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Abstract

Background: Measuring gene transcription using real-time reverse transcription polymerase chain reaction
(RT-gPCR) technology is a mainstay of molecular biology. Technologies now exist to measure the abundance of many
transcripts in parallel. The selection of the optimal reference gene for the normalisation of this data is a recurring
problem, and several algorithms have been developed in order to solve it. So far nothing in R exists to unite these
methods, together with other functions to read in and normalise the data using the chosen reference gene(s).

Results: We have developed two R/Bioconductor packages, ReadgPCR and NormgPCR, intended for a user with
some experience with high-throughput data analysis using R, who wishes to use R to analyse RT-gPCR data. We
illustrate their potential use in a workflow analysing a generic RT-gPCR experiment, and apply this to a real dataset.
Packages are available from http://www.bioconductor.org/packages/release/bioc/html/ReadgPCR.html and http://
www.bioconductor.org/packages/release/bioc/html/NormgPCR html

Conclusions: These packages increase the repetoire of RT-gPCR analysis tools available to the R user and allow them
to (@amongst other things) read their data into R, hold it in an ExpressionSet compatible R object, choose appropriate
reference genes, normalise the data and look for differential expression between samples.

Background

Several methods now exist to measure quantitatively the
expression of genes within a biological sample, allowing
us to compare expression between cells from different
tissues, and between cells from the same tissue under
different conditions. More recent technologies for this
purpose include microarrays and RNA-seq. However one
of the most popular remains RT-qPCR, due to its acces-
sibility, relatively cheap price, small requisite amount of
starting material and high precision [1]. Although it has
a lower throughput than some other methods, technolog-
ical advances in recent years have led to improvements.
Through microfluidics and other technologies it is now
possible to run hundreds, even thousands of RT-qPCR
reactions in parallel with the same starting sample [2,3],
with a high enough precision that it is frequently used in
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order to validate findings made through higher through-
put technologies [4] (details of available technologies are
provided in [5]). Its usage remains ubiquitous.

Such RT-qPCR technologies quantify gene expression
by attempting to amplify a target DNA sequence, repre-
senting a gene or other biological molecule, in a query
sample (the target is DNA because the RNA in the original
tissue is reverse transcribed to make cDNA). The sam-
ple is placed in a well with a primer specific for the DNA
sequence to be measured, necessary for amplification to
begin [2]. In the case of the high-throughput RT-qPCR
technologies, the sample is delivered to a number of wells
in parallel, each containing a separate primer. Then a
number of amplification cycles are performed for each
well. A predefined threshold is set within the exponential
amplification phase, when doubling of the product can be
detected above background fluorescence, and the number
of cycles it takes to get to this threshold is used to esti-
mate the amount of cDNA sequence present, and thus the
amount of RNA that was present in the initial tissue [2].
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These values are known as quantification cycle (Cq) val-
ues (also known as threshold-cycle (Ct) values, but herein
referred to as Cq, in line with the standardised nomen-
clature suggested in [6]). By comparing the Cq values
between two samples (for example treated and untreated
tissue), one can compare the amount of DNA sequence
in one sample relative to the other. It is strongly rec-
ommended to normalise these raw values to account for
systematic variation between samples, related to differing
starting amounts of material, tissue-specific differences in
transcription efficiency, and a number of other factors.
This is typically achieved through the use of reference
genes (endogenous control or housekeeping genes, also
referred to simply as housekeepers). These are stably
expressed genes that should not change in expression in
response to a change in the cell’s environment, or between
different cell types [1].

Assuming the reference gene exhibits stable expres-
sion across different samples, and assuming it does not
show a change in expression between sample-types (i.e.
between cells under different conditions/ between differ-
ent cell types), the subtraction of the Cq value of the
reference gene from the target gene should account for the
systematic variation between samples, and allow for the
expression of genes in different samples to be compared
to each other directly. Furthermore it is generally rec-
ommended to combine multiple reference genes in order
to reduce error, assuming their combination also shows
stable expression [7].

However, it is often the case that reference genes do
change in expression between sample-types, or show high
stochastic variation under certain conditions [8-11]. The
choice of a reference gene that shows variation between
sample-types will clearly bias estimation of the expres-
sion of other genes within the samples, since subtraction
of said reference gene’s expression value from a gene will
lead to over or underestimation of the true expression of
that gene. Similarly, a reference gene that shows a high
intrinsic variation in expression under the conditions of
the experiment, will lead to inflated stochastic error when
estimating the true abundance of the other genes within a
sample [8,12].

Several statistical methods have now been proposed to
deal with the problem of reference gene selection. These
methods will either select the optimal reference gene for
an experiment, or a number of reference genes, whose
expression values should be combined in order to gen-
erate a normalisation factor (NF), which can be used as
the calibrator. The work of Vandesompele et al. [7] starts
with a number of potential reference genes and attempts
to find the best set of reference genes from this initial list
(with a minimum of two, since the two most stable genes
cannot be ranked). It does this by looking for the most
stably expressed reference genes across all samples within
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an experiment, without taking into account the labelling
of different sample-types. Andersen et al. [13] proposed
a model-based approach that takes into account the over-
all variability of a reference gene within an experiment,
and also between different sample-types. More details on
these methods (amongst others) can be found in a recent
paper by Chervoneva et al. [14], which also introduces a
new method for reference gene selection, accounting for
correlation between different reference genes. A summary
of available software is provided in a chapter of a recently
published, comprehensive book on RT-qPCR [12].

The raw-Cq value of a target gene minus that of the best
reference gene is known as the ACq value. To calculate rel-
ative fold change between different conditions, the ACg
value of a gene of interest in one sample type can be sub-
tracted from its value in another sample type, in order to
calculate the AACq value, and thus 2227 [15,16].

Another way the reference genes can be used to nor-
malise the Cq results is through the adaptation of the
method of Pfaffl et al. [17], where the efficiency of the
reference gene is estimated and taken into account when
normalising the other genes of interest [18].

Recently, other normalisation methods have been pro-
posed that adapt methods originally developed for
microarrays and other high-throughput genomic tech-
nologies [19-21].

Here we present two packages, ReadqPCR and Nor-
mqPCR, written in the freely available statistical com-
puting software R (http://www.r-project.org/), [22] and
available as part of the Bioconductor project (http://www.
bioconductor.org/), [23]. They allow the user to read RT-
qPCR data into R, deal with undetermined Cq values, find
a suitable reference gene or genes for a given experiment
using a method for optimal reference gene selection and
normalise the data via the ACq and 27224 normalisa-
tion methods. The user can also use a number of existing
bioconductor packages and functions to perform qual-
ity control on their data, and can check the adequacy
of reference genes visually. We demonstrate the basic
functionality of the packages here and provide an exam-
ple work-flow, involving the different packages alongside
several other well known and highly-used CRAN and Bio-
conductor packages, applied to a generic RT-qPCR exper-
iment. We then present a experiment where ReadqPCR
and NormqPCR have been used to analyse a RT-qPCR
dataset, and take the user through the different steps that
were undertaken in the analysis of the data.

Implementation
Typical work-flow
We have created two R packages to be used together in
order to analyse RT-qPCR data. To explain the different
packages to the user, we have created a work-flow, shown
in Figure 1. This shows what packages should be used
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Figure 1 qPCRflowChart.png. A workflow for a typical RT-gPCR experiment making use of the two packages showing the different steps used in
the analysis, what packages are used for each step and the relevant inputs and outputs into the packages, and the names of the functions to be
called. More comprehensive information, and more details about the different analyses available can be found in the package vignettes.

when, and in what order, in order to undertake a typi-
cal analysis using RT-qPCR, comparing gene expression
between two conditions. For much greater detail please
visit the package homepages http://www.bioconductor.
org/packages/release/bioc/html/ReadqPCR.html

and http://www.bioconductor.org/packages/release/bioc/
html/NormqPCR.html and consult the package vignettes,
which are 20-30 page synopses of the packages. Table 1
contains details of current R packages available for the
analysis of qPCR data.

RT-qPCR packages

Data capture

Firstly the user will run the experiment. This will pro-
duce output, including amongst other things, the names
of the genes being measured, and the Cq values for each
gene in each sample. It is important to adjust the base-
line correctly using the appropriate software if necessary.
Depending on the technology used, there may or may not
be a function in the ReadqPCR package that can read the

Table 1 Other R packages for RT-qPCR analyis

raw (text) output from the machine, and upload it directly
into R. If such a function is not available, the output must
be converted into a simple tab-delimited format, using
spreadsheet software or a scripting language (more details
in the package vignette), which can then be uploaded into
R via ReadqPCR. This will use the names of the target
genes (or other biological entity to be measured, such
as miRNA), the sample names and the raw Cq values to
generate an R-object of class “qPCRBatch’, an extension
of the “expressionSet” class, which is intended to be the
standard container for high-throughput assays and exper-
imental meta-data in Bioconductor [24]. If the input file
contains data on the positions of the wells in which the
experiments were performed, this will also populate the
“qPCRBatch” object. A “qPCRBatch” can contain an indef-
inite number of different conditions, from one to as many
as the R instance can handle. More than one input file can
be uploaded into a single “qPCRBatch’, as long as all the
input files contain either the same sample names, or same
feature identifiers (such as gene names).

Other R packages for RT-qPCR analyis

Package Availability Data Quality Normalisation Reference Gene
Name Import Control Selection
HTgPCR www.bioconductor.org/packages/release/bioc/html/HTgPCR.html Y Y Y N

gpcR http://cran.r-project.org/web/packages/gpcR/index.html N N Y N
gpcrNorm www.bioconductor.org/packages/release/bioc/html/gpcrNorm.html N N Y N
SLgPCR www.bioconductor.org/packages/release/bioc/html/SLgPCR.html N N Y Y

ddCt www.bioconductor.org/packages/release/bioc/html/ddCt.html Y N Y N
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Once the raw data has been loaded into R and a “qPCR-
Batch” object has been generated, the distribution of Cq
values for each sample can be compared in a pair-wise
manner, using the pairs() function or the mva.pairs() func-
tion from the affy package [25] as a quality control step to
identify outlying samples. This will not always be sensible;
for an experiment investigating a small number of genes,
with the majority of them changing between conditions,
the pair-plots are likely to show little correlation between
different sample types. This is unlike microarrays, where
often the majority of genes being estimated do not change
between sample-type. This contrast between RT-qPCR
and microarray pairs-plots is shown in Figure 2. However
pair-plots can still be useful for comparing different sam-
ples within the same sample-type, i.e. biological replicates,
and for a visual way to compare within-sample variation
with the variation resulting from the different conditions
being compared (also shown in Figure 2, top row).
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Though not shown in the work-flow, ReadqPCR also
allows the user to deal with technical replicates by (option-
ally) calculating the arithmetic mean or median of the raw
Cq values for the technical replicates of a given gene.

Missing values can be handled by our packages in a
number of ways, as detailed in the vignette. We advise the
user to take care when using these functions as missing
value imputation may lead to inflated stability values for
reference genes.

Optimal reference gene selection and normalisation

The next step is to find the best reference genes for a given
experiment. NormqPCR currently implements two meth-
ods for this puprose: a pair-wise stability based method
(geNorm) [7], which compares the expression of possi-
ble pairs of different reference genes, eliminating “bad”
genes in a step-wise manner, and a model based method
(NormFinder) [13], which takes into account variability of
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Figure 2 qPCRpairsPlots.png. Plots of Cq values. The top row plots show the difference between the expression values for genes measured by
RT-gPCR technology, between samples of the same sample-type (top left), and between different samples (top right). The bottom row plots show
the same, but for genes measured using microarrays The difference in numbering on the different axes is due to the different type of data returned
by the different technologies. Datasets used are from the ALL package (microarray data) and the example dataset available in the ReadgPCR
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the reference genes between sample types, as well as over-
all variability in expression. In the case of the former, a
minimum of two reference genes can be found, in the case
of the latter, a minimum of one. If the user already knows
what reference gene(s) to use, this step can be skipped.
These methods are implemented in NormqPCR using the
selectHKs() function, which can take either “geNorm” or
“NormFinder” as an argument. It is important to note
that although the selectHKs() function can accept 2¢4 or
Cq values, it is important to specify this with the “log”
argument when calling the function.

Once the user has identified what reference gene or
genes to use, using one of the above methods, the next
step is to subtract the Cq values for the reference gene (or
in the case of more than one, the mean of the Cq values)
from the other genes in each sample, in order to normalise
them (produce the ACqg value) and allow a direct compari-
son of gene expression between different sample-types (by
calculating the 27247 value). In the case of more than
one reference gene being selected, a normalisation con-
stant (NC) will be calculated, as the arithmetic mean or
median of the Cq values of the reference genes. Under the
assumption that the RT-qPCR efficiency is equal to 2, this
is equivalent to using a normalisation factor, as we show
below.

In [18] they propose using a normalisation factor calcu-
lated as the geometric mean of the relative quantity (RQ)
values of the reference genes, based on previous work
[7,17]. RQs for some gene j are computed as

RQ=E" (1)

Where E; is the RT-qPCR efficiency for gene j, and the
normalisation factor is calculated as

NF =7 2)

where p = 1,...,f indicates the f reference genes we have
chosen. Thus following the method described in [18], the
Cq values of target genes can also be converted to RQ, and
divided by the NF to make normalised relative quantitiy
(NRQ) values. So for a given gene j one obtains

NRQ; = 3)

NF

However, assuming E = 2 for all target genes and refer-
ence genes, we can also use the arithmetic mean of the
reference gene Cq. This can be seen by rewriting equation
(3) as
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f
log, (NRQ)) = log, (20) —log, | /| [T2% | @)
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1z
log, (NRQ)) = Cq; — 7 > Cqp (5)
p=1

This is what we refer to as the ACg; value and so

f
NRQj = ol o= Xper O] 6)

To perform relative quantification between different
sample types, the 27227 values should be calculated by
subtracting the ACq (i.e. the log,(NRQ) from equation
5) value for a given gene for the case sample from
the control sample, i.e. 2[2Cqconrol=ACqcase]  also written
as 27 [ACdcase=ACGeonrol], 2=AACT yalyes can be calculated
using the deltaDeltaCq() function in NormqPCR. This
will return a list of all target genes with their correspond-
ing values. These results can also be plotted as bar charts
in order to show more clearly what genes are showing dif-
ferential expression, and the range of error. An example,
taken from the real data analysis presented below shows
the AACq values, although the 27244 values might also
have been plotted (Figure 3). Standard deviations are cal-
culated following the protocol presented in [15], using the
“same well” method, presented in table 2 of this paper: the
standard deviation of the differences between Cq values of
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Figure 3 qPCRdDCq.png. Relative (log2) fold change between case
and control for a number of genes. Blue bars show mean, error bars +
1 standard deviation Red bars show instances where the presence of
the transcript has been detected in the one condition, but not in the
other, and as such no fold change or standard deviation (of fold
change) can be calculated.
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the target gene and the housekeeper, for the different sam-
ples, is calculated. The single well method from table 1 of
the same paper is also available by calling deltaDeltaCt()
function with the argument “paired = TRUE” In both
cases, the subtraction of the calibrator is treated as the
subtraction of an arbitrary constant, and so does not
increase the estimated error [15].

One inherent problem with RT-qPCR is that some val-
ues are undetermined. This occurs when the amplification
of certain products is not detected above the level of noise,
typically within 40 cycles, and is interpreted as absence of
target transcript. In the case that values are undetermined
in one set of samples and not the other (i.e. in case but not
control, or vice-versa), the deltaDeltaCq() function out-
putsa “+” or “-” for the fold change, though if a user wishes
to impute their own value to replace the “+”/-” they can
do so easily (though we advise caution when doing so).

The user may wish to perform statistical tests for differ-
ential expression, perhaps using the limma package [26],
the base R function wilcox.test() or the rowttests() func-
tions in the genefilter package. It is recommended to use
the deltaCq() function and use the resulting “qPCRBatch”
object for this analysis. This object will contain the ACq
values for each gene in each condition, which we expect to
be normally distributed.
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The A ACq step can also be exploited as another method
to visualise the stability of the reference genes. By calcu-
lating AACq for each reference gene, and plotting these,
in ascending order as normalised by a nominal reference
gene, the user can see whether some reference genes show
more similar expression to each other, and whether other
genes stand out. This is shown in Figure 4, which contains
graphs of the A ACqg values for all the genes in an experi-
ment, each ordered by a different reference gene. In each
graph, the values are ordered from lowest to highest.

Results and discussion

ReadqPCR and NormqPCR were used to analyse a real
dataset, investigating the effects of UVB radiation on gene
expression in skin by comparing UVB radiated skin to
untreated. Full experimental details are available in [27],
including descriptions of the samples used, their pro-
cessing, storage conditions, and the experimental set-up.
Additional file 1 shows the series of commands that were
used to analyse the data set. In brief, 8 biological replicates
were produced for each sample-type, and each sample was
analysed using Tagman array cards, 384 well microfluidic
arrays produced by Applied Biosystems. The expression of
96 genes was measured for each sample, 92 target genes
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and 4 reference genes: Beta-actin, beta-2 microglobulin,
GAPDH, and 18S ribosomal RNA. Each card contained
four samples, two case (UVB treated skin sample) and two
control (untreated skin sample).

The SDS output file, as obtained from the PCR system,
was loaded into R using the ReadqPCR package, pop-
ulating a “qPCRBatch” object (S1-block A). NormqPCR
was then used to find the optimal reference genes, using
geNorm (S1-block B). This indicated that four reference
genes were required, since inclusion of a fourth gene leads
to a reduction in variation. NormFinder could also have
been used to select the reference genes.

The arithmetic mean of the Cg values of the four refer-
ence genes was then calculated to produce a normalisation
constant, and this was subtracted from each of the Cq
values of the target genes to calculate the ACq values
(S1-block C). Then Mann-Whitney U-tests were used on
the ACq values in order to calculate a p-value for differ-
ential expression between case and control (S1-block D).
Forty two genes were shown to be differentially expressed
(p-value <0.05). Multiple testing correction was also per-
formed, using the method of Benjamini Hochberg [27],
(S1-block E), leaving 39 genes significant with an esti-
mated false discovery rate (FDR) of 0.05.

Finally, 2~22%4 were produced, for all genes (S1-block
F) and the corresponding A ACq values were plotted with
the corresponding error bars representing +/- one stan-
dard deviation (S1-block G). In the case that Cq values
were NA in case, but where values were obtained for con-
trol, and vice versa (i.e. NAs for control but values for
case), the bars were given a different colour and a height of
the maximum fold change in the experiment, and no error
bars were plotted (Figure 3 (qPCRdDCq.png)).

Conclusions

ReadqPCR and NormqPCR provide tools for uploading
RT-qPCR data into R, look for the optimal reference
genes, and normalise the data using the AACqg method.
It has already been used by an experimental group to
calculate differential expression using Tagman RT-qPCR
data [27].

These packages, implementing popular optimal refer-
ence gene finding algorithms in the widely-used statistical
software for genomic analysis, R, represent an important
contribution to the RT-qPCR community, and increase
the available options for the analysis of this type of
data.

Availability and requirements

Project name

ReadqPCR/NormqPCR - R packages for the reading, qual-
ity checking and normalisation of RT-qPCR quantification
cycle (Cq) data.
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