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Abstract

Background: As a human replacement, the crab-eating macaque (Macaca fascicularis) is an invaluable non-human
primate model for biomedical research, but the lack of genetic information on this primate has represented a
significant obstacle for its broader use.

Results: Here, we sequenced the transcriptome of 16 tissues originated from two individuals of crab-eating macaque
(male and female), and identified genes to resolve the main obstacles for understanding the biological response of
the crab-eating macaque. From 4 million reads with 1.4 billion base sequences, 31,786 isotigs containing genes similar
to those of humans, 12,672 novel isotigs, and 348,160 singletons were identified using the GS FLX sequencing
method. Approximately 86% of human genes were represented among the genes sequenced in this study.
Additionally, 175 tissue-specific transcripts were identified, 81 of which were experimentally validated. In total, 4,314
alternative splicing (AS) events were identified and analyzed. Intriguingly, 10.4% of AS events were associated with
transposable element (TE) insertions. Finally, investigation of TE exonization events and evolutionary analysis were
conducted, revealing interesting phenomena of human-specific amplified trends in TE exonization events.

Conclusions: This report represents the first large-scale transcriptome sequencing and genetic analyses of M.
fascicularis and could contribute to its utility for biomedical research and basic biology.
Background
Crab-eating macaques (Macaca fascicularis) are one of the
most frequently used and studied species for biomedical
research [1]. Due to the broad range of habitats, they have
various common names including crab-eating macaque,
cynomolgus macaque, Philippine monkey, and long-tailed
macaque. Numerous wild crab-eating macaques are dis-
tributed in Southeast Asia, including Indonesia, Philippines,
Myanmar, Vietnam, and Thailand [2]. They inhabit various
habitats including primary, secondary, coastal, mangrove,
and riverine forests and areas near villages. Diurnal and
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arboreal crab-eating macaques belong to the infraorder
Catarrhini, superfamily Carecopithecoidea, family Cerco-
pithecidae, and genus Macaca.
With the aid of fossil records and comparative DNA

sequence analysis, genus macaques and humans have
diverged from a common ancestor between 25 and 31
million years ago [3]. This evolutionary relationship has
made this primate as a more suitable experimental
animal model than rodents, dogs, and pigs and may lead
to its widespread use for the translational studies for
drug testing [1]. Among the genus Macaca, Rhesus and
crab-eating macaque is representative species which
were widely used as a non-human primate model for
biomedical research. However, the rhesus macaque is
the most frequently used primate as a non-human
primate model [4]. In the United States, more than 60%
of monkeys housed in National Institutes of Health
(NIH)-supported facilities are rhesus macaques [5].
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Furthermore, 65% of the monkeys used for experimental
research each year are rhesus macaques. In 2007, first
draft genome sequences of rhesus macaque genome was
published [4]. These worldwide trends in use and accu-
mulated genome information data may lead to the
assumption that the rhesus macaque is the ideal non-
human primate model. However, the event of “export
ban of rhesus monkey from India in 1977” had restricted
the usage of Indian subspecies of the rhesus macaque
and accelerate the building of self-sustaining breeding
colonies in the US. Therefore, researchers who want to
have a research with rhesus monkey in the outside of US
have some problems, they have concerned the chinese-
origin rhesus macaque and crab-eating macaque from
south asia [6]. Furthermore, the crab-eating macaque
has important advantages, including (1) easy handling
derived from a smaller body size (♂ 412–648 mm, ♀
385–503 mm vs. ♂ 483–635 mm, ♀ 470–531 mm),
weight (♂ 4.7–8.3 kg, ♀ 2.5–5.7 kg vs. ♂ 5.6–10.9 kg, ♀
4.4–10.9 kg) and longer tails than rhesus macaques [7];
(2) low cost and easy availability for experimental use;
and (3) lack of seasonal fertility, which may affect effi-
cient experiments and scheduling in the large-scale
housing of experimental monkeys [8]. Finally, abundant
gene information is available for the crab-eating ma-
caque. Greater numbers of EST and full-length cDNA li-
brary sequences are available in the NCBI database for
crab-eating macaque [9-15]. And recently their draft gen-
ome sequences also available in the EBI database [6,16].
Therefore, crab-eating macaque could be a excellent ex-
perimental primate animal models for biomedical studies.
In an in-depth examination of the published papers

from 2010 to 2011 indicated that pharmacology field for
safety and toxicity testing of newly developed drugs was
the most frequently encountered [17-20]. In particular,
the crab-eating macaque was used predominantly in
brain research, the neurosciences, and clinical research
[21-24]. Furthermore, experimental primate model have
been developed by four different ways of simple replace-
ment, induced, infection, and surgical. The induced
method involved treatment with specific chemicals (e.g.,
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or
streptozotocin (STZ)[25-27], whereas the surgical method
(e.g., middle cerebral artery occlusion model for ischemia)
were created through specific types of surgery [28]. The
infection method was simpler than previously described
since humans and the crab-eating macaque have numer-
ous “anthroponosis” (the opposite of “zoonosis”), includ-
ing influenza, tuberculosis, and hepatitis [29]. Lastly,
simple replacement method was the usage of natural
crab-eating monkey for specific purpose (e.g., drug safety
or efficacy testing) [30].
From now, numerous disease models, including aging,

alcohol abuse, Alzheimer’s disease, amenorrhea, asthma,
diabetes, epilepsy, menopause, obesity, osteoporosis,
Parkinson’s disease, plague, variola, vascular disease, and
various infection disease models, have been developed and
used [31-46]. However, small amount of transcript
sequences of crab-eating macaque could be a weak point to
be a good experimental animals for biomedical application.
If we have abundant transcript sequences for crab-eating
macaque, we could design the whole gene probe sequences
for microarray analyses. And also, due to the insufficient
transcript sequences, we could not analyze the alternatively
spliced transcripts in different tissues. Recent accumulated
transcriptome information underlined that AS event is an
important molecular mechanism since it can generate dif-
ferent functional units for transcriptome and proteome
diversity using limited genetic sources [47-49]. And also
human transcriptome studies with different human tissues
show different AS patterns derived by tissue-specific alter-
native promoters and polyadenylation [50-52]. However,
sometimes aberrant changes in alternative splicing could
occur the human disease (e.g. retinitis pigmentosa or cystic
fibrosis) [53,54]. And A few number of papers have
reviewed the association between alternative splicing and
disease [55-58]. Among the different AS mechanisms, TE
exonization is intriguing AS events [59]. Specifically, small
amount of TEs show the tissue specific and species specific
characters [60]. That means that TE exonization event
could be a one of the important AS events. Therefore, AS
is not a simple molecular aspect of RNA transcription,
rather it represents a highly controlled and evolved
molecular mechanism for generating genetic diversity
using limited DNA resources. And also AS control
mechanisms are major growing topics in biomedical
researches. Hence, the investigation of the AS events in
specific genes is another means of novel gene or disease
gene identification and characterization steps. However,
these kinds of applications with crab-eating macaque for
advanced biomedical research could be achieved by the
massive amount of transcript sequences and information.
In this study, we carried out a whole-transcriptome

sequencing analysis of 16 tissues from Macaca fascicu-
laris using GS FLX sequencing to generate massive tran-
script information for the improvement of biomedical
use. More than 4 million raw reads were created and
assembled, resulting in 35,524 isogroups, 44,458 isotigs,
54,858 contigs, and 348,160 singletons. Additionally, we
identified and experimentally validated differentially
expressed gene (DEG) transcripts. Finally, using the nu-
merous transcript sequences, we analyze the AS and TE
events of crab-eating macaque.

Results and discussion
GS FLX sequencing and gene annotation
Among the different next generation sequencing meth-
ods, we selected the GS FLX sequencing platform.
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Although this platform demanded the high cost for
sequencing, longer read length of output sequences are
more adequate for the de novo assembly for crab-eating
macaque genes [61,62]. A total of 4,058,656 raw reads
were obtained from the 16 different tissue libraries, with
a mean sequenced size length of 355 bp (Additional file 1:
Table S1, Additional file 1: Table S2, Additional file 1:
Table S3). For rapid assembly and exact gene annotation,
all raw reads were divided into 2 groups, clustered reads
and unclustered reads, by the clustering method of the
BLASTN program with human reference RNA, generating
3,240,337 reads clustered with human reference RNA, and
818,319 unclustered reads (Additional file 2: Figure S1).
Each group was analyzed by GS de novo Assembler v.2.5.3
(Newbler, 454 Life Science). In the clustered group, 38,750
assembled contigs, 31,786 isotigs, and 24,884 isogroups
and 99,283 unassembled singletons were generated. How-
ever, 132,121 reads were discarded due to excessively
short, chimeric, or repetitive sequences. For the clustered
isotigs, half of the sequences were larger than
900 bp, and more than 2,400 were longer than
3,000 bp (Additional file 2: Figure S2). Total anno-
tated sequences covered ~86% (39,439 genes) of the
human reference genes (Figure 1; Additional file 1:
Tables S4–S5). By contrast, 55% of the sequences
(5,915 isotigs and 209,598 singletons) did not match
any of the human reference genes (Additional file 2:
Figure S1). Although more detailed experimental
validations must be performed, these sequences
(5,915 isotigs and 209,598 singletons) may be ma-
caque-specific genes that define differences between
humans and crab-eating macaques.
Figure 1 Comparative analysis of crab-eating macaque transcriptome
coverage was calculated using the BLASTX program. A total of 177,405 crab
reference RNA sequences (85.55%).
Application for OMIM database and KEGG pathway database
We then applied our results to the OMIM database
(http://www.ncbi.nlm.nih.gov/omim/), which provides
information on disorder-related genes that have been
functionally well-characterized, and the KEGG pathway
database (http://www.genome.jp/kegg/pathway.html), a
representative molecular pathway database specifically
for disease-related pathways. In the OMIM database, we
collected all of the available gene sets for calculation of
coverage. Of the 2,579 disorder-related genes in the
OMIM database (Additional file 1: Table S6), 1,935
genes (75.02%) were covered by our results (Additional
file 1: Table S7), indicating that the gene information
from our sequencing could lead to an enhanced under-
standing of the genetic responses to specific experimen-
tal conditions in disease-related research on the crab-
eating macaque.
MPTP treatment of the crab-eating macaque is one of

the most well established models of Parkinson’s disease
[39]. Therefore, we applied our results to the investigation
of Parkinson’s disease (map05012) in the KEGG pathway.
In general, first step of disease mechanism research is the
identification of full-length gene sequences, specifically
coding sequences (CDS), using cDNA library or RACE
experiments for the investigation of a specific disease.
Then other following steps of in vitro or in vivo experi-
ments are applied for the characterization of specific
disease. Therefore, the identification of intact CDS in
genes was our primary goal. In the KEGG pathway data-
base, 129 Parkinson’s disease genes were registered. We
manually tested the existence of open-reading frame
sequences and compared the existence of full-length CDS
sequences with human reference genes. Human reference gene
-eating macaque transcripts (45.11%) were matched to 39,439 human

http://www.ncbi.nlm.nih.gov/omim/
http://www.genome.jp/kegg/pathway.html
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with our sequencing data (data not shown). Our results
indicated that total 115 genes (89%) harbor the intact full-
length CDS (101 genes) or truncated CDS or UTR
sequences (14 genes). These high rate of identification of
intact full-length sequences are coincided the property of
GS FLX sequencing platform (long-read sequencing)
[61,62]. Although, we did not validated the other disease-
related genes in OMIM database, our results can clearly re-
duce the cost and experimental efforts for the identification
of specific disorder-related genes for biomedical research.

Differentially expressed gene analysis and experimental
validation
More than 4 million reads harboring tissue information
were used in the assembly steps (Figure 2). Therefore, it
was possible to use tissue information to identify differen-
tially expressed genes (DEGs) candidates. Strict filtering
conditions were applied for the identification of DEG can-
didates (more than 100 reads and the use of contigs exclu-
sively expressed in specific tissues). In total, 175 genes
were identified as DEG candidates (Additional file 1:
Tables S8–S20). Testis (45 genes) and liver (42 genes)
showed the largest number of DEG candidates (Table 1).
By contrast, the ovary, spleen, cerebrum, and cerebellum
did not harbor tissue-specific transcripts. However,
when we pooled the cerebrum and cerebellum tissue as
Figure 2 Flow chart for data analysis of the crab-eating macaque.
brain tissue, one gene, CBLN1 was identified as a DEG
candidates.
Identified DEG candidates were subdivided into 3

groups: functionally well-characterized genes in specific
tissues, functionally well characterized genes with tissue
relatedness not investigated, and functionally not char-
acterized genes with tissue relatedness not investigated.
For example, among the 45 testis DEGs, genes including
COX6B2, DPY19L2, IZUMO4, PRM2, TSSK6, and
H1FNT have been previously investigated as testis-
specific transcripts or spermatogenesis-related genes
(http://www.ncbi.nlm.nih.gov/gene/). Other genes such
as C6orf225, C20orf107, FUNDC2, and LELP1 have not
been functionally investigated in any other tissues in
previous research, while the CETN1 gene has a specific
function in centrosome positioning and segregation [63]
but has not been investigated with respect to tissue re-
latedness. Therefore, these DEGs could be utilized as
major target genes for tissue specific transcripts for tis-
sue specific function and novel gene identification in
specific tissues. For the experimental validation of DEG
candidates, 81 genes were randomly selected and ex-
perimentally confirmed by RT-PCR amplification and
sequencing procedures (Table 1; Figure 3). Remarkably,
more than 95% of the genes were validated as real DEGs
with distinct expression in expected tissues. These

http://www.ncbi.nlm.nih.gov/gene/


Table 1 Identification and validation of tissue-specific
transcripts

Tissue DEG
candidates

Selected DEGs
for experimental

validation

Gene Name*

Cecum 4 3 SLC12A21, CA12, CLCA43

Cerebellum 1 1 CBLN14

Cerebrum

Heart 3 2 MYBPC35, LDBD36

Kidney 11 10 UMOD_T27, UMOD_T18,
TINAG9, SLC34A110, SLC22A611,
SLC22A1212, LRP213, CDH1614,

C12orf5915, A2LD116

Liver 42 10 CYP2B617, C918, F919, TAT20,
F13B21, CRP22, C8B23, FGG24,

GC25, MBL226

Lung 5 4 SFTPD27, SFTPB28, SFTPA129,
SFTPC30

Ovary† 0 0

Pancreas 22 11 CELA2A31, CPB132, PRSS333,
CEL34, INS35, CTRB236, CELA137,
CLPS38, PRSS239, CELA3A40,

CPA241

Prostate 3 2 SEMG242, MSMB43

Salivary
gland

19 11 CA644, C4orf4045, MUC746,
CST247, CST548, AMY2A49,
PRB150, CST451, PRB352,

STATH53, HTN154

Skeletal
muscle

11 8 MYH455, AMPD156, TPM357,
ATP2A158, MYOT59, MYBPC160,

MYL161, TNNI262

Small
intestine

2 2 FABP263, DEFA664

Spleen 0 0

Stomach 7 5 CHIA65, LIPF66, GKN267, GKN168,
PGA569

Testis 45 12 ADAM3270, SHCBP1L71,
ACRBP72, CABS173, CRISP274,
TCP1175, ALLC76, TUBA3D77,
ANKRD778, LDHC79, CMTM280,

FUNDC281

*The superscript numbers (1–81) correspond to the validated gene numbers in
Figure 3.
† Ovary samples were not used for experimental validation for the
experimental efficiency.
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results support the reliability of our sequencing and
emphasize the importance of tissue sample preparation
when conducting high-throughput sequencing.

Alternative splicing (AS) analysis
A total of 6,931 manually corrected AS events were identi-
fied in the 24,884 clustered isogroups (Additional file 1:
Table S21). Total 4,314 isogroup harbored the more than
one alternatively spliced transcripts. The average number
of AS events was 1.60, and the highest number observed
was 63 AS events in the AKR1B10 gene (Additional file 1:
Table S22). Intriguingly, the human AKR1B10 gene shows
only one reference mRNA sequence, while the EBI data-
base of Alternative Splicing and Transcript Diversity 1.1
indicated only 5 alternative transcripts for this gene in
humans (http://www.ebi.ac.uk/asd/index.html). A careful
analysis indicated that AS events occurred more frequently
in the 5′ and 3′ regions (2,270 and 2,313, respectively) than
the internal regions (1,727) (Additional file 1: Table S22).
Further, 274 AS events (10.4%) were TE related. As a result,
~17% of the crab-eating macaque isogroups were shown to
have alternatively spliced transcripts. This lower rate of AS
events in the crab-eating macaque may be explained by 2
alternative interpretations. One is the shortage of total
amount of transcript sequences. In the case of human
studies, earlier researches indicated that approximately
40%–70% of genes have alternative transcripts. However,
advanced high-throughput sequencing and bioinformatic
tools have shown that 92%–95% of human genes undergo
AS [50,51,64-66]. In addition, different human tissues show
different AS patterns because of tissue-specific alternative
promoters and polyadenylation [50-52]. Therefore, larger
amount of transcript sequences and more diverse tissues or
cell types could enhance the AS information. Another is
explained by simple lineage specific characters. Because, we
already observed the differential alternative splicing be-
tween human and chimpanzees [63,67]. And, as indicated
in the genome project of chimpanzee and orangutan, differ-
ent amplification rate and lineage specific of transposable
elements could cause the different TE-derive alternative
splicing [68,69].

Transposable element (TE) analysis
Recent growing genomic evidence has indicated that TEs
are a valuable genetic resource for transcriptome and prote-
ome diversity [70-73]. Exonization events are one of the AS
mechanisms that can occur as a result of TEs, including
human endogenous retroviruses (HERVs), short inter-
spersed elements (SINEs), and long interspersed elements
(LINEs). Alu (a primate-specific SINE) and LINEs have
potential 5′ and 3′ splicing sites for exonization events.
Moreover, HERVs and LINEs harbor internal promoters
that can control the tissue-specific expression of a gene
[59].
Among the different TEs, Alu is the most frequently exo-

nized element. However, in our comparative analysis with
human, slight differences in the patterns of Alu exonization
were observed. Alu elements underwent an exonization
event in 2.38% of human genes and in 1.76% of crab-eating
macaque genes. Therefore, we extended our analysis to all
TEs in human, chimpanzee, crab-eating macaque, rhesus
macaque, and marmoset monkey for the comparative ana-
lysis of primates. Intriguingly, this extended study indi-
cated a increase pattern in TE composition over primate
evolution and different TE-exonization events between
rhesus macaque and cran-eating macaque (Figure 4).

http://www.ebi.ac.uk/asd/index.html


Figure 3 Experimental validation of DEG candidates. RT-PCR amplification was conducted with crab-eating macaque tissue samples. To
confirm the expected amplification, sequencing was performed.
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Although primate gene information was not sufficient to
conclude from our results that amplified TE composition
is a human-specific event, our results do indicate that TE
exonization events were amplified over primate evolution
and notably in humans. These types of amplified TE exo-
nization events in humans could enhance the transcrip-
tome and proteome diversity with fixed genome sequences
in comparison with non-human primates. However, we
also explained the results of Figure 4 as decrease pattern in
TE composition. Because the probability is very low, recent
studies newly raised the Alu recombination-mediated dele-
tion (ARMD) and L1 recombination-associated deletions
(LRMD) mechanisms which could remove the internal
sequences by homologous recombination of “Alu” or
“LINE” elements [74,75]. In the case of rhesus macaque
and marmoset, the results of low-level TE-exonization rate
in comparison with other species are seems to be occurred
by the lack of transcript sequences (http://www.ncbi.nlm.
nih.gov/Taxonomy/Browser/). Because most of reference
mRNA sequences are identified by computational screen-
ing without the intensive support of numerous EST or
cDNA sequences.
Broad range of utility of crab-eating macaque gene
information
The results of our study have implications for various
fields of research. First, the massive number of transcrip-
tome sequences (approximately 4 million sequences in 16
tissues) could be used as a draft of the crab-eating ma-
caque gene sequences. In addition, the modified and com-
bined gene information could be used for the production
of DNA probe sequences for microarray analysis. Specific-
ally, the company Agilent provides a customized probe
design service using industrial-scale inkjet technology
(http://www.genomics.agilent.com/). Therefore, crab-eat-
ing macaque microarray chips could be designed for spe-
cific experiments and more rapid and accurate gene
expression profiling is possible in a single experiment. For
example, to investigate specific drugs for Parkinson’s dis-
ease, customized microarray chips harboring the 129
Parkinson’s disease-related crab-eating macaque genes
from the KEGG pathway database could be prepared.
Second, crab-eating macaque gene information

coupled with gene information from the rhesus macaque
could be used to resolve the mystery of speciation events

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/
http://www.genomics.agilent.com/


Figure 4 Comparative analysis of transposable element exonization events in primates. Human, chimpanzee, crab-eating macaque, rhesus
macaque, and marmoset monkey gene information were used for our analysis.
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between closely related species. The average genetic
divergence between crab-eating macaque and rhesus
macaque is 0.4%–0.5%, and their evolutionary relation-
ship is closer than that between human and chimpanzee
[14]. Therefore, large-scale transcript sequences could
help to trace the evolutionary root of the speciation
event. Third, gene sequencing of the crab-eating ma-
caque could accelerate the completion of a genome pro-
ject for this primate. Recently draft genome sequences also
available (http://www.ebi.ac.uk/asd/index.html). Hence, re-
analysis and diverse application could be possible for the
analysis of genome and transcripme in crab-eating ma-
caque. Fourth, the 175 DEGs, including the 81 experi-
mentally validated DEGs, represent candidate genes
with tissue-specific functions. Specifically, two of gene
groups of functionally well characterized genes with
tissue relatedness not investigated, and functionally
not characterized genes with tissue relatedness not
investigated, could be a valuable sources for tissue
specific functional study and novel function analysis
in specific tissue, respectively. Fifth, the AS and TE
exonization analysis could be used for comparative
analysis of crab-eating macaque with other species.
Although, the data set are not sufficient for other ap-
plication, our results are to be used as basic informa-
tion to understand the transcriptome of crab-eating
macaque. Finally, our open data base are very useful for
numerous researchers who are interested in the gene in-
formation of crab-eating macaque, specifically unskilled
researchers in genomics and bioinformatics technique.
Conclusions
We sequenced the transcriptome of 16 different tissues
from M. fascicularis for the biomedical usage. We found
that ~86% of human genes are represented in the ones
sequenced in this study. Therefore our results of gene
information could be used for understanding the bio-
logical response of the crab-eating macaque for safety
and efficacy testing. Additionally, 175 tissue-specific
genes were identified, with 81 of them experimentally
validated. We identified and analyzed 4,314 alternative
splicing (AS) events and positive selected genes. Intri-
guingly, 10.4% of the AS events were associated with
transposable element (TE) insertions. And human-spe-
cific amplified trends of TE exonization event are also
revealed during the primate evolution. Our research is
the first large-scale transcriptome sequencing and gene
analyses. Therefore, this result could be valuable genetic
resources for biomedical research and improve our
understanding of primate evolution.

Methods
Specific pathogen free (SPF) crab-eating macaques
Adult male (5 years old) and female (6 years old) crab-
eating macaques (Macaca fascicularis) weighing between
4 kg and 7 kg were used. Their origin is vietnam. All
animals were provided by the National Primate Research
Center (NPRC) of Korea. In our experiments, specific
pathogen free (SPF) animals were used. All animals under-
went a complete physical, viral, bacterial, and parasite
examination. On physical examination, SPF animals were

http://www.ebi.ac.uk/asd/index.html
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examined for criteria, including coat condition, appear-
ance, weight, sex, and date of birth. Enzyme immuno-
assay was performed to detect viruses such as BV;
STLV-1 and −2; SIV; SRV-1, -2, and −5; and SVV. In
addition, tests were performed to detect Mycobacterium
tuberculosis (TB), Shigella spp., Salmonella spp., and
Yersinia spp. For the TB skin test, all animals were
tested by an intradermal injection in the eyelid, and the
remaining bacterial examination items were checked by
fecal culture tests. In our SPF animals, all items in the
above tests were negative.

Sample preparation for GS FLX sequencing and gene
annotation
The most important issue for transcriptome sequencing
is the preparation of fresh and healthy tissue samples.
Therefore, specific pathogen free (SPF) one male and
one female adult crab-eating macaques were selected.
Additionally, perfusion with diethylpyrocarbonate (DEPC)-
treated phosphate buffered saline (PBS) was conducted via
the common carotid artery with RNase inhibitors to inhibit
blood contamination and promote recovery of intact RNA
molecules from the tissue samples. Sixteen tissue samples
were collected from one male and one female crab-eating
monkeys (1. Cecum, 2. Cerebellum, 3. Heart, 4. Kidney, 5.
Liver, 6. Lung, 7. Ovary, 8. Pancreas, 9. Prostate, 10. Salivary
gland, 11. Skeletal muscle, 12. Small intestine, 13. Spleen,
14. Stomach, 15. Testis, and 16. Cerebrum).

Ethics statement
All animal procedures and study design were conducted
in accordance with the Guidelines of the Institutional
Animal Care and Use Committee (KRIBB-AEC-11010)
in Korea Research Institute of Bioscience and Biotech-
nology (KRIBB).

RNA isolation and mRNA subtraction
Total RNA was extracted from 16 different crab-eating
monkey tissues using the Trizol reagent (Invitrogen),
and total RNAs were validated by RNA electrophoresis
in agarose gels containing formaldehyde. Two distinct
ribosomal RNA bands (28 S and 18 S) were confirmed.
Pure mRNA was subtracted using the PolyA Tract
mRNA isolation system (Promega).

cDNA synthesis and poly(A) tail removal
First strand cDNA synthesis was conducted using the
RevertAid H Minus First Strand cDNA Synthesis Kit
(Fermentas) using oligo(dT) primers optimized for the
454 sequencing procedures (5′- GAGCTAGTTCTG
GAG(T)16VN-3′). Second strand cDNA was synthesized
by DNA pol I and RNase H (Fermentas), and the poly
(A) tail was removed using a specific enzyme (Gsul).
Library preparation for GS FLX sequencing
The first step of library preparation involves the frag-
mentation of the high molecular weight DNA sample
into smaller molecular species appropriate for sequen-
cing using GS FLX Titanium chemistry. This fragmenta-
tion is performed by nebulization, which shears double-
stranded DNA into fragments ranging from about 400
to 1000 base pairs. This population of smaller-sized
DNA species, generated from a single DNA sample, is
referred to as a “library.” Approximately 3–5 μg cDNA
was used to generate the DNA library for Genome Se-
quencer FLX Titanium (Roche, Mannheim, GE). The
fragment ends were polished (blunted), and 2 short
adapters were ligated onto both ends. The adapters pro-
vide priming sequences for both amplification and se-
quencing of the sample library fragments, as well as the
“sequencing key”, a short sequence of 4 nucleotides used
by the system software for base calling and, following re-
pair of any nicks in the double-stranded library, release
of the unbound strand of each fragment (with 5′-
Adaptor A). Finally the quality of the library of single-
stranded template DNA fragments (sst DNA library) was
assessed using a 2100 BioAnalyzer (Agilent, Waldbronn,
GE), and the library was quantified, including a func-
tional quantification to determine the optimal amount of
the library to use as input for emulsion-based clonal
amplification.

Emulsion PCR
Single “effective” copies of template species from the
DNA library to be sequenced were hybridized to DNA
Capture Beads. The immobilized library was then resus-
pended in the amplification solution, and the mixture
was emulsified, followed by PCR amplification. After
amplification, the DNA-carrying beads were recovered
from the emulsion and enriched. The second strands of
the amplification products were melted away as part of
the enrichment process, leaving the amplified single-
stranded DNA library bound to the beads. The sequen-
cing primer was then annealed to the immobilized amp-
lified DNA templates.

Sequencing
After amplification, the DNA-carrying beads were set
into the wells of five and a half PicoTiterPlate device
(PTP) such that each well contained a single DNA bead.
The loaded PTP was then inserted into the Genome Se-
quencer FLX instrument, and sequencing reagents were
sequentially flowed over the plate. Information from all
the wells of the PTP is captured simultaneously by a
camera and can be processed in real time by the
onboard computer. The sequencing procedure was con-
ducted on a Genome Sequencer FLX Titanium instru-
ment (Roche, Mannheim, GE) at Macrogen in Korea.
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Sequence assembly and gene annotation
A total of 4,058,656 raw reads obtained from the 16 li-
braries were used for our analysis. For rapid assembly
and exact gene annotation, all raw reads into were
divided into 2 groups, clustered reads and unclustered
reads, by the clustering method of the BLASTN pro-
gram with human reference RNA (Additional file 2:
Figure S2). This method generated 3,240,337 reads clus-
tered with human reference RNA and 818,319 unclus-
tered reads. Each group was analyzed by GS de novo
Assembler v.2.5.3 (Newbler, 454 Life Science). The clus-
tered group generated 38,750 assembled contigs, 31,786
isotigs, and 24,884 isogroups and 99,283 unassembled
singletons. However, 132,121 reads were discarded due
to short, chimeric, or repetitive sequences. The unclus-
tered group generated 16,108 assembled contigs 12,672
isotigs, and 10,640 isogroups and 248,877 unassembled
singletons. In addition, 57,613 reads were also discarded.
Two different gene annotation strategies were con-

ducted in the clustered and unclustered groups. In the
clustered group, initial gene information obtained by
clustering with human reference RNA was used for the
gene annotation. However, in the case of the unclus-
tered group and unassembled singleton sequences, the
BLASTX program was used with the nr70 database.
The CD-HIT program (http://www.bioinformatics.org/
cd-hit/) was used to build the nr70 database. If gene an-
notation was conducted, Gene Ontology (GO) searching
(http://www.geneontology.org/) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis (http://www.
genome.jp/kegg/) were performed.
KEGG pathway analyses
By overlaying expression data onto biological pathways,
established and novel relationships among genes can be
explored. These pathways give key information about the
functional and metabolic organization of cellular and bio-
logical systems within organisms. Therefore, putative crab-
eating macaque genes incorporate KEGG pathway infor-
mation. The pathway analysis pipeline extracts EC num-
bers from the descriptions of UniProt results, and these EC
numbers are mapped with KEGG pathway information.
Coverage calculation
Using the annotated gene information, our sequences
were compared with human unigene and reference
sequences. Our sequences were analyzed using the
BLASTN program with an expectation value of 1e-20. If
one match occurred between human and crab-eating ma-
caque sequences, the one match was interpreted as a cov-
ered result. Additionally, Online Mendelian Inheritance in
Man (OMIM) gene sets were applied for disease-related
gene research (http://www.ncbi.nlm.nih.gov/omim).
Differentially expressed gene (DEG) analysis
Sixteen different tissue samples were collected and
sequenced. Thus, over 4 million reads harboring different
tissue information were available for the DEG analysis.
DEG information was extracted by counting the read in-
formation. Exclusively tissue-specific contigs (only allowed
100%) that contained a minimum of 100 reads were
selected. For the experimental validation, 81 randomly
selected DEGs were validated.

Reverse transcriptase polymerase chain reaction (RT-PCR)
amplification and sequencing procedure
Locus-specific primer pairs were used for the RT-PCR
amplification of 81 DEGs (Additional file 1: Table S23).
If possible, 2 distant exons were used for constructing
primer pairs to reduce non-specific PCR bands resulting
from genomic contamination. In the validation steps, 15
tissues samples are used for the experimental efficiency
(We removed the ovary samples). M-MLV reverse tran-
scriptase with an annealing temperature of 42°C was
used for the reverse transcription reaction with an
RNase inhibitor (Promega). Control PCR amplification
was also performed on pure mRNA samples that were
not subjected to reverse transcription, indicating that
the prepared mRNA samples did not contain genomic
DNA. RT-PCRs were carried out for 30 cycles at specific
annealing temperatures. To validate amplified products,
RT-PCR products were separated on a 1.5% agarose gel,
purified using a gel extraction kit (GeneAll), and cloned
into the pGEM-T-easy vector (Promega). The cloned
DNA was isolated using a plasmid DNA mini-prep kit
(GeneAll). Sequencing was conducted by a commercial
sequencing company (Macrogen).

Transposable element (TE) analysis
The TEs included in the human reference RNAs,
chimpanzee reference RNAs, rhesus reference RNAs,
marmoset reference RNAs, and clustered assembly con-
tigs were analyzed for comparative TE analysis. The TEs
were identified by the RepeatMasker program (http://
repeatmasker.genome.washington.edu) with various re-
peat sequences from the Repbase Update.

Alternative splicing (AS) analysis
For the AS analysis, the Newbler2.5 assembly result files
(454AllContig.fna, 454Isotigs.fna, and 454IsotigsLayout.
txt) were modified. Among these result files, the 454-
IsotigsLayour.txt file demonstrated the relationships
between isotigs and contigs in specific isogroups. There-
fore, the alternatively spliced isogroup information was
collected. Among the AS data, only clustered and anno-
tated isogroups were analyzed for the comparative ana-
lysis with humans. However, in the case of crab-eating
macaque, detailed phenomena could not be investigated

http://www.bioinformatics.org/cd-hit/
http://www.bioinformatics.org/cd-hit/
http://www.geneontology.org/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.ncbi.nlm.nih.gov/omim
http://repeatmasker.genome.washington.edu
http://repeatmasker.genome.washington.edu
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because no crab-eating macaque genome sequences are
available. For a detailed analysis, the AS data was ana-
lyzed manually. The 5′ and 3′ alternative exon and in-
ternal exon units that could occur by exon creation or
loss (Additional file 1: Table S22) and the TE-related AS
were counted. In the manual analysis, specific exons har-
boring a TE in the marginal regions of exons were desig-
nated as TE-related AS (Additional file 2: Figure S3).

Additional files

Additional file 1: Table S1. The information of GS FLX sequencing
procedure. Table S2. The summary of sequencing procedure in 16
different tissues. Table S3. The summary of Crab-eating Macaques 454
sequencing. Table S4. Coverage calculation of crab-eating macaque
through human unigene and human reference gene. Table S5.
Calculation of hitting query of crab-eating macaque with human unigene
and human reference. Table S6. The list of Gens used for OMIM analysis.
Table S7. The list of OMIM genes covered by crab-eating macaque.
Table S8. The list of DEG candidate in Brain. Table S9. The list of DEG
candidate in Cecum. Table S10. The list of DEG candidate in Heart.
Table S11. The list of DEG candidate in Kidney. Table S12. The list of
DEG candidate in Liver. Table S13. The list of DEG candidate in Lung.
Table S14. The list of DEG candidate in Pancreas. Table S15. The list of
DEG candidate in Prostate. Table S16. The list of DEG candidate in
Salivary gland. Table S17. The list of DEG candidate in Skeletal muscle.
Table S18. The list of DEG candidate in Small intestine. Table S19. The
list of DEG candidate in Stomach. Table S20. The list of DEG candidate
in Testis. Table S21. Summary of alternative splicing events in crab-
eating macaque. Table S22. Manually analyzed results of alternative
splicing in crab-eating macaque. Table S23. Primer infromation for DEG
validation.

Additional file 2: Figure S1. Flowchart for bioinformatic analysis.
Figure S2. Length distribution of crab-eating macaque isotigs. For the
analysis of length distribution, clustered and unclustered isotigs were
analyzed. Figure S3. Manual selection method for TE-derived AS events.
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