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Abstract

Background: Many reptiles exhibit temperature-dependent sex determination (TSD). The initial cue in TSD is
incubation temperature, unlike genotypic sex determination (GSD) where it is determined by the presence of
specific alleles (or genetic loci). We used patterns of gene expression to identify candidates for genes with a role in
TSD and other developmental processes without making a priori assumptions about the identity of these genes
(ortholog-based approach). We identified genes with sexually dimorphic mRNA accumulation during the
temperature sensitive period of development in the Red-eared slider turtle (Trachemys scripta), a turtle with TSD.
Genes with differential mRNA accumulation in response to estrogen (estradiol-17β; E2) exposure and developmental
stages were also identified.

Results: Sequencing 767 clones from three suppression-subtractive hybridization libraries yielded a total of 581
unique sequences. Screening a macroarray with a subset of those sequences revealed a total of 26 genes that
exhibited differential mRNA accumulation: 16 female biased and 10 male biased. Additional analyses revealed that
C16ORF62 (an unknown gene) and MALAT1 (a long noncoding RNA) exhibited increased mRNA accumulation at the
male producing temperature relative to the female producing temperature during embryonic sexual development.
Finally, we identified four genes (C16ORF62, CCT3, MMP2, and NFIB) that exhibited a stage effect and five genes
(C16ORF62, CCT3, MMP2, NFIB and NOTCH2) showed a response to E2 exposure.

Conclusions: Here we report a survey of genes identified using patterns of mRNA accumulation during embryonic
development in a turtle with TSD. Many previous studies have focused on examining the turtle orthologs of genes
involved in mammalian development. Although valuable, the limitations of this approach are exemplified by our
identification of two genes (MALAT1 and C16ORF62) that are sexually dimorphic during embryonic development.
MALAT1 is a noncoding RNA that has not been implicated in sexual differentiation in other vertebrates and
C16ORF62 has an unknown function. Our results revealed genes that are candidates for having roles in turtle
embryonic development, including TSD, and highlight the need to expand our search parameters beyond
protein-coding genes.
Background
Turtles have been characterized for a small number of
fascinating differences from the better-studied groups of
amniotes, like the regulation of sexual development by
temperature and the presence of the carapace. However,
little is known about genes involved in the many aspects
* Correspondence: kixs4@uga.edu
1Genetics Department, University of Georgia, 500 DW Brooks Dr., Coverdell
Center Rm270, Athens, GA 30602, USA
2Department of Biology, University of Florida, PO Box 118525, Gainesville,
FL 32607, USA

© 2012 Chojnowski and Braun; licensee BioMe
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
of turtle development. The development of the eye [1,2],
brain [3,4], carapace [reviewed in [5]], and gonads
(Table 1); and the role of specific hormones [reviewed in
[6]] have all been briefly studied but these studies have
focused on the orthologs of genes already known to have
a role in human and mouse development. Although the
use of studies focused on the turtle orthologs of genes
identified in other organisms are clearly important,
screens for candidate genes that avoid making a priori
assumptions represent a complementary approach with
excellent potential to reveal novel developmental genes.
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Table 1 A general overview of sexually dimorphic gene
expression in turtles with TSD

stage 17 late in TSP

Gene Testis Ovary Testis Ovary Testis Ovary Reference

SF1 + + + [7,8]

WT1 same same same same same same [9-11]

DAX1 same same same same same same [12]

SOX9 same same + + [11,13]

DMRT1 + + + [14-16]

CYP19 same same + + [8,15,17]

SOX8 same same same same same same [18]

FOXL2 same same + + [12]

MIS same same + + [8,18]

R-SPONDIN same same + + [19]

WNT4 same same same same + [12]
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This study uses such an approach to identify genes with
sexually dimorphic expression; this set of genes is
enriched for genes involved in temperature-dependent
sex determination (TSD), but will also include genes in
other aspects of sexual differentiation and general devel-
opmental processes related to temperature and hormone
regulation that might not be directly related to sexual
differentiation.
Many reptilian taxa, including the majority of turtle

species, exhibit TSD [20,21]. Incubation temperature is
the initial cue for sexual development in TSD, in con-
trast to genetic sex determination (GSD) that is evident
in a number of vertebrate groups such as amphibians,
snakes, birds, and mammals [22]. GSD is best character-
ized in therian mammals and is initiated by the SRY
gene, located on the Y chromosome, which causes
organisms expressing the gene to develop as males [23].
SRY orthologs have not been identified in other groups
of vertebrates regardless of whether they exhibit TSD or
GSD, suggesting that SRY is an innovation unique to
therian mammals. In fact, only one other unique “trigger”
gene for sexual development has been identified in a ver-
tebrate taxon, a fish with GSD (medaka; see [24,25]). It is
unclear whether a trigger gene exists in organisms that
exhibit TSD, since there are several models that can ex-
plain TSD. For example, TSD may reflect regulation of a
trigger gene (or set of trigger genes) by incubation
temperature, it may reflect the impact of temperature
upon the activity of specific enzymes that have a role in
signaling, or it may reflect a combination of both phe-
nomena [9,12,13]. Regardless, it is clear based upon the
studies in organisms with known triggers that a gene
homologous to a known trigger in other organisms does
not regulate TSD in turtles [26].
Although trigger gene(s) are not conserved, if one or

more are even present, a number of genes involved in
gonadal differentiation and other aspects of sexual devel-
opment are conserved among vertebrates, including
organisms with different sex determining systems [27,28].
A number of orthologs of genes first identified in mam-
mals have been identified and characterized in different
vertebrate groups [29-33], including turtles (Table 1).
Studies focused on orthologs of genes known to play a
role in mammalian sexual development have provided
valuable information, although this approach has limits
for broader investigations. One setback to an ortholog ap-
proach is that the complete set of genes involved in mam-
malian GSD remains unknown and therefore, it is
restricting in finding novel genes or pathways specific to a
new system. A complementary approach is to identify can-
didate genes using patterns of expression rather than
orthology. This raises the question of the most appropriate
tissue to assay gene expression, since sexually dimorphic
gene expression has been noted in multiple tissues [13,34-
36]. Thus, focusing on specific tissues may result in the
omission of critical candidate genes. The use of whole
embryos is an unbiased strategy for finding candidate
genes for sex determination, but it also allows for the
identification of genes in other pathways that occur within
the same time points. Also, temperature and hormones do
not exclusively affect sex determination, and therefore
novel genes can also be identified that are related to
temperature and the effects of hormonal exposure.
The goal of this study is to use the red-eared slider

turtle (Trachemys scripta), a turtle with TSD, to identify
candidate genes within the embryonic development
pathway. Genes that exhibited a sexually dimorphic ex-
pression pattern during the temperature-sensitive period
(TSP), which contains the critical stage for commitment
to a specific sex [37], were targeted. The approach we
used will also reveal genes that exhibit a differential
expression pattern due to temperature or hormonal dif-
ferences that are not directly related to sexual develop-
ment. To accomplish this search we identified genes that
show increased mRNA accumulation under either the
male or female producing temperatures as well as genes
that exhibit response to estrogen exposure. Since we also
examined embryos at various times during the TSP it
was also possible to identify stage effects upon mRNA
accumulation during the TSP. These different searches
allow for a broader investigation for not only sexually
specific factors but also for general developmental genes
previously unknown within the time points of the TSP.
To accomplish this, we produced three subtraction li-
braries. Two of these libraries were enriched for genes that
show higher mRNA accumulation during the TSP in one
specific temperature regime (i.e., genes that exhibit greater
mRNA accumulation at the female-producing temperature
[31°C] than at the male-producing temperature [26°C] and
vice versa). The third library was enriched for genes that
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show increased mRNA accumulation during the TSP in
embryos produced at the male-producing temperature after
treatment with exogenous estrogen, ultimately producing
the female phenotype. Subsets of the cDNAs from these
libraries were examined more thoroughly by macroarray
hybridization and semi-quantitative PCR or quantitative
real-time PCR. This approach has the potential to identify
developmental genes that exhibit differential expression
when red-eared slider turtles are exposed to different tem-
peratures and hormonal conditions during the TSP with-
out making a priori assumptions about the identity of the
genes.

Results and discussion
Suppression subtraction hybridization (SSH) libraries
SSH was used to construct libraries enriched for cDNAs
that correspond to mRNAs that exhibit different levels
of accumulation during the TSP. Three subtracted cDNA
libraries were constructed: one enriched for mRNAs that
accumulate at higher levels at the female-producing
temperature than the male-producing temperature (here-
after called the “female library”); another enriched for
mRNAs that accumulate at higher levels at the male-
producing temperature than the female-producing
temperature (hereafter called the “male library”); and a
third enriched for mRNAs that accumulate at higher
levels at the male-producing temperature with exogenous
estradiol-17β (sufficient for sex reversal) than in similar
embryos treated with the vehicle alone (hereafter called
the “E2 library”). A total of 767 sequences were obtained
and were previously deposited in dbEST (FG341000:
FG341832). The SSH expressed sequence tags (ESTs) were
processed as described [38,39], yielding a total of 581
contigs and singletons (unigenes) after assembly using
CAP3 [40]. The results for the homology searches
can be found in Additional file 1: Homology search for
subtraction libraries.
SSH libraries typically contain some housekeeping

genes [41-43] since it is difficult to completely eliminate
genes that do not exhibit differential expression between
the two experimental conditions. The quality of SSH li-
braries can be assessed by examining the proportion of
broadly expressed genes, although the most appropriate
sets of genes to view as “housekeeping” can be problematic
to define precisely [44]. However, analyses of GC-content
[39] provide a line of evidence that the proportion of
cDNAs that correspond to housekeeping gene transcripts is
greatly reduced in our SSH libraries; housekeeping genes
tend to have a higher GC-content than genes that exhibit
lower levels of expression [45,46] and it provides an
efficient and practical method to define housekeeping
genes that avoids conflicts among the available lists of
housekeeping genes. We found that the GC-content
of the turtle transcripts was lower than expected for
other reptilian EST efforts [39]. Thus, the SSH method did
appear to enrich for genes with lower levels of mRNA accu-
mulation despite being unable, as expected, to eliminate all
housekeeping gene cDNAs.

Genes found in the SSH libraries
GeneMerge was used to test for over-represented GO
(Gene Ontology) terms signifying biological processes
from genes with human homologs found in all three SSH
libraries [47] (Additional file 2: GeneMerge for biological
processes). A total of 34 over-represented GO terms were
significant (p< 0.05) and they represent a broad range of
biological processes. A few umbrella categories that
include a number of over-represented GO terms are
anatomical structure morphogenesis (GO:0009653;
includes face morphogenesis [GO:0060325] and skeletal
system morphogenesis [GO:0048705]), cellular processing
(GO:0009987; includes ribosomal small subunit bio-
genesis [GO:0042274], T cell differentiation in the thymus
[GO:0033077], cellular membrane organization [GO:
0016044], DNA packaging [GO:0006323], regulation of
cell cycle [GO:0051726], negative regulation of apoptosis
[GO:0043066]), and metabolic processing (GO:0044267;
includes translation [GO:0006412], transcription [GO:
0006350], protein folding [GO:0006457], translational ini-
tiation [GO:0006413], and translational elongation [GO:
0006414]). These categories show that the genes found in
the SSH libraries involve active cell differentiation
and processing, as expected for mRNAs expressed in
developing embryos.
In addition, genes that have human homologs from

the SSH libraries were clustered into functionally related
groups within the subset of biological processes by the
DAVID tool for functional annotation clustering with
high stringency [48,49] (Additional file 3: DAVID func-
tional annotation clustering). The different groups repre-
sent the diversity of the libraries’ genes. A pertinent
cluster to our study that emerged is one enriched for
genes involved in developmental processes (Figure 1).
Though these genes are identified as being associated
with human developmental processes, this study offers a
chance to determine if they have been co-opted for simi-
lar functions in the turtle. One of the genes from this
cluster MMP2, starred in Figure 1, is of particular inter-
est because it is one of the first MIS (Müllerian inhibit-
ing substance)-target genes involved in Müllerian duct
regression and is involved in the breakdown of extracel-
lular matrix in normal physiological processes, such as
embryonic development, reproduction, and tissue re-
modelling [50]. MMP2’s involvement in mammalian de-
velopment leads us to believe it has potential to be a
candidate gene for relevant to the aspects of turtle devel-
opment that represented the focus of this study, poten-
tially including TSD.



Figure 1 Development Cluster from DAVID functional annotation clustering with high stringency. Functional cluster of developmental
genes and GO terms from the resulting known genes from the SSH libraries with high stringency.
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A number of distinct genes (7) in the SSH libraries en-
code temperature responsive proteins or regulatory
genes involved in the heat shock response. Ten
temperature responsive cDNAs were found in the female
library (two of which exhibited within-library redun-
dancy) whereas only one of each was found in the male
and E2 libraries (Table 2). Since the female library was
enriched for genes expressed at a temperature 5°C
higher than either the male or the E2 libraries the larger
number of heat shock cDNAs could simply reflect a
temperature effect. However, specific temperature re-
sponsive mRNAs accumulate differentially during go-
nadal differentiation in another reptile with TSD
(Alligator mississippiensis; [51]). Furthermore, specific
heat shock proteins play a critical role in the transcrip-
tional complex of steroid hormone receptors and their
corresponding chaperones and cofactors [52]. Given that
temperature is the initial signal in TSD, temperature re-
sponsive genes represent good candidates for involve-
ment in the TSD cascade.

Differential expression revealed by macroarray analyses
A macroarray assay was used to refine the set of genes
identified by sequencing the SSH libraries for sexual
dimorphism and place our analysis of transcript accu-
mulation under different experimental conditions in a
quantitative framework (Figure 2). A total of 26 signals
Table 2 Temperature responsive genes found in SSH

Name Library where found Redundancy within library

HSPA8 Male 1

HSP90B1 E2 1

CIRBP Female 2

HSBP1 Female 3

HSP90AA1 Female 1

HSPD1 Female 1

SERPINH1 Female 1
were detected as having differential expression patterns:
16 female biased signals and 10 male biased signals. How-
ever, the degree of differential expression revealed by the
macroarray analyses was typically <2-fold. Thus, our
macroarray analyses were able to show that a number of
cDNAs present in the SSH libraries do exhibit sexual di-
morphic patterns of expression under the conditions we
tested, although the differences in the amount of mRNA
present was typically limited. Since our experiments were
conducted on whole embryos to ensure unbiased candi-
date gene identification, it might be the case that some
genes identified exhibit stronger sexual dimorphism in a
specific tissue or a subset of tissues (e.g. brain [34,35], liver
[36], and gonad [13]). However, our results indicate that
sexually dimorphic gene expression is detectable at the
whole embryo level, indicating that the unbiased approach
is feasible.
Genes that are found to be sexually dimorphic are not

automatically considered to be part of TSD since differ-
ing temperatures and hormones can affect more than
just sexual development. The genes that emerged from
the macroarray as being differentially expressed have a
mixture of biological roles in humans based on DAVID.
Some genes overlap in their biological roles while others
have more distinct roles. For example, 10 genes
(GTPBP4, HSP90AA1, ARID4A, RAN, HBZ, SERPINA3,
BRIP1, NFE2L1, CDK6, and NFIB) are involved in the
regulation of metabolic processing and 6 genes
(GTPBP4, BRIP1, RAN, KATNA1, CDK6, and NFIB) are
involved in cell division and proliferation (5 of the 6 in
the later categories are also found in the earlier category
of regulation of metabolic processing). Moreover, AFP
and LAPTM4A are involved in reproduction and trans-
port, respectively. Though these genes are not directly
related to human sexual development, they provide us
with a clue as to which types of processes occur during
turtle development under different temperatures and
hormone exposures.



Figure 2 Macroarray results showing sexually dimorphic expression patterns. Log view of the fold change between female and male
expression patterns determined from a macroarray.
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Semi quantitative (semiQ) PCR validation of TSD
candidate genes
Further experiments for validation were conducted on a
subset of candidate genes selected from both the sub-
traction library and macroarray analyses. These genes
were chosen because they were implicated in mamma-
lian sexual development (MMP2: [53]), mammalian de-
velopment (CCT3, NFIB, and NOTCH2 [54-56]), or have
an unknown function (C16ORF62). The five candidate
genes were used in three different categories for semiQ-
PCR: sexual dimorphic expression at stage 17, differ-
ences between stages 14 and 17, and an E2 time trial
conducted during stage 14 including fast (6 hours) and
slow (24 hours) responses (Figure 3).
Only the turtle ortholog of C16ORF62, a gene of un-

known function, showed evidence of sexually dimorphic ex-
pression at stage 17. The transcript of this gene showed
greater accumulation in males than in females (~2.5 fold in-
crease), the same trend that was evident in the macroarray
results. It is conserved in mammals, birds, fish, insects,
nematodes, and plants, its GO term is Integral to mem-
brane, and it is found in a wide variety of adult and embry-
onic tissues in mammals [57,58]. Since C16ORF62 is a gene
of unknown function and it was found to be sexually di-
morphic in turtle embryos during the TSP, it represents
truly a novel candidate for a gene involved in turtle devel-
opment, potentially including TSD; and potentially in sex-
ual development in other vertebrates as well.
Four genes exhibited increased accumulation during
stage 17 relative to stage 14 in embryos incubated at the
male producing temperature (26°C). This stage effect was
evident for C16ORF62, CCT3, MMP2, and NFIB
(Figure 3B); the most striking is a ~8-fold increase in
mRNA accumulation between stage 14 and 17 for
C16ORF62. The others showed a range of relative increase
in mRNA accumulation of 1.2-fold to 4.8-fold with stage
progression. CCT3, MMP2, and NFIB have been implicated
in gonad development (MMP2: [59]) or other aspects of de-
velopment (NFIB and CCT3: [54,55]) in mammals. When
this information is combined with our observation that tur-
tle orthologs exhibited increased mRNA accumulation as
development proceeded from stage 14 to stage 17 (early in
TSP) it is reasonable to speculate that these genes play a
role in turtle development, potentially sexual development
in the case of MMP2. Though NOTCH2 does not show a
stage effect for turtle it has been previously seen as a devel-
opmental gene in neuronal development of a mammal and
might have a more significant affect on turtle development
during different stages or the stage differences are too low
to identify with this study [56].
All five genes show a rapid (6 hours) response to E2

exposure. C16ORF62, CCT3, and MMP2 all show a
downregulation of mRNA expression and NFIB and
NOTCH2 show an upregulation. Four of the genes
(CCT3, MMP2, NFIB, and NOTCH2) exhibited similar
mRNA accumulation both 6 hours and 24 hours after E2



Figure 3 Semi-quantitative PCR Results. A. An example of a semi-quantitative gel image. B. Semi-quantitative results for sexual dimorphism
(M=male, F = female), stage effect between males (green bars), and an E2 time trial (orange bars).
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exposure; accumulation of the C16ORF62 mRNA almost
returned to pre-exposure levels after 24 hours. MMP2 is
affected by E2 based upon previous studies whereas the
impact of E2 exposure upon mRNA accumulation for
other genes has not been examined. Mahmoodzadeh
et al. [59] showed that E2 inhibits MMP2 gene expres-
sion in rat fibroblasts and those results corroborate our
findings for MMP2’s involvement with E2.

Expression of a long noncoding RNA (ncRNA) is
sexually-dimorphic
A number of cDNAs on the macroarray (61) could not
be identified using BLASTX, suggesting that they corres-
pond either to cDNAs for which only untranslated
region was included in the EST read or noncoding
RNAs (ncRNA). To identify some of these cDNAs we
conducted BLASTN searches and revealed that one of
the cDNAs that exhibits sexual dimorphism is a ncRNA,
MALAT1.
MALAT1 is a long (~7 kb) ncRNA that undergoes a

cleavage that produces two RNAs, a smaller tRNA-like
cytoplasmic RNA (~61nt) and a 6.7 kb RNA that localize
to two different subcellular compartments, cytoplasm
and nuclear speckles respectively [60]. Characteristically,
it has short blocks of high conservation across the entire
transcript, especially in 3’ half of RNA, and lacks repeti-
tive elements except for a SINE and LINE element near
its 5’ end [60]. The smaller (~61nt) transcript generated
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by cleavage is highly conserved across many species, in-
cluding mouse, human, dog, lizard, frog, and stickleback.
It has not yet been found in any of the four available
sequenced bird genomes (chicken, turkey, zebrafinch,
and duck). There are two possible explanations: (1) birds
lost the locus or (2) it is located in a region that was
consistently underrepresented in all of the available
avian genome assemblies [61-64]. Both explanations are
plausible since gene loss is known to be an important
process during evolution [65] but the avian genome as-
semblies (like other vertebrate genome assemblies) are
incomplete.
MALAT1 shows a broad distribution of expression in

normal human and mouse tissues but its misregulation
is correlated with the progression of cancers and it is
upregulated in many human carcinomas [66-69]. More
importantly for this study, MALAT1 accumulation is
higher in adult mammalian ovaries than adult testes
[60,70]. However, the pattern of differential expression
for MALAT1 in adult mammalian gonads is distinct
from the pattern we observed using the macroarray
assay, in which the mRNA accumulation appeared 1.6-
fold higher in whole male turtle embryos. Since
MALAT1 is a ncRNA that shows dimorphic expression
in the TSP we felt it was an excellent candidate for a
gene involved in TSD so we used quantitative real-time
PCR (qRT-PCR) to verify the pattern of expression sug-
gested by the macroarray.
We used qRT-PCR to examine MALAT1 RNA accu-

mulation because it represents a rigorous test of differ-
ential expression. MALAT1 RNA accumulation was
examined independently for multiple individuals (n = 5)
and the two stages during the TSP (stages 17 and 19) ra-
ther than using pooled samples. This analysis revealed a
slight but significant sexual dimorphism (about 1.4-fold
higher in males) in the amount of MALAT1 RNA during
both stages we examined (Figure 4). MALAT1 RNA ex-
pression also shows a modest increase as development
progresses from stage 17 to stage 19 in both males and
females. These observations are consistent with the hy-
pothesis that MALAT1 plays a role in turtle TSD.

Conclusions
Here we reported a survey of genes identified based
upon their patterns of mRNA accumulation during em-
bryonic development in the Red-eared slider turtle. We
used a non-ortholog based strategy and identified four
genes that exhibited increased mRNA expression as de-
velopment proceeded from stage 14 to stage 17, a set of
genes that responded to E2 exposure, and two genes
(MALAT1 and C16ORF62) that show greater accumula-
tion at the male producing temperature than at the fe-
male producing temperature. This survey focused on
changes in mRNA accumulation in whole embryos.
Thus, it remains possible that some or all of these genes
exhibit even more strongly dimorphic expression in spe-
cific tissues (e.g., the developing gonad or brain). More-
over, the genes we identified are likely to be significant
since screening for differential expression at the whole
embryo level is expected to be a conservative way to
examine gene expression during development.
MMPs (matrix metalloproteinases) are involved in the

breakdown of extracellular matrices in physiological pro-
cesses, including cancer [71]. MMP2 is sexually di-
morphic in developing male mice because it functions as
a paracrine death factor in Müllerian duct regression
downstream of the MIS cascade [50]. In addition, Kim
et al. 2008 [72] found MMP2 to be sexually dimorphic
and regulated by testosterone in songbirds in relation to
the vocal control center during adult neurogenesis. Fur-
thermore, estrogen affects the MMP pathway in humans
by increasing MMP2 enzymatic activity [73]. It is un-
clear if the increase in MMP2 is through an increase in
mRNA accumulation or through other mechanisms,
such as binding affinity changes. Though MMP2 was
not found to be sexually dimorphic in turtles it was
found to be inhibited by E2, the opposite of the regula-
tion in mammals but potentially similar to birds [72].
Together with the prior knowledge of its involvement in
mammalian and avian development, MMP2 is a novel
candidate gene for development in the turtle.
ncRNAs are believed to play a large number of bio-

logical roles (reviewed in [74]), but their role in develop-
ment remains poorly characterized [75]. Although there
is some evidence that ncRNAs have roles in sexual de-
velopment in both mammals [75] and birds [76], this is
the first evidence that a ncRNA may have a role in sex-
ual development for an organism with TSD. This hy-
pothesis is corroborated by the fact that MALAT1
exhibits differential expression in mammalian gonads
(expression is higher in adult ovaries than in testes).
However, the pattern of sexual dimorphism reported for
mammals is distinct from that evident in turtles (where
the RNA accumulation is higher in male embryos than
in female embryos). Our findings highlight the import-
ance of examining ncRNAs when investigating verte-
brate development in general and sexual development
specifically.
Little is known about the genes involved in turtle de-

velopment, including the processes related to TSD, re-
gardless of whether they are protein-coding genes or
ncRNAs. Much of the information available is focused
on the examination of the turtle orthologs of genes
involved in mammalian development. The limitations on
this type of an examination are exemplified by our novel
results of two genes (MALAT1 and C16ORF62) that
show sexual dimorphism during TSP. These two types
of genes are novel to turtle sexual development because



Figure 4 Quantitative RT-PCR showing sexual dimorphic expression at stage 17 and 19. The expression of MALAT1 (n = 5) consists of sex
and stage (e.g. M17 =male, stage 17) and is relative to the control gene (PP1). The relative expression for M17 was set as 1 to allow easier
comparison between groups. Gene expression was analysed using two-tailed t-test to examine differences between sexes at the same stage
(stage 17, P= 0.04 and stage 19, P= 0.01) and between stages of the same sex (male, P= 0.18 and female, P= 0.24).
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one is a ncRNA (MALAT1), not typically found in sexual
differentiation in other vertebrates, and the other
(C16ORF62) is of unknown function. Our results high-
light the need to diverge from focusing only on protein-
coding genes when looking for developmental genes and
to expand into the more diverse world of RNA in gen-
eral, specifically including ncRNAs.

Methods
Incubation and experimental manipulations
Freshly laid Trachemys scripta eggs (500) were pur-
chased from Kliebert Turtle Farms in Hammond, Louisi-
ana in 2004 and 2006. They were kept at room
temperature for less than 48 hours until they were estab-
lished as viable by candling. Those viable were randomly
separated equally into four experimental groups in con-
tainers with moistened vermiculite (1:1 vermiculite to
water). The experimental groups were the female produ-
cing temperature of 31°C (hereafter called female), the
male producing temperature of 26°C (hereafter called
male), 26°C painted with exogenous estradiol-17β (E2) in
1 μg/μL in 95% ethanol (non-denatured) (phenotypically
female; hereafter called E2), and 26°C painted with ex-
ogenous 95% ethanol (non-denatured) as the vehicle
control (phenotypically male; hereafter called vehicle).
Application of E2 and vehicle occurred at stage 14. The
egg boxes were rotated daily within the incubators and
we checked a random selection of eggs periodically to
determine their developmental stage using the staging
guidelines suggested by Yntema [77]. The temperature
was monitored daily with HOBO data loggers and in-
incubator thermometers. Sex was determined for each ex-
perimental group through a visual inspection by two inde-
pendent researchers at hatching (gonads are visually
distinct at hatching but not before) of 10 embryos per ex-
perimental group for relevant gross anatomy. All experi-
ments complied with the appropriate ethical guidelines.

Isolation of RNA
Whole embryos were taken between stages 17 and 20
from each experimental group and quickly frozen in li-
quid nitrogen and stored at −80°C. A subset of whole
embryos was also collected at 0, 6, and 24 hours after E2
and vehicle application at stage 14. An average of 5
embryos was collected per stage and experimental
group. Conducting the E2 time trial at stage 14 before
the TSP removes E2 effects within gonadal differenti-
ation and leaves just those from the trial. Total RNA
was extracted from each embryo by homogenization in
Tri-Reagent (TRIzol, Sigma USA), followed by extraction
in chloroform, and precipitation in isopropanol accord-
ing to Sambrook and Russell [78]. Total RNA yield and
quality were assessed with the ND-1000 Nanodrop spec-
trophotometer (NanoDrop Technologies, Thermo Fisher
Scientific, Wilmington, DE 19810, USA), and the integ-
rity was verified by electrophoresis on a 1% agarose gel.

Suppression subtractive hybridization (SSH)
Three libraries were selectively induced for female
against male, male against female, and E2 against vehicle.
Testers and drivers were made from pooled RNA from
stages 17–20 (two individuals per stage) from each ex-
perimental group from 2004 (stated above). cDNA syn-
thesis was performed with the BD SMART™ PCR cDNA
Synthesis Kit (Clontech, Mountain View, CA) according
to the manufacturer’s protocol. Three subtraction librar-
ies were constructed with the Clontech PCR–SelectTM

cDNA Subtraction Kit (Clontech, Mountain View, CA)
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according to the manufacturer’s protocol except a PEG
(PolyEthylene Glycol) precipitation followed by an ethanol
wash was used to purify the PCR products after cDNA
synthesis instead of the column chromatography. The
resulting cDNA was ligated into a pGEM-T Easy vector
and transformed into E. cloniW 10 G electrocompetent
cells (Lucigen) by the manufacturer’s protocol. Individual
colonies were picked and stored in 96-well plates with
50% glycerol at −80°C. Plasmid inserts were purified
using a modified 96-well PerfectprepW Plasmid protocol
(5Prime, Gaithersburg, MD), according to Sambrook and
Russell [78] or a TempliPhi Amplification kit (as recom-
mended by manufacturer; GE Healthcare). Single-pass se-
quencing was conducted on an ABI Prism™ 3100-Avant
genetic analyzer (PE Applied Biosystems) using the ABI
BigDyeW Terminator v.3.1 chemistry.

Analysis of SSH results
Sequences from the libraries with redundancy were
aligned and all sequences (both individual and aligned)
were edited in Sequencher™ 4.1 (Gene Codes Corp.).
Sequences were put into FASTA format and run in
GOanna from the AgBase v.2.0 database to determine
the top Blast hit for each sequence and to simultaneously
determine GO terms for each hit [79]. GOanna uses
BLASTX (determines gene products from sequences)
therefore any sequences that did not have a hit were run
through BLASTN (determines all aspects of RNA tran-
scripts including untranslated regions and non-protein
coding RNAs) on the NCBI server [57].
GeneMerge categorized the human homologs of genes

that resulted from all three SHH libraries with over-
Table 3 Semi-quantitative and quantitative real-time PCR prim

Gene symbol Primer name Primer Sequence

Cct3 Cct3 F GGATGCCTAAAATTAGCCTCCTA

Cct3 R GAAGCTACGGCAAATGATGG

Malat1} Malat1 F GTACGCGGGCAGACTAACAC

Malat1 R TGCGTCTAGACACCACAACC

C16orf62 C16orf62 F CGGCCGAGGTACAAATTAAG

C16orf62 R TGCAAGTGCATTATGGAAGC

Mmp2 Mmp2 F ATGAAGAAGCCCCGCTGTGGTAATC

Mmp2 R AAAGGCATCGTCTACTGTTTCGGAGT

Nf1a Nfib F AAACACACTGCGTCAAGTGC

Nfib R CTTGCCCTGGATAGCGATTA

Notch2 Notch2 F TATTTCTGTGGCTGCCTGGA

Notch2 R GGGACAGGGACCTTTGTTGT

Pp1} Pp1 F ACCTCTTCCTGGGCGACTAT

Pp1 R TGATGTTGTAGCGCCTCTTG

*total concentration, including any MgCl2 in Taq buffer.
}Same primers used for qRT-PCR but at 60°C annealing temperature and 40 cycles.
represented GO (Gene Ontology) terms from the bio-
logical processes category given a human background
set of genes [47]. The significance cut-off was set at
P< 0.05.
The genes that have human homologs from the SSH

libraries were clustered into functionally related groups
within the subset of biological processes by DAVID v.6.7
[48,49]. The DAVID tool for functional annotation clus-
tering uses GO terms and the term enrichment score
was used at high stringency (based on P< 0.05).

Macroarray preparation and analyses
Three hundred and seventy four clones (including 322
known clones [those with BLAST hits] and 61 unknown
clones) that were obtained from all three SSH libraries
(discussed above) were spotted onto membranes (Pall
Biodyne B Nylon, Nunc) using 100 nanoliter pins on a
Biomek 2000 (Beckman Coulter, USA). Positive controls
(Arabidopsis thaliana RCA [X14212], CAB [X56062],
and RBCL [U91966]) and negative controls were also
spotted onto the membranes. All samples were spotted
in duplicate with four replicates per experimental group
(female and male). Total RNA was collected (as stated
above) from 2 embryos from stage 17 and 2 embryos
from stage 19. All collected embryos from the male ex-
perimental group in 2004 were pooled as well as for the
female experimental group. Pooled total RNA was mixed
with control cDNAs and then reverse transcribed before
labelling with α33P-dATP as described in Blum et al.
[80]. After hybridization [80], the membranes were
rinsed and exposed to a phosphor imager and scanned
using a Molecular Devices Typhoon Scanner.
ers, and optimal conditions for semi-quantitative PCR

Annealing
Temperature (°C)

MgCl2
Concentration (mM)*

Cycle
Number

62.5 1.5 30

57.1 1.5 36

58.3 2.5 36

C 62.5 4.5 27

CC

61.4 1.5 24

62.5 1.5 36

62.5 1.5 27
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Signal intensities were quantified using ImageQuant
5.1 (Amersham Biosciences UK Limited, Amersham
Place Little Chalfont Buckinghamshire England) and in-
tensity differences were calculated as described by Helbing
et al. [81]. Briefly, image data were converted to a standard
8-bit TIFF file before accounting for signal saturation.
Positive controls used to standardize across arrays for
hybridization efficiency were chosen based on their coeffi-
cient of variation (cv) across all 8 arrays (the cv did not
exceed 0.2). Each array was normalized to the geometric
mean for all positive controls chosen for that array [82].
The non-signal background was determined using the me-
dian intensity value plus one standard deviation for the
blank positions and negative controls, and the maximum
value for all arrays was set as the “no signal” value. All
values across all arrays equal to or below that number is
considered zero. After normalizing across arrays and dis-
carding values equal to or below the floor value, the aver-
age of the duplicates within arrays, the estimated standard
deviation across replicate arrays, the median across
replicate arrays, and the fold change between treat-
ment groups were calculated. If the standard devi-
ation across replicates was greater than or equal to 2
then those spots were not reliable for further examin-
ation. Based upon Helbing et al. [81], we considered
a 1.5-fold difference in signal intensity relative to con-
trol treatments as sufficient in the array experiments
based on the detection limitations of the cDNA array
analyses. Those genes that exhibited differential ex-
pression were used for further examination.

Semi-quantitative PCR preparation and analysis
Embryos were collected and total RNA was extracted as
stated above from the 31°C experimental group at stage
17, the 26°C experimental group at stage 17, and from
the E2 time trial experimental group at stage 14 from
2006. Four embryos from each group were pooled and
cDNA was made using Invitrogen’s Superscript III Reverse
Transcription kit (Invitrogen, USA) following the manu-
facturer’s instructions.
Pilot experiments were conducted to determine

optimum PCR conditions for the candidate genes and a
control gene (PP1, [12]). PCR primers were designed
using Primer3 [83] and a list of sequences and PCR con-
ditions after pilot experiments can be found in Table 3.
Controls were systematically run in each set of semi-
quantitative assays: 1) a cDNA positive control for a
known sample; 2) a PCR positive control; and 3) a negative
control. An internal exogenous standard (cDNA synthesis
with no reverse transcriptase) was also run separately for
each cDNA mixture. PCR products were loaded onto a
1.5% TBE gel with ethidium bromide and a 1 kbp DNA lad-
der molecular weight marker (Minnesota Molecular) and
electrophoresed at 90 V for 45 minutes.
Analysis of gel images was conducted using ImageJ
[84]. Each experimental gene was standardized to the
control gene, PP1 [12], and then normalized to the female
group.

Quantitative Real-time PCR (qRT-PCR) preparation and
analysis
Five whole embryos were collected from stage 17 and 5
from stage 19 from two experimental groups, male and fe-
male, and total RNA was extracted as stated above. cDNA
was generated using ImProm-II™ Reverse Transcriptase
and random primers following the manufacturer’s instruc-
tions. Relative gene expression levels were quantified using
an ABI StepOnePlus™ Real-time PCR cycler (STepOne™
Software v2.1) with the following cycling parameters: ini-
tial denaturing for 10 min at 95°C, followed by 40 cycles
of 35 s at 95°C, 30 s at 60°C, and 30 s at 72°C. The final
cycle was followed by a melting curve analysis to verify
the amplification of a single product in each well. Specifi-
cities of all primer pairs were also verified by sequencing
PCR products. Repeating the above procedures on RNA
samples (prior to reverse transcription) verified that no
products were amplified from contaminating genomic
DNA. All samples were run in duplicate and included 3.75
μL of a 1:100 diluted sample, 1 μM of each primer, and 2x
SYBR Green Master Mix (Applied Biosystems) in a total
of 15 μL. PCR efficiencies were calculated from a gene-
specific standard curve from a 10-fold dilution series.
Relative transcript abundance was normalized to the ex-
pression of PP1 by using the relative standard curve
method [85]. To determine if expression differed between
experimental groups a two-tailed Student’s t-test and a
standard error analysis were performed. Primers used to
assay gene expression were designed using Primer 3 [85]
and Amplify [86] (Table 3).

Additional files

Additional file 1: Homology searches for subtraction libraries.
Homology searches for sequences from all 3 libraries. The table includes
clone identifier, match, accession number, e-value, library, and
redundancy.

Additional file 2: GeneMerge for biological processes. GeneMerge
determined over-represented GO terms for my gene set given a human
gene set background. The cut-off was set to P< 0.05.

Additional file 3: DAVID functional annotation clustering. The
DAVID clustering tool was used to determine functionally related
groupings based on my gene set from the SSH libraries. The term
enrichment was set at high stringency.
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