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Abstract

Background: Functional analyses of genomic data within the context of a priori biomolecular networks can give
valuable mechanistic insights. However, such analyses are not a trivial task, owing to the complexity of biological
networks and lack of computational methods for their effective integration with experimental data.

Results: We developed a software application suite, NetWalker, as a one-stop platform featuring a number of novel
holistic (i.e. assesses the whole data distribution without requiring data cutoffs) data integration and analysis
methods for network-based comparative interpretations of genome-scale data. The central analysis components,
NetWalk and FunWalk, are novel random walk-based network analysis methods that provide unique analysis
capabilities to assess the entire data distributions together with network connectivity to prioritize molecular and
functional networks, respectively, most highlighted in the supplied data. Extensive inter-operability between the
analysis components and with external applications, including R, adds to the flexibility of data analyses. Here, we
present a detailed computational analysis of our microarray gene expression data from MCF7 cells treated with
lethal and sublethal doses of doxorubicin.

Conclusion: NetWalker, a detailed step-by-step tutorial containing the analyses presented in this paper and a
manual are available at the web site http://netwalkersuite.org.
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Background
A major goal in a priori network-based analyses of gen-
omic data (e.g. gene expression, RNAi screen) is extracting
networks of molecular relationships underlying the studied
phenotype. Several software tools have been developed for
biological network analyses and visualizations, such as
Cytoscape [1], BiologicalNetworks [2], VisANT [3], Osprey
[4] and BioLayout [5], most of which offer excellent
visualization and mapping functions. An important chal-
lenge in network-based analyses of data is integration of
experimental data with prior knowledge interactions for
the retrieval of most relevant biomolecular networks.
However, retrieval of most relevant biological networks/
pathways associated with the upper or lower end of the
data distribution is not a trivial task, mainly because mem-
bers of a biological pathway do not usually have similar
data values (e.g. gene expression change), which
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necessitates the use of various computational algorithms
for finding such networks of genes [1-3,6-9]. Almost all of
the existing network-based data analysis methods are so-
called list-based network building methods (Figure 1A).
These methods use a pre-defined gene list of interest (seed
genes) as seeds for iterative network building based on
connectivity of non-seed genes with the seed genes. Most
software tools, including commercial ones (Ingenuity
Pathway Analysis [6]), use this method. Yet others use an
enrichment analysis to score pre-defined pathways for
enrichment for the seed genes (e.g. MetaCore [10], Biolo-
gicalNetworks [2]). A similar approach is usually employed
for functional enrichment analyses. We have shown that
networks of interest obtained by list-based methods are
prone to erroneous inclusion of irrelevant network com-
ponents [7] (Figure 1). Moreover and importantly, results
of list-based analyses are restricted to one or a number of
static networks, which are not amenable for further statis-
tical analyses, are not comparable among each other and
miss potentially important information contained within
genes with sub-threshold data values [11].
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Figure 1 Comparison of A) list-based methods of network construction and B) NetWalk. In list-based network construction, interacting
genes (open nodes) are added to the network of seed nodes (red) to connect them together. This will generate a single or a number of
networks of interest. Distribution of data values of interactor nodes are random. In contrast, NetWalk transforms gene-centric data to
interaction-centric data, which can be used for standard statistical analyses (e.g. heatmap analyses) or for dynamic network construction. Data
values of nodes constructed through EF values are coherent with input values (see ref.7 for details).
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In order to provide the research community with a
software tool featuring advanced methods for a priori
network analyses, we developed NetWalker (http://net-
walkersuite.org). NetWalker architecture is designed to
enable network analyses based on holistic (i.e. no cutoff )
integration of experimental data with a priori networks
and to allow extensive interoperability between analysis
components and with external applications. NetWalker
features NetWalk [7] and FunWalk, random walk-based
analysis methods for prioritization of network interac-
tions and functional processes, respectively, based on as-
sessment of local network connectivity in conjunction
with experimental data. Unlike other tools designed for
similar purposes, NetWalk and FunWalk allow for inter-
active comparative analyses of most active networks and
functional processes, respectively, between samples. The
latter is achieved via Edge Flux and Function Tables, re-
spectively, which give flexibility to the user in querying,
analyses and visualizations of networks of most interest.
In addition, intuitive inter-operability between analysis
and visualization components in NetWalker, as well as
with external applications, including R, adds flexibility in
data analyses (see Manual in Additional file 1 for more
details). In order to demonstrate the use of analysis
functionalities in NetWalker for network-based analyses
of microarray gene expression data, we have conducted
an analysis of our in-house gene expression dataset from
doxorubicin responses of p53-positive cells.

Implementation
NetWalker is a software platform specifically designed
to allow analyses of functional genomics data within the
context of prior networks using whole-population based
scoring approaches: NetWalk and FunWalk (see below).
NetWalker features functions for data import and pro-
cessing, network integration and analysis, network
visualization, exploration and output (http://netwalker-
suite.org). NetWalker was developed in Java, using Net-
Beans 7.0 (http://www.netbeans.org). A screenshot and
general architecture of the software and the relationship
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between object types are shown in Figures 2 and 3,
respectively. A detailed manual for NetWalker is pro-
vided in the Additional file 1.
Software Architecture
In NetWalker, analysis objects are of five types, Net-
Walker Interactome Knowledgebase (NIK), DataSet,
EFTable, FunTable and Graph (Figure 3). The NIK is a
pre-compiled knowledgebase of human genes, their
functional annotations and their biomolecular interac-
tions. NIK is loaded at the application startup, and it
cannot be modified from within the application. The
next three objects (DataSet, EFTable and FunTable) are
in the form of tables, and Graph represents network
views of interest. Tables in NetWalker feature standard
functions for statistical manipulation, clustering, heat-
map coloring, advanced filtering and network plotting,
which give flexibility to the user in the analyses of re-
spective analysis tables. DataSet handles primary data-
sets, such as gene expression datasets, uploaded by the
user. NetWalk is run on selected columns of a DataSet,
Figure 2 NetWalker screenshot showing a NetView window with a co
Function Table, NetView or EF Table objects grouped into branches. The D
terms in networks or in Tables.
and generates an EFTable and a FunTable (see next).
EFTable is a table of interactions and their scores
assigned for each condition that NetWalk was run on.
FunTable is a table of functional terms and their scores
for each column that FunWalk was run on. Graphs can
be derived from any of these three tables by a simple ex-
port, or by direct query of the NIK.

NetWalk and EFTables
The main analysis engine in NetWalker is NetWalk, a
random walk-based scoring algorithm of network com-
ponents based on the assessment of the whole data dis-
tribution without requiring any data cutoffs. Briefly, first,
the experimental data is integrated with the network to
form a transition probability matrix for random walk

pij ¼ wjP
k2Niwk

ð1Þ

where pij is the transition probability from node i to
node j, wj is the experimental value for node j, and Ni is
the set of immediate downstream neighbors (undirected
lored graph. The Object Tree window shows created DataSet,
etails window shows annotation details of selected genes or functional



Figure 3 Object relations in NetWalker. DataSet is a user-uploaded dataset, which can be analyzed with NetWalk and FunWalk to produce
EFTable and FunTable, respectively. DataSet, FunTable and EFTable are handled in TableView and can be queried to create Network Graphs,
which are handled/viewed in NetView windows. Graphs can also be created by direct query of NIK, which is loaded at the application startup.
TableView offers heatmap, clustering and data table processing functions. NetView offers network view, color mapping, GeneConnector, function
analysis and AutoGroup. Data can be easily exchanged between all of these objects by drag and drop or copy/paste.
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edges are considered bidirectional) of node i. The prob-
ability (g) for each node is calculated by the left eigen-
vector of the modified transition probability matrix:

g ¼ g 1� qð ÞPð Þ þ 1P
k2nwk

q� wT ð2Þ

where q is the restart probability (we use q = 0.01). In
NetWalker, we consider interactions, rather than nodes,
so we calculate the probability of an interaction ij (eij) as

eij ¼ gipij ð3Þ
Finally, the Edge Flux (EF) score of an interaction is

calculated by the log-likelihood

eij ¼ log
eij w

eij r

� �
ð4Þ

where eij_w is the probability of interaction ij calculated
by using experimental data for w in Eqs. 1 and 2, while
eij_r is that after letting all w= 1 in Eqs. 1 and 2 (see ref.
for more detailed description). We have shown that net-
works obtained through NetWalk are more coherent
with the input data than those obtained through list-
based methods. Moreover, NetWalk results are not lim-
ited to one or more static networks, as is the case in
most other software, but is a distribution of EF values
assigned to each interaction in the network based on the
combined assessment of the local connectivity and the
corresponding data. Thereby, EF values can be subjected
to further standard statistical procedures, such as clus-
tering and heatmap views, for comparative contextual
network analyses (see Figure 4 and below). Ability to
conduct comparative analyses of networks in the form of
EF tables and heatmaps is a fundamentally unique fea-
ture in NetWalker, which allows the user to conduct
traditional data analyses (such as clustering, t-tests) at
an interactome, rather than genome, level. In NetWalker,
NetWalk run is performed from within a TableView of a
Dataset, and can be run over 1 or more selected data
columns. The results are displayed as EF Tables in a
TableView, where the interaction details and their scores
for each data column is shown. The advanced filtering
and further mathematical operations in TableView can
be used to create networks of interest or EF heatmaps
(see below).

FunWalk and Function Tables (FunTable)
Functional enrichment analyses are a standard for gen-
omic data. Function enrichment analyses using no-cutoff
approaches, exemplified in Gene Set Enrichment Ana-
lysis (GSEA), are extremely useful in generating useful
insight into the data. However, in addition to its lack of
power and other drawbacks [12], GSEA does not ac-
count for the connectivity information of genes while
calculating enrichment scores. Incorporating connectiv-
ity information into the scoring process may provide an
additional source of confidence in the relevance of the
high-scoring gene sets [13,14] (functional terms). For ex-
ample, confidence in the relevance of a gene set may be
improved if we knew that the genes within the set inter-
act at the molecular level. Although gene set analysis
methods, such as GAGE [14], use pre-defined canonical



Figure 4 Edge Flux table analysis of a microarray dataset. A) Edge Flux heatmap corresponding to interactions that have EF values> 2.25 or
> 1.70 in 10 uM–24 h and 1 uM–24 h samples, respectively. Each row in this heatmap corresponds to an interaction, and each value corresponds
to Edge Flux values generated by NetWalk. B) Plot of the network corresponding to the highlighted rows in A. Nodes are colored by their relative
expression in Log2 ratio 10 uM/average condition. Nodes are grouped by selected most enriched functional terms as calculated by Func.Table
function in the NetView window.
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pathways as gene sets in their analyses, they still do not
incorporate network connectivity information into their
analysis. On the other hand, while GOTEA implemented
in VisANT [3] incorporates connectivity information
based on network distances of genes in the set, it does
not account for experimental data. In order to obtain
network-based scores of functional terms in conjunction
with the supplied experimental data, we designed Fun-
Walk, an extension of NetWalk, which scores functional
terms for their enrichment in the experimental data
based on random walk probability scores in Eq. 3. In
FunWalk, we aim to prioritize subnetworks with
coherent functional annotations whose genes are also
over-expressed (or repressed, depending on the goal of
analysis) in a given dataset. Therefore, we consider func-
tional annotations of interactions, rather than genes,
where the set of functional terms assigned to interaction
ij is defined as

Fij ¼ Fi\ Fj ð5Þ
or the set of common terms of its interacting genes.
FunWalk is an extension of NetWalk, such that it
calculates the probability of a functional term as the cu-
mulative probability of interactions having the functional
term f:

p fð Þ ¼
X
ij2f

eij ð6Þ

where eij is as defined in equation (3). Therefore, the
final score for functional term f is the log-likelihood:

s fð Þ ¼ log
pw fð Þ
pr fð Þ

� �
ð7Þ

where pw is the probability of f based on experimental
data w, while pr is that after setting all w= 1. The score
s(f ) can be interpreted as a relative visitation probability
of interactions defined by the functional term f com-
pared to random chance due to network topology and
functional set size. Since the lower term in Eq. 7 con-
tains all the bias due to network topology (e.g. more
studied genes) and set sizes, the log-likelihood function s
is controlled for these biases.
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Since FunWalk considers functional terms of annota-
tions, rather than genes, it only considers terms that
have common annotations across molecular interactions
defined in the network. In this way, FunWalk prioritizes
subnetworks containing common functional annotations
that are also over-represented in the data. FunWalk uses
NetWalk results to score each functional term for its en-
richment in the given dataset. FunWalk results are dis-
played as Function Tables (FunTable), with each row
representing a functional term, and columns show their
scores in the given experimental conditions. Any
selected rows in a FunTable can be directly exported to
a network view in a NetView to view the network inter-
actions associated with the given functional terms.

NetView, network implementation and functions
NetView windows provide graphical view of networks of
interest. NetView contains a number of functions for
visual manipulation of the graph, such as different lay-
outs, coloring and functional analyses. For visual repre-
sentation of network graphs, we have used commercial
yFiles library for Java (http://www.yworks.com). The
yFiles library offers extensive support for nested graphs,
which are important for implementing nested grouping
various network layouts. Utilizing yFiles’ support of
nested graphs, we have implemented manual and auto-
mated grouping of network components.

NetWalker Interactome Knowledgebase (NIK)
NetWalker uses a pre-compiled knowledgebase of genes,
functional terms and biomolecular relationships and is
loaded at the application startup.
There are currently 4 different interaction types incor-

porated into the NIK. These are 1) protein-protein inter-
actions, 2) transcription factor—target interactions,
3) neighboring metabolic reactions, and 4) neighboring
interactions from Reactome.
Protein-protein interactions were obtained from HPRD

(Human protein reference database) [15], BIND (Biomo-
lecular interaction database) [16], MINT [17], BioGRID
[18] and IntAct [19]. Directed signaling interactions
were obtained from KEGG [20] and NCI Pathway Inter-
action Database (http://pid.nci.nih.gov/). Interactions
from MINT, BioGRID, IntAct and NCI were obtained
from Pathway Commons [21].
Transcription factor—target interactions were obtained

from BIND (queried as protein-dna interactions), Reactome
[22] (obtained from Pathway Commons) and NCI Pathway
Interaction Database (obtained from Pathway Commons).
Neighboring metabolic reactions are assigned to a pair

of genes if the product of the reaction catalyzed by one
gene is the reactant of the reaction catalyzed by the other.
For example, HK2 (Hexokinase II) catalyzes the reaction
Glucose + ATP < - > Glucose-6-phosphate + ADP, while
GPI (glucose phosphate isomerase) catalyzes the reaction
Glucose-6-phosphate - > Fructose-6-phosphate. Since
Glucose-6-phosphate is a product of one and the reactant
of the other, these two genes are assigned an interaction in
the network. See Figure 4B for examples of metabolic inter-
actions (orange interactions). Information on genes and
their metabolic reactions were obtained from KEGG,
Human Metabolome Database (HMDB) [23]and BiGG [24].
Neighboring reactions interactions were obtained from

Reactome.
Functional terms: Functional annotation of genes from

Gene Ontology [25] is used as functional terms for genes
in NIK. These are also loaded at the application startup
to aid in functional analyses.
The authors will be continuously updating NIK with

new interactions from the underlying databases, with
new interactions from additional sources and with add-
itional functional annotations of genes. Updated NIK
files will be provided at the web site for download.

ID mapping
Datasets are imported into NetWalker in DataSet Tables
(see above and Manual). The column whose values will
be used by NetWalker as gene identifiers of rows are set
by the user from within DataSet. At this point, Net-
Walker will automatically match the values in the given
column to Gene nodes in the NIK. Currently, supported
IDs are Gene Symbols, aliases, Affymetrix probe IDs,
Entrez Gene IDs, Refseq, Ensemble, Mouse Genome
Database, Rat Genome Database and VEGA IDs.

R interface
In order to maximize flexibility of analyses in NetWalker,
we have implemented an interface with R, a popular statis-
tical programming environment, using network connection.
We provide a R workspace file along with the application,
which contains currently implemented functions for R-
NetWalker interface. Currently, we have implemented
functions for exchange of dataset/table and network objects
between R and NetWalker. Details on the use of this func-
tionality and sample uses can be found in the Manual.

License
The software is released with a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported
license (CC BY-NC-SA 3.0), which allows for using,
modification and sharing of the software and of its com-
ponents for non-profit purposes.

Memory requirements and speed
Since NetWalker is using large matrix multiplications for
NetWalk and FunWalk, at least 2 GB of memory is
required to run NetWalker, although we have successfully
been able to run it in systems with less memory. A

http://www.yworks.com
http://pid.nci.nih.gov/
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NetWalk run in NetWalker takes a few seconds per each
data column, depending on the sytem. Since EFTables are
very large objects (~300,000 EF values per data column),
running very large datasets with NetWalk will require
large memory (>4 GB) in a 64 bit system running 64 bit
JRE.
The yFiles library used in NetWalker allows for visua-

lizations and handling of large networks. We have been
able to generate and visualize a network of ~1,000 nodes
from an EFTable in under 5 seconds.

Other
For detailed information on the visual capabilities of
NetWalker, along with other functionalities for dataset
import, processing, heatmap clustering, GeneConnector
and inter-operability with external applications, includ-
ing R, please see Manual in the Additional file 1. Table 1
contains a summary of comparison of functionalities in
NetWalker with other popular software applications.

Results and discussion
In order to demonstrate the use of functionalities in Net-
Walker in a real dataset, we undertook an analysis of micro-
array gene expression data from MCF7 cells before and
after treatment with lethal (10 uM) and sublethal (1 uM)
doses of chemotherapy drug doxorubicin. We imported the
dataset to NetWalker and averaged gene expression values
for experimental triplicates for each condition. We normal-
ized gene expression values at each time point to that at the
0 time point to reflect fold change. Then, we ran NetWalk
and FunWalk on each of the normalized columns to
Table 1 Comparison of features in NetWalker, Cytoscape, Bio

NetWalker

Pre-compiled interactome
knowledgebase

NetWalker Interactome
Knowledgebase

No c

Dataset import and processing Yes

Clustering and heatmaps Yes

Network building with genes of
interest

GeneConnector

Pre-defined canonical pathways No

Whole distribution-based
network scoring method

NetWalk

Unique network integration/
analysis method

NetWalk, FunWalk, EF Tables,
GeneConnector, FunTable

Functional enrichment analysis Hypergeometric, FunWalk

Analyses/visualizations of
sequence/structure data

No

Support for non-mammalian
species data/networks

No

Interoperability with R Yes

Unique features of NetWalker are in bold.
perform a comparative network analysis of cellular
responses to sublethal and lethal doxorubicin doses.
In order to make a heatmap of most significant network

interactions in doxorubicin response (EF heatmap), we
selected most significant interactions from 1 and 10 uM
conditions, and made a clustering heatmap. Figure 4A-B
shows the heatmap of most significant interactions asso-
ciated with increased gene expression in response to low
or high doses of doxorubicin and a network correspond-
ing to the highlighted cluster, which represents interac-
tions that are associated with increased expression in high
dose but reduced expression in low dose doxorubicin
treatment, revealing a bimodal response.
FunWalk analysis was run together with NetWalk, and

a FunTable corresponding to scores of functional terms
associated with subnetworks of increased or decreased
gene expression was generated. The FunTable was fil-
tered to exclude functional terms with less than 6 inter-
actions and whose level in the GO hierarchy are below 6
(i.e. are too generic GO terms, such as “nucleus”). Then,
we identified functional terms with most variant scores
across the 6 conditions, and generated a heatmap (Fun
Heatmap, Figure 5A). Note a pattern that is very similar
to the one in Figure 4A with the EF heatmap, showing a
bimodal response of these cells to low and high doses of
the DNA damaging agent. Networks corresponding to
individual rows can be plotted in a NetView, and a net-
work corresponding to some of the functional terms
shown by arrows in Figure 5A is shown in Figure 5B. A
detailed step-by-step tutorial on a more detailed analysis
of this dataset using various functionalities in NetWalker
logicalNetworks and VisANT

Cytoscape BiologicalNetworks VisANT

entral knowledgebase, can import
external interaction sets

IntegromeDB Predictome

Yes Yes No

plugin Yes No

plugins Shortest paths, common
interactors, filtering

No

No Yes No

No No No

ActiveModules, other plugins No GOTEA,
NMEA

BiNGO plugin Fisher’s Exact Probability GOTEA,
NMEA

No Yes No

Yes Yes Yes

No No No



Figure 5 FunTable analysis of a microarray dataset. A) Fun Heatmap corresponding to functional terms with most variant FunWalk scores
across the 6 conditions. B) Plot of the network corresponding to functional terms indicated with arrows in A. Nodes are colored as in Figure 4A,
and grouped by their corresponding functional terms.
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can be found at the web site http://netwalkersuite.org.
The NetWalker workspace environment containing all
the analyses presented above can be downloaded from
the web site, and loaded in NetWalker.

Conclusion
In order for a user to be able to analyze his data to extract
network models of interest, the software should allow him
to a) import and handle the dataset, b) integrate the dataset
with a large knowledgebase of biomolecular interactions,
c) query networks from the knowledgebase that are most
related to his data, d) identify and visualize the networks of
interest, e) and visually enhance the network for better rep-
resentation of the experimental condition. Without any of
these components, software will be incomplete, and it will
be difficult for a bioinformatically untrained biologist to
use it for analysis of his data. For example, VisANT [3],
PINA [26], BioLayout [5] and Osprey [4], although offering
network construction, management and visualization tools,
do not offer functionalities for importing and processing
datasets or network integration with user-supplied gen-
omic data, which makes it difficult for biologists to use
these tools for network-based data analyses. Cytoscape is a
popularly used excellent tool primarily designed for
advanced visualizations of networks, but it does not offer
content in the form of a knowledgebase. To our know-
ledge, BiologicalNetworks and NetWalker are the only
software platforms that offer all of the functionalities
described above. However, NetWalker is the only software
that offers efficient holistic (i.e. no cutoff approach) data
analysis methods (NetWalk and FunWalk) for comparative
network and functional analyses. The design of NetWalker
and of the NetWalker Interactome Knowledgebase to
emphasize whole-distribution based analysis methods (see
Manual for more details) for more flexible data analyses
and model building is its most distinguishing feature from
other software.
Novel functions can be integrated into existing software

applications, such as Cytoscape, instead of developing a
stand-alone application. However, Cytoscape is designed
more as a visualization tool for biological networks, with
some excellent features for visual mapping of data and
further visual manipulations. Consequently, Cytoscape is
not a database-centric software, like BiologicalNetworks
and NetWalker, and the functions it provides, both core
and through plugins, mainly concern the networks of
interest (usually relatively small networks) uploaded or
created by the user. Accordingly, the core API that is used
by plugins only provides functions to access the current
uploaded networks. In contrast, NetWalker (and Biologi-
calNetworks) features a pre-compiled knowledgebase of
prior information, which is used to query the user-
supplied data to extract most relevant networks. In
addition, since handling of NetWalk and FunWalk results,
their analyses, query and visualizations (EFTable, FunTable
and functions therein) are best done with a specialized
software architecture, we developed NetWalker as a separ-
ate suite to maximize user experience in using these meth-
ods. In addition, NetWalk and FunWalk are only pilot
methods for the use of biased random walk models in
network-based holistic data analyses, and we are currently
working on a suite of novel algorithms to be incorporated
into NetWalker to enable whole system-based analyses
and automated mechanistic model building. Therefore,

http://netwalkersuite.org
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NetWalker should also be viewed as a novel platform for
random walk based holistic network analyses.

Availability and requirements
NetWalker is available for download for academic use at
http://netwalkersuite.org. A Windows and a Mac version
have been included. Windows version of NetWalker
runs on Windows XP and Windows 7 systems. We have
tested the Mac version on a Mac computer with OS X
version 10.7. Since NetWalk computations in NetWalker
involve many large matrix multiplications, we recom-
mend at least 2 GB of RAM. Most modern processors
(Dual Core, Core2 Duo, etc.. . .) will suffice to run Net-
Walker with a reasonable performance.

Additional file

Additional file 1: NetWalker software manual.
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