about virus-host interactions be-
cause of their long evolutionary distance from verte-
brates. Our study could help to reveal the molecular
events of virus-host interactions mediated by miRNAs
and their evolution in animals.

Materials and methods

Shrimp culture and WSSV infection

M. japonicus shrimp (10-15 g body weight) were cul-
tured in groups of 20 individuals in each tank with artifi-
cial seawater and aeration. Before the experiments, the
shrimp were maintained temporarily for 2-3 days and
three shrimp were randomly selected for WSSV detec-
tion with WSSV-specific primers to ensure that the
shrimp were virus-free. Then the virus-free shrimp were
infected with WSSV at 10* virions per ml by intramuscu-
lar injection using a syringe with a 29-gauge needle [46].
After WSSV challenge, the lymphoid organs of five indi-
viduals were collected at various times after infection (0,
6, 24 - and 48 h) and immediately stored in liquid nitrogen
for later use. Shrimp assays were conducted in accord-
ance with COPE (the Committee on Publication Ethics).

Sequencing of small RNAs

Total RNAs were isolated from the lymphoid organs of the
virus-free and WSSV-infected shrimp at different times
after infection using a mirVana miRNA Isolation Kit
(Ambion, Austin, TX) according to the manufacturer’s
instructions. The quantity and purity of total RNAs were
monitored using a NanoDrop ND-1000 spectrophotom-
eter (Nano Drop, DE) at a 260/280 ratio > 2.0. The integ-
rity of total RNAs was analyzed using an Agilent 2100
Bioanalyzer system and an RNA 6000 Nano LabChip Kit
(Agilent, CA) with an RNA integrity number (RIN) > 8.0.
About 200 pg of total RNA was separated on a denaturing
15% polyacrylamide gel. The small RNAs (16-30 nt) were
excised, quantified and precipitated with ethanol. After
dephosphorylation by alkaline phosphatase, the purified
small RNAs were ligated sequentially to RNA adapters
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(5'-ACAGGUUCAGAGUUCUACAGUCCGACGAUC-3’
and 5-UCGUAUGCCGUC UUCUGCUUG-3’). Reverse
transcription and PCR amplification were performed after
ligation. The resulting products were sequenced on the
Genome Analyzer GA-I (Illumina, San Diego, CA) accord-
ing to the manufacturer’s recommended protocol.

Small RNA sequence analysis

lumina's Genome Analyzer Pipeline software and the
ACGT V3.1 program developed by LC Sciences (Houston,
TX) were used for small RNA sequence analysis. The
following sequences were removed: (1) sequences of the
vector and adaptor, (2) low-quality sequences, (3) low-copy
sequences (counts < 3), (4) sequences containing more
than 80% A, C, G, or T, (5) sequences containing only A
and C or only G and T, (6) sequences shorter than 16 nt
and longer than 26 nt, (7) sequences containing 10 repeats
of any dimer, 6 repeats of any trimer, or 5 repeats of any
tetramer, (8) sequences matching mRNAs, rRNA, tRNA,
snRNA, snoRNA. After these sequences were removed, all
the remaining high-quality sequences were used for
miRNA identification. To identify conserved miRNAs that
were homologous with those of other species, all high-
quality sequences were mapped to known mature and pre-
cursor arthropod miRNAs in miRBase 15.0 with an E-
value similarity cutoff of le-10, and the pre-miRNAs were
further mapped to the ESTs of the shrimp Litopenaeus van-
namei from GenBank owing to the lack of the Marsupe-
naeus japonicus genome. To characterize novel miRNA
candidates in shrimp, the remaining high-quality sequences
with no homologs in miRBase 15.0 were analyzed by a
BLASTN search against the shrimp EST database in the
National Center for Biotechnology Information [47], allow-
ing one or two mismatches between each pair of sequences.
Hairpin RNA structures were predicted from the 65 nt
sequences adjacent to the mapped ESTs in either direction
by the MFOLD program using default parameters [48].

Northern blotting

Total RNA was extracted from the lymphoid organs of the
virus-free and WSSV-infected shrimp at different times
post-infection (0, 6, 24 and 48 h) and quantified using a
spectrophotometer (NanoDrop, Wilmington, USA). Then,
30 pg of total RNA was separated on a denaturing 15%
polyacrylamide gel containing 8 M urea. The RNA was
transferred to Hybond-N + membranes (Amersham Bios-
ciences, Buckinghamshire, UK). After ultraviolet crosslink-
ing (120 m], 30 s), the membrane was pre-hybridized in
DIG Easy Hyb granules buffer (Roche, Basel, Switzerland)
for 0.5 h, and this was followed by hybridization with a
DIG-labeled DNA probe complementary to a specific
miRNA sequence for 20 h. The DIG labeling and detection
were performed following the manual of DIG High Prime
DNA Labeling and Detection Starter Kit II (Roche).
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Shrimp EST assembly and 3' UTR extraction

Because of the lack of a shrimp genome sequence, the EST
database containing 162,926 EST reads of the shrimp Lito-
penaeus vannamei from GenBank was used for the predic-
tion of miRNA target genes [47]. However, most of the EST
reads were too short (< 500 bp) to include information on
3" UTR sequences, which were the regions usually targeted
by miRNAs. Therefore, the EST sequences were assembled
using the CAP3 assembly program into a total of 31,831
non-redundant sequences comprising contigs and singlets
[49,50]. According to the highest BLASTX and/or BLASTN
hits, the most likely open reading frames were annotated,
and their corresponding 3' UTRs were determined through
to the polyadenylation signal. A poly(A) signal was taken as
a sequence of ATTAAA or AATAAA located 10-35 nt
from either the poly(A) tail or the end of the sequence. A
poly(A) tail was taken as a run of at least six As at the end
of a sequence. Incomplete 3' UTRs were removed from fur-
ther analysis. To characterize the interactions between the
host miRNAs and WSSV genes, a total of 232 3' UTRs from
the WSSV genome sequence [GenBank: NC_003225] were
extracted as described above.

Prediction of genes targeted by miRNAs

To predict the genes targeted by miRNAs, two computa-
tional target prediction algorithms, TargetScan 5.1 and
miRanda, were used [51,52]. The data-sets used were the
assembled EST sequences and the 3' UTRs of WSSV.
TargetScan was used to search for miRNA seed matches
(nucleotides 2—-8 from the 5' end of miRNA) in the 3'
UTR sequences. miRanda was used to match the entire
miRNA sequences. The miRanda parameters were set as
free energy < -20 kcal/mol and score >50. Finally, the
results predicted by the two algorithms were combined
and the overlaps were calculated.

Gene ontology (GO) analysis

The coding sequences of the shrimp ESTs were extracted
and used as queries to search the protein sequences col-
lected by the GO database with the blast E value <le-5
[53]. The best hit GO IDs were assigned to the shrimp
EST sequences. The hypergeometric test statistic was then
used to obtain the over-representation of particular func-
tions or categories in the data of miRNA targets predicted
by TargetScan 5.1 as compared with all the EST data. The
P values were corrected by false discovery rate (FDR).

Additional files

Additional file 1: Small RNA reads sequenced by Solexa technology
from WSSV-infected shrimp at different time post-infection (0, 6, 24, and
48 h). Statistical analyses were based on the counts and percentages of
the raw, mappable sequences and unique miRNA reads from virus-free
WSSV-infected shrimps.
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Additional file 2: The shrimp miRNAs that were conserved in other
animals. The 48 miRNAs conserved in other animals were classified into
43 distinct families.

Additional file 3: The mapped EST sequences of shrimp-specific

miRNAs. The mature sequence of each shrimp-specific miRNA was
indicated as a different case in the fasta EST sequence.
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