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Abstract

Background: Post-transcriptional control of gene expression is mostly conducted by specific elements in
untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well
characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also
may have major functional implications for long noncoding RNAs (IncRNAs). Recent transcriptional data has indicated
the importance of INcRNAs in brain development and function. However, no methodical efforts to investigate this have
been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts.

Results: By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen
Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted
structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of
these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that

mMRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology
categories. In addition, after manual examination we observe agreement between RNA binding protein interaction
sites near the 3" UTR structures and correlated expression patterns.

Conclusions: Our results show a potential use for RNA structures in expressed coding as well as noncoding
transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling
pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in
transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function.

Background

In neurons, RNA molecules often have to travel long
distances between transcriptional origin (nucleus) and
functional destination (axon, synapses, dendrites). Den-
drites contain thousands of postsynaptic sites and long-
lasting forms of activity-dependent synaptic modifications
(memory storage) are believed to require local protein
synthesis. Local protein translation implies that mRNAs
are transported from the nucleus and localized to den-
drites and synapses [1,2]. It has been speculated that
RNA secondary structures in mRNA untranslated regions
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(UTRs) are involved in these processes [3,4]. In addition,
numerous noncoding RNAs (ncRNAs) are expressed in
brain [5,6] and mounting evidence indicates important
contributions of ncRNAs in brain functions such as mem-
ory formation and maintenance [7,8], as well as a host
of other functions in mammalian cells. This study fur-
ther explores these connections by combining the large
scale in situ hybridization data of the Allen Mouse Brain
Atlas (http://mouse.brain-map.org) [9] with in silico pre-
dictions of conserved RNA secondary structure, reveal-
ing extensive enrichment of such structures in the adult
mouse brain transcriptome.

Post-transcriptional regulation of RNA splicing, editing,
transport, stability, localization and translation through
UTR signals plays an important role in controlling gene
expression. Important examples of stable RNA secondary
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structures are known in both 5 UTRs [10] and 3’
UTRs. For instance, the 84-nucleotide (nt) long structure-
anchored repression element (CAESAR) in CTGF [4] is
highly conserved in structure but not in sequence, and
is suspected to inhibit translation and affect mRNA sta-
bility [11]. Other structural mRNA elements, such as the
selenocysteine insertion sequence (SECIS) element and
nanos 3° UTR TCE, are targets of RNA binding pro-
teins. Stem-loop structures in untranslated regions are
sometimes critical for proper mRNA localization [12-
14], such as translocation of the MAPT mRNA along
axonal microtubules [15] and ASHI mRNA to the corti-
cal actin cytoskeleton [16]. RNA binding proteins might
localize the RABIA mRNA to specific cytoplasmic regions
through recognition of its highly conserved 3’ UTR
sequence and structure, so that translation would occur
close to the location of the respective protein regulat-
ing intracellular vesicle transport [17]. A predicted stable
RNA structure overlaps the RNA localization region in
the 3’ UTR of the mRNA encoding myelin basic protein
MBP. The structure (but not the sequence) is conserved
in human, mouse and rat [18]. The highest affinity site of
the RNA-binding protein QkI is located within the RNA
localization region of MBP, suggesting a possible role for
QkI in restricting MBP mRNA to the myelin membrane
[19]. In a very distinct manner, many 3’ UTRs in mouse
are reported to be expressed separately from their mRNAs
in a developmentally regulated manner [20], and some
reported regulatory mutations in 3° UTRs do not appear
to act in cis to regulate the expression of the associated
mRNA. Some structured 3’ UTRs may, thus, act in trans
as ncRNAs [21].

Long noncoding RNAs (IncRNAs) have recently
received increased attention due to their functional diver-
sity in basic molecular and cellular biology [21-24]. In
particular, they appear to be deeply entwined with cel-
lular regulatory machinery, both as targets of important
transcription factors [25], and as direct cis- and trans-
regulators of gene expression through interactions with
transcription factors or as indirect regulators through an
RNA-binding protein intermediate (transcription factor
co-regulators) [26]. Furthermore, they have demonstrated
roles in regulation of dosage compensation, imprinting,
chromatin state, and epigenetic inheritance by DNA
methylation [26]. A hallmark of many small ncRNAs is the
critical role of RNA secondary (and tertiary) structure.
RNA structure also may have major functional implica-
tions for IncRNAs as shown, e.g., for the noncoding co-
factor MEGS3 of the tumor repressor p53 [27], and the p53
regulated transcriptional repressor lincRNA-p21, which
is tethered to inRNP-K for its proper localization [28].

Several genome-scale screens for stable, conserved RNA
secondary structures have found known RNA families
and many potentially novel ncRNAs (EvVOfold [29],
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RNAz [30], cMfinder [31], FOLDALIGN [32]), albeit
with significant false discovery rates [33,34]. Classical
transfer RNAs, ribosomal RNAs, some microRNAs and
many other functional ncRNAs have a weakly conserved
sequence, and instead, have a highly conserved functional
secondary structure. Hence, comparative analyses that
focus on sequence conservation and ignore potential con-
servation of secondary structure underestimate ncRNA
prevalence. Here, we apply CMf inder to search for RNA
secondary structures. The method attempts to create
structurally optimal alignments from unaligned ortholo-
gous input sequences using an expectation-maximization
algorithm. Both thermodynamic energies and evidence
for conservation of secondary structure, e.g. presence of
compensatory mutations in putative helices, are part of
the evaluation criteria. An appropriate background model
distinguishes between significant RNA structures, e.g
putative ncRNAs, and structured background.

The key question addressed in this paper is the extent to
which RNA structures, both in noncoding transcripts and
the UTRs of protein coding transcripts, play biologically
important roles in the brain. We address this question
by analyzing transcripts expressed in the adult mouse
brain as cataloged in the Allen Mouse Brain Atlas (Atlas)
for their potential to contain RNA structures predicted
by CMf inder. There are Atlas probes for approximately
20,000 RNA transcripts in the adult mouse brain, visual-
ized at cellular resolution by in situ hybridization (ISH)
[9]. Of these transcripts, 16,900 exhibit cellular expression
above background in the adult mouse brain [9]. Expres-
sion data within the ISH images is identified and mapped
to defined regions [35]. This mapped expression data can
be used to examine global and spatial expression patterns
and to find genes with similar spatial expression profiles.
Although the majority of Atlas transcripts represent pro-
tein coding genes, Mercer et al. [36] identified well over
1,000 Atlas riboprobes as putative IncRNAs and affirmed
the expression patterns of some previously described
IncRNAs, such as Evf, Gtl2, Gomafu, and Sox2ot.

Results

Structured Allen Mouse Brain Atlas riboprobes

Table 1 shows a summary of the Allen Mouse Brain
Atlas riboprobes used in this study. For this study, we
exclusively consider probes whose expression is above
ISH background in the adult mouse brain [9]. Our main
concern is whether “structured probes’, i.e., those contain-
ing a conserved RNA secondary structure as predicted
by CMfinder, are in any other way a distinct popula-
tion compared to “unstructured probes’ i.e., those lacking
such predictions. Structured probes are further catego-
rized into (1) putative ncRNAs (or simply ncRNAs) and
(2) UTRs. A probe is classified as an ncRNA (of which
some presumably are IncRNAs) if the entire probe is
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Table 1 Structured Allen Mouse Brain Atlas riboprobes
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Only Only Overlap Overlap
Intergenic Intronic 5'UTR 3"UTR Total
Expressed structured ncRNAs 141 151
Expressed structured UTRs 817 4502 5126
Expressed Atlas probes 462 2,492 8,108 16,483

Structured Allen Mouse Brain Atlas riboprobes have RNA secondary structures predicted by CMf inder, are expressed above background in the adult mouse brain
and are mapped to the mouse genome (mma8). We subdivided structured probes into two genomic locations: (1) structured (long) noncoding RNAs (ncRNAs) have no
protein coding potential and the entire probe is intergenic or intronic, and (2) structured UTRs are probes overlapping a UTR exon annotated in UCSC or RefSeq gene
tracks with an RNA structure prediction. Total numbers of expressed Allen Mouse Brain Atlas probes (structured and non-structured) are listed. Detailed information

about probes and structures are contained in Additional file 1.

intergenic or intronic without protein coding potential; it
is classified as UTR if the probe overlaps an annotated
UTR. Probes in coding exons are not analyzed.

By considering all annotated UTRs of full-length tran-
scripts we find many additional structures, often at the
end of longer alternative UTRs [37]. However, the expres-
sion of these variants in the brain is unknown, which is
why we consider only those portions of UTRs that are
overlapped by Atlas probes. For instance, one isoform of
mouse VEGF-related factor gene (Vegfb) lacking a 3'UTR
is expressed in brain [38]. We predict a RNA structure
in one alternative 3’'UTR of Vegfb, but we annotate it as
a non-structured UTR because the Atlas probe does not
overlap the extended 3’ UTR structure.

CMfinder predicts conserved RNA structures in the
genomic context of 11,998 Atlas riboprobes of which
10,516 probes are expressed above background (see
Methods for mapping criteria). The amount of predicted
structures overlapping expressed probes is sensitive to
GC content but significantly larger in all GC bins than
expected by chance (see Additional file 2: Table S1). We
mapped the expressed structured probes to UCSC [39]

and RefSeq [40] gene tracks and obtained 5,126 probes
with predicted structures in annotated untranslated
regions (817 and 4,502 probes in 5 UTR and 3’
UTR regions, respectively). The predicted structures are
enriched at the flanks of UTRs, see Figure 1. In contrast,
4,467 expressed Atlas probes map to protein coding
genes lacking structure predictions in their UTRs. Ribo-
probes not in annotated protein-coding genes are further
examined for their protein-coding potential (see Methods
for classification criteria). Excluding probes mapping to
annotated coding exons and UTRs, we retain 141 inter-
genic and 10 intronic potential ncRNA transcripts that
have predicted conserved local RNA structures (com-
pared to 326 non-structured intergenic and intronic
probes). Several RNA structures were found in known
long ncRNAs such as Xist, Miat, Meg3 and Mirg. Almost
half (60) of the intergenic structured ncRNAs are more
than 10 kb from the closest coding gene. Known RNA
structures are annotated in nine putative ncRNA tran-
scripts (4 microRNAs, 4 snoRNAs and Xist) and 80
structured UTRs (e.g., 26 microRNAs, 19 snoRNAs, 6
SECIS, 6 Histone, and 3 IRES; see Additional file 2:
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Figure 1 Relative location of predicted UTR structures. Relative location of CMf inder predicted structures in UTRs annotated in UCSC known
genes that overlap the Allen Mouse Brain Atlas probes. Using CMf inder we predicted 1,367 structured loci (average length 76 nt) in 5" UTRs
(average length 284 nt) of 817 expressed mRNAs and 11,551 structured loci (average length 82 nt) in 3" UTRs (average length 946 nt) of 4,502
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Table S2). CMf inder predicts 27 of these annotated RNA
structures, whereas the other predictions are located up-
or downstream from known structures.

Spatial expression energy of structured transcripts

The Allen Mouse Brain Atlas has mapped the ISH expres-
sion to defined regions (see Additional file 2: Figure S1).
To identify neuroanatomical-specific patterns of struc-
tured transcripts and to possibly gain some insight into
the biological function of these transcripts, we apply
a multi-resolution hierarchical search of increasing lev-
els of granularity that starts with 11 neuroanatomical
regions (cortex, CTX; olfactory bulb, OLF; hippocam-
pus, HPF; striatum, STR; pallium, PAL; thalamus, TH;
midbrain, MB; medulla, MY; hypothalamus, HY; cere-
bellum, CB; and pons, P) in sagittal sections and ends
with three-dimensional grids of voxels each 200 micron
per side for both the sagittal and coronal plane [41].
Unless stated otherwise, by structured we refer to a pre-
dicted RNA structure. First, we compare the mean expres-
sion level (technically, “expression energy’, as defined in
[9]; see Methods) of expressed structured probes versus
expressed non-structured probes. The comparisons were
performed separately in each of the 11 neuroanatomical
regions, and for both the putative ncRNA and UTR
categories. Expression of all expressed Atlas probes was
examined as well. For this analysis, we used sagittal tis-
sue sections because sagittal data is available for all probes
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whereas fewer (approximately 4,200 probes) have data in
the coronal plane. In Figure 2, the major observations
are that, first, structured UTR probes overall have the
highest expression in the brain, and, second, struc-
tured ncRNA probes have higher expression than non-
structured ncRNA probes, but are less strongly expressed
than the average of all probes.

The significance of the observed patterns has been
tested by different statistical methods (see Methods)
with similar results. We addressed in which of the 11
neuroanatomical regions the mean expression energy of
structured putative ncRNA and structured UTR probes is
significantly different from expressed probes, intergenic
and intronic, and UTR probes. The most striking result
is that in all 11 neuroanatomical regions the 5,126 struc-
tured UTR probes have significantly higher expression
than 4,467 non-structured UTR probes (see Additional
file 2: Figure S2) as well as all expressed probes. The
same applies for the finer level of granularity where
the 11 neuroanatomical regions are further subdivided
into 115 regions. On the other hand, there is significant
expression enrichment of structured putative ncRNAs
to non-structured ncRNAs only in cerebellum (using
rmanovab).

Based on these observations we conducted further
analyses to gain insight towards the possible causes of
the enrichment of transcripts with structured UTRs.
We studied significantly (p-value<0.001) enriched gene

15
1

10
1

expression energy

Expressed ABA probes:
16,483 all

O

O 4,467 non-structured UTRs

[} 338 non-structured ncRNAs
m
]

5,126 structured UTRs
163 structured ncRNAs

thalidull

T T T T T T T T T T T
CTX OLF HPF STR PAL TH MB MY HY cB P

11 neuroanatomical regions

Figure 2 Expression energy distribution of the Allen Mouse Brain Atlas probes. Comparison of expression energy distribution of all expressed
Allen Mouse Brain Atlas probes, structured and non-structured ncRNA and UTR probes in 11 neuroanatomical regions. Secondary RNA structures are
predicted by CMf inder. The box plot shows 1.5 interquartile range (dotted line), lower and upper quartile (box), and median (thick black line in
the box). Brain region abbreviations: cortex, CTX; olfactory bulb, OLF; hippocampus, HPF; striatum, STR; pallium, PAL; thalamus, TH; midbrain, MB;
medulla, MY; hypothalamus, HY; cerebellum, CB; pons, P.
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ontology (GO) terms [42] of UTR probes using func-
tional annotation by DAVID [43]. We found support for
function enrichment of binding (p=5E-40), localization
(p=4E-18) and transport (p=4E-16) in structured UTR
probes. Several GO terms for protein binding (p=1E-43)
and RNA binding (p=7E-7) are significant for probes with
structured UTRs (see Additional file 3), but none for non-
structured UTRs (see Additional file 4). In addition, we
found several GO terms which connect structured UTR
probes to intracellular signaling pathways and suggest a
directed RNA transport between nucleus and synapses
or dendrites, e.g. the cellular components cytoplasm
(p=2E-35), nucleus (p=6E-15) and synapse (p=7E-6) and
the molecular functions intracellular signaling cascade
(p=2E-18), protein transport (p=4E-11), protein localiza-
tion (p=1E-11), vesicle-mediated transport (p=1E-11) and
cytoskeletal protein binding (p=1E-6). For non-structured
UTR probes there are four times less enriched GO terms,
in general with lower significance than for structured
UTR probes. Only the GO terms cytoplasm (p=3E-22)
and transport (p=5E-4) are enriched for non-structured
UTRs and are related to signaling function. Localiza-
tion can imply different functional impact, for example
direct involvement in transport, but it can also imply
translational regulation at a specific subcellular location.
Given the anatomy of the neurons where presumably
many transcripts are located far away from the nucleus the
observation of enriched expression of UTR regions with
(predicted) RNA structures is consistent with this.

In embryonic cells it is known that the majority of local-
ized RNAs are targeted to particular cytoplasmic regions
by RNA elements and in mRNAs these are almost always
in the 3> UTR [44]. In brain cells our data agrees with
these earlier observations in the way that 5 UTR struc-
tures alone are not correlated to the binding, transporting
and localization function of their protein products. We
also mapped Atlas probes overlapping UTRs to a list of
76 active proteins in synapses [45]. A significantly greater
number of their mRNAs has a structured UTR (Fisher’s
exact test p-value = 0.0023; see Additional file 2) which
supports a role for the UTR structures as functional RNA
elements. Another supporting observation for localized
RNAs with structured RNA elements is their higher spa-
tial divergence in the brain described by larger deviation of
expression in 115 neuroanatomical regions (see Figure 3).
Alternatively, spliced UTR transcripts may act indepen-
dently from their host mRNA. However, this case cannot
be verified without further examination of the probe cap-
tured transcripts.

The expression data also shows slightly higher expres-
sion of structured putative ncRNA transcripts than non-
structured ncRNAs in many brain domains as indicated in
Figure 2 and Additional file 2: Figure S3. Mean expression
of the 151 structured ncRNA candidates is larger in 83
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Figure 3 Spatial expression divergence. Mean normal distribution
of expression energy of structured and non-structured UTR probes in
115 brain regions. The larger standard deviation (horizontal lines) of
transcripts with structured UTRs shows their higher spatial expression
divergence in the brain.

out of 115 brain regions. Enrichment is significant in
15 regions (including cerebellum) compared to 3 regions
with significantly enriched non-structured ncRNA probes
using a more robust measure of location assuming depen-
dency between multiple ISH measurements (rmanovab;
see Methods).

It is essential to determine whether the presence of
enriched transcripts is due to slower degradation caused
by RNA structures [46]. The delay of degradation of tran-
scripts folding in conserved RNA structures may support
an increased half life of brain relevant RNAs. Proteins are
actively synthesized in neuronal synapses despite the long
distances between nucleus and synapses. For this purpose
translational control of gene activity appears to be more
efficient than transcriptional control [47]. Conservation of
different structures in different transcripts suggests that
they are involved in a rich variety of post-transcriptional
regulatory interactions, e.g. through altered transcrip-
tional stability. Combined with the previously described
GO analyses, this suggest that proteins involved in
molecule mobility are produced in larger numbers, and
mRNAs and ncRNAs are transported to their intended
cell destination before carrying out their function.

Protein binding of structured UTRs

As an initial step towards assigning functional informa-
tion we searched for proteins that may bind to predicted
structures in UTR regions. RNA binding proteins are
trans-acting factors that function, e.g., in RNA localiza-
tion. For instance, the mRNA of the neurotrophic tyro-
sine kinase TrkB receptor is transported to dendrites
and translated in response to neural activity. The mouse
TrkB 5 UTR contains one conserved and one mouse-
specific single internal ribosomal entry site (IRES) whose
RNA secondary structures and sequence-specific motifs
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are proposed to be integral to IRES-dependent transla-
tion [48]. In agreement with this, the CMf inder predic-
tion finds the conserved IRES structure in 9 mammals,
whereas, as expected, the unconserved IRES structure was
not predicted. The CMfinder structure consists of two
stems of which the 3’ stem is the same as previously shown
in human [48]. Activity of the conserved IRES is enhanced
in the presence of the polypyrimidine tract binding pro-
tein PTBI [49]. In the ISH data correlated expression of
TrkB and PTBI can be seen, even though at a low level,
in the olfactory bulb (p = 0.49) and medulla (p = 0.52)
using the spatial homology search tool NeuroBlast [41]
(see Methods).

In comparison to non-structured UTRs, a correlation-
based search for similar expression pairs (using
NeuroBlast) results in slightly more correlated
expressed pairs between transcripts coding for RNA
binding proteins and transcripts with structured UTRs.
To identify spatial and brain-wide correlations, we used
Pearson’s correlation coefficient greater than a threshold
of pr = 0.9 and pr = 0.85, respectively (see Methods for
the selection criteria of p7’s and spatial expression). We
identified spatial correlation between 41 RNA binding
proteins annotated in RBPDB [50] and 66 structured UTR
transcripts mostly in thalamus, pallium and hippocampus
(see Additional file 2: Table S3), as well as brain-wide cor-
related expression between 6 RNA binding proteins and
12 structured UTR probes (see Additional file 2: Table
S4). We also searched for potential interaction sites of
RNA binding proteins around UTR structures which are
discussed below.

Correlated expression between structured transcripts
By examining correlated expression patterns, we can
hypothesize new functions for previously uncharacterized
structured transcripts or identify potential interacting
RNA molecules as well as RNA-protein interactions due
to localized translation as described above. The follow-
ing CMfinder prediction of an annotated UTR element
exemplifies connectivity of functional related molecules.
We predict a widely conserved (in 16 organisms from
human to zebrafish) 25 nt stem-loop in the 3’ UTR of rat
brain-derived neurotrophin factor BDNF. This stem-loop
partly overlaps the loop and 5’ end of the annotated core
region of an extended stem-loop previously predicted in
the full-length UTR structure (by RNAfold) [51]. The 3’
UTR structure of BDNF provides a scaffold for interaction
of various RNA binding proteins, polyadenylation factors
and miRNAs in response to Ca’* signal (neuron activ-
ity). The interaction results in Ca?t signal-dependent
stabilization of mRNAs in neurons [51].

Before studying gene pairs of correlated expression
we look for groups of transcripts with structured UTRs
with similar expression patterns in 115 brain regions.
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High quality probes with coronal data (165 probes with
structures in 5" UTRs, 1,188 probes in 3’ UTRs and 66
probes in both UTRs; see Methods for selection crite-
ria) are clustered in modules of correlated expression [52].
Most structured UTR probes have correlated expression
patterns over the entire brain with the strongest signals
in the isocortex (turquoise bar in Figure 4) and motor-
related areas in the brain stem (blue bar). The strongest
spatial pattern occurs in epithalamus (grey), followed by
cerebellum (red), striatum (brown) and midbrain (green).

NeuroBlast is used to study correlated expression
of structured Atlas probes in the entire brain. Start-
ing with high quality probes we found 78 structured
UTR transcripts with strong brain-wide expression
involved in 352 brain-wide correlation pairs (threshold
pr = 0.85; see Additional file 2: Figure S4 for correla-
tion network). Strong spatial activity is obtained for 264
structured UTR probes involved in 1,898 local correla-
tion pairs (pr = 0.9). Many transcripts have correlated
expression to only a small number of other transcripts
(see Additional file 2: Figure S5). One such example
is the Zfp365 zinc finger protein which is brain-wide
correlated expressed to 6530418L21Rik (p = 0.86),
the signal transduction protein Chnl (p = 0.87) and
A230097P14Rik* (p = 0.86), whose mRNAs have
highly conserved 3 UTR structures. Representative
ISH images of some correlated probes are shown in
Figure 5.

Sagittal image data was included for correlation pair
analysis of ncRNAs. Of 477 putative ncRNAs, 9 show
strong brain-wide correlated expression in 33 correlation
pairs (o7 = 0.8) including 4 structured ncRNA candidates
(mCG145872, A230057G18Rik, TC1462951 and Raphl;
see Additional file 2: Table S6 for a list of all correlated
pairs). Most of these transcripts are involved in small
cliques of correlated expression, see Figure 6. Additional
file 2: Figure S6 shows representative ISH images of the
non-coding myocardial infarction associated transcript
A230057G18Rik (Miat) and its correlated expressed tran-
scripts. More often ncRNA correlated expression appears
in restricted brain domains rather than brain-wide. Mostly
small cliques of correlated expressed transcripts are found
for 134 ncRNAs (326 correlation pairs) including 33 struc-
tured ncRNA candidates involved in 84 correlation pairs
(pr = 0.9; see Additional file 2: Table S7 and Figure S7).
Spatial correlation patterns also exist for known microR-
NAs and snoRNAs targeted by intergenic riboprobes. For
instance, mir-101a, which is encompassed by AK021368
(E130102H24Rik), has correlated expression in hindbrain
(Emgl) and pons, mir-154 and mir-410 which are encom-
passed by Mirg are expressed brain-wide with regional
covariance in pons (Mtchl) and hippocampus (Mrpli3),
and the ACA17 snoRNA hosting transcript mCG1030139
is correlated to Mtnr1b in the thalamus.
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Figure 4 Expression profile clusters of structured UTR probes. Hierarchical clustering of coronal expression energy profilesin 115
neuroanatomical regions of quality selected images of 165 Allen Mouse Brain Atlas probes with CMf inder predicted 5" UTR structures, 1,188
probes with predicted 3" UTR structures and 66 probes with predicted structures in both UTRs. Probes within an individual module have similar
expression patterns. The brain area(s) with the strongest correlated expression pattern(s) for each of the 8 modules are: isocortex (turquoise
module), dorsal thalamus (yellow), epithalamus (gray), motor-related pons and midbrain in the brain stem (blue), striatum (brown), cerebellum (red),
and midbrain (green and black). Probes in each module have additional (weaker) correlated expression pattern(s) in other brain areas and the
turquoise, blue and black module represents probes with correlated expression patterns in the entire brain. The color coding of genomic locations
(Transcript annotation) shows transcripts with a 5" UTR structure as blue bars, transcript with a 3" UTR structure as red bars and transcripts with

Thermodynamic stable RNA-RNA interactions

Many known ncRNAs exhibit their functionality through
binding of RNA target sequences, such as microRNAs
bind mRNAs, snoRNAs bind ribosomal and small nuclear
RNAs, and certain IncRNAs may bind microRNAs [53]
to regulate their activity or guide RNA editing. Potential
RNA-RNA interactions between structured transcripts
and correlated expressed RNAs were searched by scan-
ning all putative ncRNAs and UTRs of Atlas transcripts
for statistically significant intermolecular RNA binding
sites. By combining RNApl1fold [54] and RNAplex [55]
we calculate the minimum free energy (MFE) of putative
interaction sites in the real data, and the same strategy was
used to create background distributions on dinucleotide
shuffled data for p-value calculation (see Methods).

For 6 putative ncRNAs with local and 2 putative
ncRNAs with brain-wide correlated expression we found
putative interaction sites to 3’ or 5° UTR of the corre-
lated mRNAs, however, of relatively large p-values (see

Additional file 2: Table S8). For instance, a non-conserved
interaction site is predicted between the putative ncRNA
TC1462951 and the 3* UTR of Kcnbl (see Additional
file 2: Figure S8 for ISH image and expression mask).
The putative ncRNA LOC#433503 may interact with a
conserved region in the 3" UTR of Gpx3, only 100 nt
upstream of the common stem-loop structure SECIS (see
Additional file 2: Figure S9). In addition, around 600
significant (p-value<1le-05) interaction sites with a MFE
smaller than -40 kcal/mol are predicted by RNAplfold
and RNAplex between structured putative ncRNAs and,
e.g, UTRs of mRNAs coding for RNA binding proteins
(Rbpms and Samdl14; see Additional file 5), but the ISH
data does not reveal correlated expression.

Discussion and Conclusions

Microarray studies have shown that at least 50% of assayed
transcripts are expressed in the brain [56], with up to
80% of transcripts shown to be expressed by ISH [9].
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Figure 5 In situ hybridization of an RNA binding protein and
correlated expressed probes. A representative coronal section
showing in situ hybridization data from Zfp365, Lancl1, Chn1, and
A230097P14Rik*. All probes show strong widespread expression
throughout the brain.

In order to gain a better understanding of transcripts
in the brain that may be contributing to brain function,
we examined which transcripts have an RNA structure.
We observed that in silico predicted RNA structures are
enriched both in coding (UTR regions) as well as noncod-
ing transcripts in almost all regions of the adult mouse
brain. The simplest interpretation of the data is that
the Atlas probes showing higher expression are enriched
for cMfinder predicted RNA structures. Through the
integration of mouse brain expression data and secondary
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RNA structure predictions, we found that transcripts with
such predictions in their UTRs, those that are enriched in
the 3’ UTR adjacent to the ORF, have the highest expres-
sion throughout the brain. Many of these mRNAs as well
as their protein products may act as signaling molecules
whereas the UTR structures serve as binding motifs for
other RNAs and proteins involved in intracellular signal-
ing pathways. This hypothesis is supported by (i) enriched
gene ontology terms binding, transport and localization,
(ii) correlated expression patterns between mRNAs with
structured UTRs and RNA binding proteins, and (iii) a
larger expression diversity of transcripts with structured
UTRs. UTR structures as signal for motor-driven trans-
port and translational repression through RNA binding
proteins are especially attractive in neurons where the
transport of information stored in ribonucleic sequences
from the nucleus through long axons to the synapses is an
important component of neuronal functionality [47].

We investigated this hypothesis further by searching
for potential protein binding motifs around (predicted)
UTR structures to 72 RNA binding proteins annotated
in RBPDB [50] (see Methods and Additional file 2).
The majority (90%) of the UTR structures has at least
one predicted binding motif in its neighborhood (see
Additional file 2: Table S5). These motifs can be bound by
21 proteins. Only 9 proteins, however, have significantly
more predicted targets than expected by chance, and half
of the binding proteins are involved in splice site regula-
tion. The analysis indicates that some interesting binding
motifs can be found, such as neural-specific Elavi2,
cytokine’s degrading Zfp36, and mRNA trafficking Khsrp.
Zfp36 binds AU-rich elements (ARE) in the 3" UTR of

Figure 6 Network of brain-wide correlated expression patterns containing ncRNAs. Correlation network of 9 putative ncRNA transcripts with
correlated expression over the entire brain. Red nodes represent transcripts without RNA secondary structure predictions and yellow nodes with
structure predictions. These 9 transcripts are involved in 33 correlation pairs (edges, p > 0.8).

A230057G18Rik

@ 4833444G19Rik [Ror)
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some cytokine mRNAs and promotes their degradation.
Intriguingly, an AU-rich region (AU content of 85% over
a length of 41 nt) starts at the 3’ end of the predicted UTR
structure of 6530418L21Rik (see Additional file 2: Figure
$10) and its expression is highly correlated with that of
another zinc finger protein (Zfp365) and Lancll, an RNA
binding protein involved in immune surveillance of the
brain [57] (see Figure 5). Assuming that 6530418L21Rik
works as a signaling molecule, its transport function may
be deactivated through the binding of Zfp36 close to its 3’
UTR structure. However, here a large scale investigation
in RNA-protein binding is still limited due to the low
information content of binding motifs described by short
sequence-based position weight matrices (PWMs).

Motivated by the GO analysis we also considered
the hypothesis that structured RNAs in neural cells are
themselves involved in establishing intracellular signal-
ing pathways. For instance, Dienstbier et al. [3] provide
evidence that Egalitarian (EGL) and the dynein cofactor
Bicaudal D (BICD), previously known to be required for
minus-end-directed mRNA transport, mediate linkage
of various mRNAs to the dynein motor in Drosophila
melanogaster. Here, we show that EGL nine homolog 1
and BICD have predicted UTR structures, BICD is asso-
ciated with the GO terms intramolecular, cytoplasm,
localization, transport and binding and EGL with the
GO term binding. Proteins, such as EGL, BICD and
cytoskeletal protein filaments, are needed to establish
intracellular pathways for directed cytoplasmic RNA
transport towards synapses and dendrites. For signal
propagation in the opposite direction back to the nucleus,
mRNAs coding for these proteins have to be transported
first and, thus, need cis-acting RNA elements too. The
hypothesized directed RNA transport is illustrated in
Additional file 2: Figure S14.

We also looked for predicted RNA structures in all
UCSC and RefSeq annotated UTRs of protein coding
genes overlapped by Atlas probes. We found 9,378 of
these genes with RNA structure predictions in their UTRs
and 5,576 without UTR structures. Of the 4,467 Atlas
probes that overlap unstructured UTRs, 1,246 probes
have a structure elsewhere in (at least one variant of)
the UTR. It is unknown whether these structures are
present in brain. Assuming they are, i.e., reclassifying as
“structured” some of the UTR probes previously clas-
sified as “unstructured’, we see even larger differences
between the expression of structured and non-structured
UTR probes (see Additional file 2: Figure S13 com-
pared to Figure 2). Hence, we conclude that our over-
all statistics also hold for RNA structure annotation in
full-length transcripts. In addition, we showed that puta-
tive ncRNAs with locally predicted RNA structures have
significantly higher expression than non-structured inter-
genic and intronic transcripts in several brain regions.
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Positive correlated expression patterns between pairs of
transcripts are often domain-specific for putative struc-
tured ncRNAs. Most promising are 4 ncRNAs with brain-
wide correlated expression in small cliques (mCG145872,
A230057G18Rik, TC1462951, and Raphl; see Additional
file 2: Table S6), and several ncRNAs with only one
spatially correlated expressed transcript. We investigated
conditions where RNA structure has a function, such
as RNA-RNA interactions between correlated expressed
RNA transcripts. One of the applied methods in this
study, e.g. RNAplex, predicts the interaction site of two
sequences. However, it is known from RNA motif searches
that short sequence motifs can often appear by chance
which partly explains the large p-values for the predicted
RNA-RNA interactions. Consideration of homologous
sequences in other species and duplex folding by using
tools such as PETcofold [58,59] may help to obtain
more significant predictions.

A major uncertainty is the limited resolution of the
informatics detection of expression in the ISH images
and, thus, the NeuroBlast correlation data. Several
cells comprise a single voxel leading to interpolation
between expression information and noisy expression
energy. Sagittal images are more impacted by registra-
tion errors since only a single hemisphere is available for
registration. The majority of correlation pairs detected in
the sagittal plane failed validation by manual inspection
of the ISH images (see Methods for further informa-
tion). The largest cliques of correlated expression are often
because of process artifacts in the images or the absence
of expression (see Additional file 2: Figure S7). One desir-
able quality improvement of the correlation data is the
weighted consideration of the voxel neighborhood which
would improve the confidence in correlated expressed
pairs by sacrificing some level of detail. Furthermore, the
NeuroBlast data might also be interesting for graph
theoretical analyses on gene expression correlation net-
works. Features of these networks are relatively unknown
and the correlation coefficient threshold could be more
sophistically chosen by analyzing its influence on net-
work connectivity. The large number of 3° UTR probes
might also target ncRNAs, in addition to the untranslated
region of mRNAs. In several specific cases we observed
highly correlated brain-wide expression, e.g., between the
3" UTR probe Kcnc2 and its intronic mCG142089, and
between Dusp3 and its downstream-sense located struc-
tured probe TC1462951, but these probe pairs may have
bound the same (pre-spliced) transcript. Thus, conclu-
sions about correlated expression of adjacent or overlap-
ping transcripts are hardly possible, especially if they have
widespread expression throughout the brain.

An additional concern is that the observed correlation
between structure and expression level might be an arti-
fact of RNA degradation. All exonucleases have problems
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initiating degradation close to stable stem structures [60].
Hence, the abundant enrichment of transcripts hosting
RNA structures may be at least partly explained by their
slower degradation and, thus, higher accessibility to ribo-
probes compared to transcripts lacking RNA structure. In
fact, if the structures are involved in translational regula-
tion, reduced degradation is just as effective as increased
transcription in terms of raising steady-state transcript
levels. Thus, to determine when e.g., a bound protein pri-
marily serves to regulate or primarily serves to prevent
degradation seems hard, in particular if preventing degra-
dation is part of the regulatory mechanisms as is the case
with the iron metabolism in vertebrates [61]. However, the
observed enrichment of transcripts with structured UTRs
is not related to a particular structure, hence, it is unlikely
that a particular RNA binding protein that promotes tran-
script stability by binding to a specific structured RNA
motif is responsible for the broad expression pattern.

A final concern is that our results might be explained
by a difference in the hybridization efficiency of Atlas
probes towards structured versus unstructured tran-
scripts. Hybridization is affected by a variety of factors,
such as probe accessibility and affinity to the targeted
molecule. For short oligos, although there are some con-
texts in which hybridization may be enhanced by appro-
priate RNA structures [62], it is most often suggested
that highly structured regions in a target transcript would
reduce hybridization efficiency. Many riboswitches, for
example, down-regulate translation by sequestering the
ribosome binding site in a structure that blocks interac-
tion with the 16S rRNA [63]. This evidence suggests that
structured target molecules would generate a decreased
signal, but we observed an increase. In addition, Atlas
probes were chosen to be 400-1200 bases in length. For
such long probes that are perfectly complementary to
their targets, the fully hybridized “double helix” will be
the most energetically favorable state and seems likely to
form easily from a simple initial toe-hold/zipper exten-
sion interaction from almost any initial conformation of
the target. Thus, on balance, it does not seem likely that
riboprobe affinity to structured versus unstructured tran-
scripts explains the observed enrichment of structured
transcripts.

Overall, our results show a huge potential for RNA
structure as an abundant and active feature on both
coding and noncoding transcripts in the adult mouse
brain. Using CMfinder we predicted more than 40,000
RNA structures (mostly in intronic and 3’-untranslated
regions) in about 10,500 expressed Atlas probes in the
adult mouse brain. Even though in silico methods for
RNA structure prediction hold high false positive rates of
up to 50% [33,34] our findings still leave room for func-
tional RNA structures in the Atlas transcriptome data.
The significantly enriched expression energy of structured
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transcripts is hard to explain by chance and supports the
theme of functional RNA structures in the mouse brain.
In the future, a structure analysis remains to be carried
out on a global transcriptome data set in the adult mouse
brain because the Atlas data primarily focus on protein-
coding transcripts and has limited data on noncoding
transcripts.

Methods

Mapping and classification criteria

The Allen Mouse Brain Atlas (Atlas) probes have been
previously mapped to the mouse (mm8) genome [36].
Probe coordinates and RNA structure predictions are
mapped to UCSC [39] and RefSeq [40] gene tracks with
at least 10% overlap of probes and predictions. Inter-
genic and intronic probes are further checked for signif-
icant protein-coding potential as performed by Mercer
et al. [36]: CRITICA [64] predicts significant protein-
coding potential in the probe sequence or any tar-
geted transcript, and ORFs greater than 120 codons are
detected that comprise at least one third of the transcript
length. In addition, we applied RNAcode [65] on mm8
based UCSC multiz17way alignments of intergenic and
intronic probes to also detect shorter conserved ORFs
(p-value<0.001).

RNA structure predictions are in general unclear about
which strand actually contains the structure [34]. There-
fore, strand predictions of RNA structures were not used.
We assume that a prediction on one strand yields a candi-
date on both strands. We mapped CMfinder structures
to Atlas probes if the structure overlaps at least 1nt of an
intergenic probe or if the structure overlaps at least 1nt of
a UTR exon, coding exon, or intron that was mapped to
the Atlas probe. We used this rather conservative proce-
dure instead of mapping to putative respective transcripts
of the probes to avoid counting splicing variants with pre-
dicted RNA structures. This procedure will miss some
structured UTRs, however, our statistical conclusions still
hold for the investigated subset of UTR structures.

Known RNA structures

The Allen Mouse Brain Atlas probes are annotated as
known structured RNAs if they overlap at least 10% of
a mouse microRNA in miRBase v10.0 [66] or a human
track in miRBase, snoRNABase [67], Rfam 9.1 [68],
ncRNA.org or Jones’ and Eddy’s ncRNA list [69]. We
used CMfinder generated alignments and chained blastz
alignments (liftOver tool) to map the human tracks to its
mouse homologs.

Allen Mouse Brain Atlas technical information

The expression energy quantifies the overall expression at
a given voxel. It is calculated as the product of expression
level and density of cells expressed in that voxel [41].
All riboprobes have sagittal expression data and a subset
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of riboprobes have both sagittal and coronal expres-
sion data. Informatics processing of the expression data
from the sagittal sectioning plane is, however, effected
by the data only containing one hemisphere (coronal
data has two hemispheres), various starting and ending
positions of the tissue sections processed for an indi-
vidual riboprobe, and minor variability in the section
cutting angle. In contrast, coronal data typically reg-
isters better as the symmetry of the section helps to
lock the other two dimensions of the 3D grid together.
To increase the accuracy of expression profiles and to
meet quality control metrics, we created a high qual-
ity dataset that includes 1,525 structured UTR probes
from Table 1 with coronal image series minus 125 coronal
images series having manual detected processing artifacts
(such as upside down images), widespread expression or
missing image data due to failure of individual tissue
sections.

Robust statistics

Significant spatial expression patterns are found by two
sample location t-tests of the null hypothesis that the
expression energy means of two sets of Atlas probes are
equal. Errors associated with each ISH measurement are
not totally independent from each other, thus, the nor-
mal distribution assumption does not hold. We apply
bootstrap procedures to estimate the unknown distribu-
tion of expression energy in neuroanatomical regions.
The percentile-t bootstrap p-values differ from ordinary
percentile p-values in that they are based on bootstrap
approximations of the distribution of the studentized esti-
mator rather than the distribution of the original esti-
mator. P-values are adjusted by the method of Benjamini
& Hochberg to control the false discovery rate and the
null hypothesis was rejected if the adjusted p-value <
0.25. As a more robust measurement of location we
also calculated adjusted p-values of 0.2% trimmed means
using the bootstrap methods rmmcp and rmanovab
[70].

NeuroBlast and Pearson’s correlation coefficient

The Atlas provides interpolated expression energy in
regular 3-dimensional lattices of cellular resolution for
each sagittal and coronal image series. The correlation of
the expression energy for each probe pair is calculated
by the spatial homology search tool NeuroBlast [41].
NeuroBlast calculates the Pearson’s correlation coef-
ficient p between two vectors of two probes that hold
the expression energies for all voxels each 200 micron
per side in a defined brain region. The cumulative fre-
quency distribution of the number of correlation pairs
over p follows typically a negative sigmoid curve (see
Additional file 2: Figure S11), thus we chose a threshold
pr close to the right flattened area of the curve for
selecting the most promising correlation pairs. Spatial
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correlations have tendential higher p’s than brain-wide
correlations due to the lower amount of compared voxels.
Hence, we chose p7 slightly higher to select spatial corre-
lations.

Spatial expression

Riboprobes with high spatial expression are defined as
probes with larger relative expression in one brain domain
compared to the entire brain:

Vd(E = 2) / Vb(E = 2) o1

Vd Vb

’

where vq is the number of voxels in one domain and vy, is
the number of voxels in the entire brain.

Protein binding sites

UTR structures and their 50 nt flanking regions are
searched for potential protein binding motifs using
RBPDB [50]. First, position weight matrices (PWMs) from
RBPDB were used together with the perl TFBS library
[71] to scan sequences for binding sites to 72 RNA
binding proteins with expressed Atlas probes (461 pro-
teins in RBPDB). Second, we sequence aligned (BLAT)
our sequences against 1,021 individual RNA sequences
from single-sequence experiments excluding consensus
(IUPAC) sequences.

Prediction of significant RNA-RNA interactions

Potential interaction sites of all ncRNAs included in the
Atlas are searched in all UTRs of Atlas transcripts anno-
tated in mouse by UCSC or RefSeq. Probabilities of local
basepairs are calculated by RNAplfold in all sequences.
These probabilities are taken as input for RNAplex for
considering sequence accessibility. RNAplex v0.2 is used
with the parameters -¢ 40 -e -10 -1 30 -z 30.
We calculate a p-score for putative interaction sites which
is the probability of obtaining a MFE S by chance greater
than the observed MFE. Therefore, we dinucleotide
shuffled 100 times all queries and targets of the top
10,000 interaction pairs and calculated their binding MFE.
Additional file 2: Figure S12 shows that the MFEs are
extreme-value distributed (evd) with a maximum around
-10 (which is used as censored cutoff for evd param-
eter estimation). Since MFE is highly dependent on
the length and GC content of the interaction site, we
describe the background distribution (A and w) for 49
combinations of the two covariates using the HMMER
package [72] and estimate a p-value of predicted RNA-
RNA interactions on the appropriate background by the
equation:
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Additional files

Additional file 1: Annotation of predicted structured probes. CSV-file
listing the features of all structured probes from Table 1 and their
cMfinder predicted RNA secondary structures.

Additional file 2: Tables and figures. This file contains lists of correlated
expressed structured riboprobes, and additional tables and figures.

Additional file 3: GO analysis of structured UTR probes. 4115 structured
UTR probes with known gene symbols are examined for GO term
enrichment.

Additional file 4: GO analysis of non-structured UTR probes. 3407
non-structured UTR probes with known gene symbols are examined for
GO term enrichment.

Additional file 5: Predicted significant RNA-RNA interactions. CSV-file
listing 585 significant (p-value<1e-05) interactions between structured
putative ncRNAs and UTRs. The interaction sites are predicted by
RNAplfoldand RNAplex to be larger than 9 nt and with a MFE smaller
than -40 kcal/mol.
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