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Abstract

for sesame molecular genetics research.

integrated into 9 main linkage groups.

mapping and marker-assisted selection studies in sesame.

Background: Sesame (Sesamum indicum L.) is one of the most important oil crops; however, a lack of useful
molecular markers hinders current genetic research. We performed transcriptome sequencing of samples from
different sesame growth and developmental stages, and mining of genic-SSR markers to identify valuable markers

Results: In this study, 75 bp and 100 bp paired-end RNA-seq was used to sequence 24 cDNA libraries, and 42,566
uni-transcripts were assembled from more than 260 million filtered reads. The total length of uni-transcript
sequences was 47.99 Mb, and 7,324 SSRs (SSRs 215 bp) and 4,440 SSRs (SSRs 218 bp) were identified. On average,
there was one genic-SSR per 6.55 kb (SSRs 215 bp) or 10.81 kb (SSRs 218 bp). Among perfect SSRs (=18 bp),
di-nucleotide motifs (48.01%) were the most abundant, followed by tri- (20.96%), hexa- (25.37%), penta- (2.97%),
tetra- (2.12%), and mono-nucleotides (0.57%). The top four motif repeats were (AG/CT)n [1,268 (34.51%)], (CA/TG)n
[281 (7.65%)], (AT/AT)n [215 (5.85%)], and (GAA/TTOn [131 (3.57%)]. A total of 2,164 SSR primer pairs were identified
in the 4,440 SSR-containing sequences (218 bp), and 300 SSR primer pairs were randomly chosen for validation.
These SSR markers were amplified and validated in 25 sesame accessions (24 cultivated accessions, one wild
species). 276 (92.0%) primer pairs yielded PCR amplification products in 24 cultivars. Thirty two primer pairs (11.59%)
exhibited polymorphisms. Moreover, 203 primer pairs (67.67%) yielded PCR amplicons in the wild accession and 167
(60.51%) were polymorphic between species. A UPGMA dendrogram based on genetic similarity coefficients
showed that the correlation between genotype and geographical source was low and that the genetic basis of
sesame in China is narrow, as previously reported. The 32 polymorphic primer pairs were validated using an F,
mapping population; 18 primer pairs exhibited polymorphisms between the parents, and 14 genic-SSRs could be

Conclusions: 2,164 genic-SSR markers have been developed in sesame using transcriptome sequencing. 276 of 300
validated primer pairs successfully yielded PCR amplicons in 24 cultivated sesame accessions. These markers
increase current SSR marker resources and will greatly benefit genetic diversity, qualitative and quantitative trait

Background

Sesame (Sesamum indicum L., 2n = 26), belonging to the
Pedaliaceae genus, is an ancient oilseed crop, considered
important for its high quality seed oil [1]. Sesame is cul-
tivated mainly in the tropical and subtropical regions of
Asia and Africa, with a total area of 7.7 million hectares
worldwide and an annual production of 3.98 million
tons (2009, FAO data, http://faostat.fao.org/site/567/
DesktopDefault.aspx?PagelD=567). In China, one of the
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main long-term hindrances in sesame production is the
lack of varieties with high disease resistance and water-
logging tolerance. Genetic diversity among cultivars is
relatively low since all varieties are derived from the one
cultivated sesame species, Sesamum indicum L. The low
level of polymorphism in sesame has been demonstrated
using universal markers such as random amplified poly-
morphic DNA (RAPD) [2,3], inter-simple sequence
repeats (ISSR) [4], amplified fragment length poly-
morphism (AFLP) [5] and sequence-related amplified
polymorphisms (SRAP) [6], and species-specific markers
such as simple sequence repeats (SSR) [7] and expressed
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sequence tags-SSR (EST-SSR) [8]. Inadequate informa-
tion on sesame resistance to biotic and abiotic stresses,
and sesame growth and developmental processes has
created a breeding bottleneck which is unlikely to be
solved in the near future.

Since massive-scale cloning and sequencing of DNA
or EST libraries has been relatively high-cost, low
throughput and time-consuming, the development of
SSR markers has been slow, making it more difficult
to construct a detailed genetic linkage map that can
be used in sesame genetics breeding programs. At
present, including a recently published set of 40 ses-
ame SSR markers derived from a transcriptome study
[7-9], less than 80 polymorphic SSR and EST-SSR mar-
kers are available. At present, only eight EST-SSR mar-
kers are anchored in the first and only sesame genetic
map [10].

Recent advances in large-scale RNA-seq provide a fast,
cost-effective, and reliable approach for the generation
of large expression datasets in non-model species [11-
13], and also offer an opportunity to identify and de-
velop SSRs using data mining with bioinformatic tools.
Compared with genomic SSR markers, these new genic-
SSR markers may help to identify candidate functional
genes and increase the efficiency of marker-assisted se-
lection [14]. We therefore performed sesame RNA-seq
to further our understanding of the sesame transcrip-
tome and to develop large numbers of novel and effi-
cient genic-SSR molecular markers. Here, we analyze the
frequency and distribution of genic-SSRs in the sesame
RNA-seq transcriptome, and validate 300 of our 2,164
SSR markers in 24 cultivated accessions, one wild spe-
cies and one F, mapping population. Our set of SSR
markers will provide a useful tool for sesame genetic re-
search and comparative genome analysis.

Results

Uni-transcript sequences obtained with lllumina
sequencing

We obtained more than 260 million 75 bp or 100 bp
paired-end filtered reads from 24 sesame samples using
high-throughput paired-end RNA-seq. The total length
of the reads was over 45.85 Gbp. Reads were subse-
quently de novo assembled into 342,776 contigs with a
length of over 100 bp, and then further assembled into
42,566 uni-scaffolds with a mean size of 1,127 bp using
paired-end joining and TGI Clustering tools (Table 1).

Mining of genic-SSRs

The 42,566 uni-transcript sequences covered 47,987 kbp
of the sesame genome, and a total of 7,324 (>15 bp) and
4,440 (=18 bp) SSRs, present in 17.21% and 10.43% of
the uni-transcripts respectively, were identified in the
data.
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Types and frequencies of genic-SSRs

We divided the SSRs into three groups according to the
repeat motif classification criteria proposed by Weber
[15], i.e., perfect, imperfect and compound types
(Table 2). Most repeats (SSRs =15 bp: 6,485, 88.54%;
SSRs >18 bp: 3,674, 82.75%) were perfect repeats. Of
these, di-nucleotide repeats were the most abundant
motif type.

In the imperfect and compound SSR categories, only
mono-, di- and tri-nucleotide SSR units were present.
All repeat motifs in mono-nucleotide SSR units were of
the A/T type. AG/CT, CA/TG and AT/AT repeat motif
types were present in di-nucleotide SSR units, while only
GAA/TTC repeat motifs were found in tri-nucleotide
SSR units. Of the six types of SSR units, mono-mono,
di-di-, tri-tri-, mono-di-, mono-tri- and di-tri-nucleotide
types were found in both perfect and imperfect com-
pound SSR categories. The di-di-nucleotide type was the
most abundant, representing more than 80% of all SSRs.

Distribution of repeat motif types

We noted that the proportion of six different SSR unit
sizes was not evenly distributed among perfect SSR
groups. Different repeat units occurred at frequencies of:
1.99% and 0.57% (mono-nucleotides) 39.97% and 48.01%
(di-nucleotides), 28.45% and 20.96% (tri-nucleotides),
5.17% and 2.12% (tetra-nucleotides), 10.05% and 2.97%
(penta-nucleotides), and 14.37% and 25.37% (hexa-
nucleotides), for SSRs >15 bp and >18 bp, respectively
(Figure 1).

A total of 687 and 557 types of repeat motifs were
identified among the 6,485 (SSRs >15 bp) and 3,674
(SSRs =18 bp) perfect SSRs (Table 3). The (A/T)n
mono-nucleotide repeat motif was the most abundant in
both datasets. The five other main unit types were the
(AG/CT)n di-nucleotide, (GAA/TTC)n tri-nucleotide,
(ATAC/GTAT)n tetra-nucleotide, (AAAAG/CTTTT)n
penta-nucleotide and (GAAAAA/TTTTTC)n hexa-
nucleotide repeat motifs, and occurred at frequencies of
98.45% and 100%, 66.86% and 71.88%, 15.12% and
17.01%, 10.15% and 17.95%, 8.59% and 3.67%, and 2.36%
and 2.36%, in SSRs >15 bp and SSRs >18 bp, respect-
ively. Furthermore, it was observed that the G/C repeat
motif type was only present in mono-nucleotide SSR
units in SSRs >15 bp; and the GC/GC repeat motif type
was not observed in di-nucleotide SSR units in either
SSRs >15 bp or SSRs >18 bp.

Of the perfect motif types, the (AG/CT)n di-
nucleotides were the most abundant (SSRs >15 bp, 1,733
(26.72%); SSRs =18 bp, 1,268 (34.51%)), followed by
(CA/TG)n di-nucleotides (469 (7.23%) and 281 (7.65%)),
(AT/AT)n di-nucleotides (390 (6.01%) and 215 (5.85%)),
and (GAA/TTC)n tri-nucleotides (279 (4.3%) and 131
(3.57%)).



Zhang et al. BMC Genomics 2012, 13:316
http://www.biomedcentral.com/1471-2164/13/316

Table 1 Transcriptome statistics
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Contig length Number Percentage (%) Uni-scaffold length Number Percentage (%)
100~ 200 bp 205,735 60.02 100~ 200 bp 4,613 10.84
201 ~300 bp 70,767 20.65 201 ~300 bp 5,727 1345
301 ~400 bp 26,685 7.79 301 ~400 bp 3,786 8.89
401 ~500 bp 14,143 413 401 ~500 bp 2,709 6.36
501 ~600 bp 8,174 2.38 501 ~600 bp 2,053 4.82
601~ 700 bp 5,052 147 601 ~700 bp 1,756 413
701 ~800 bp 3,336 097 701 ~800 bp 1,534 3.60
801 ~900 bp 2,332 0.68 801 ~900 bp 1415 332
901~ 1000 bp 1514 044 901~ 1000 bp 1,343 3.16
1001 ~ 2000 bp 4,567 1.33 1001 ~ 2000 bp 10,256 24.09
2001 ~ 3000 bp 422 0.12 2001 ~ 3000 bp 4616 10.84
3001 ~ 10 kbp 49 0.01 3001 ~ 10 kbp 2,734 642
>10 kbp 0 0.00 >10 kbp 24 0.06
Total Contigs 342,776 100.00 Total Uni-scaffolds 42,566 100.00
Total Length (bp) 82,262,551 Total Length (bp) 47,986,977

N50 Length (bp) 263 N50 Length (bp) 1,901

Mean Length (bp) 239 Mean Length (bp) 1127

Further analysis indicated that the copy number of dif-
ferent repeat motifs in perfect SSRs sequences was dis-
tributed unevenly (Table 4). The copy number of
different repeat motifs varied from 3 to 26, with the
(AG/CT)n di-nucleotide repeats having the highest copy
number. The four most frequent copy numbers for SSRs
215 bp were 3 (19.81%), 5 (18.13%), 8 (14.09%) and 9
(9.16%), while 3 (20.20%), 9 (16.17%), 6 (12.82%) and 10
(10.13%) were the most frequent copy numbers for SSRs
>18 bp. The longest SSR length in each unit type (from
mono- to hexa- nucleotide repeats) was 25 bp (A/T),
52 bp (AG/CT), 51 bp (GAA/TTC and TGA/TCA),
32 bp (TATG/CATA and TACA/TGTA), 55 bp
(ATTCC/GGAAT) and 48 bp (TGATGG/CCATCA).

PCR amplification and polymorphism of genic-SSRs

Using Primer3, 2,164 SSR primer pairs were detected in
the 4,440 SSR-containing sequences (SSR >18 bp) and
300 SSR primer pairs were randomly selected and
synthesized to validate their level of polymorphism
(Additional file 1: Table S1). Of these primer pairs, 7
(2.33%) amplified non-specific products, and 17 (5.67%)
gave no products in any of the sesame accessions. 276
(92.0%) primer pairs yielded amplification products in
the 24 cultivars, of which 32 (11.59%) exhibited poly-
morphisms. A total of 74 alleles were detected with
these 32 primer pairs and the number of alleles ranged
from 2—4 per genic-SSR marker, with a mean of 2.31. As
shown in Figure 2, the HS233 SSR marker detected the
maximum number of alleles (4). 203 (67.67%) of the SSR

primer pairs yielded PCR amplicons in the wild acces-
sion, 167 (60.51%) of which were polymorphic between
the wild accession and cultivated accessions.

Phylogenetic analysis of the 24 cultivated sesame
accessions

In order to evaluate their ability to assess molecular di-
versity and their potential for use in fingerprinting ana-
lysis, we calculated the PIC values of the above genic-
SSR markers, based on the allelic variation exhibited by
32 polymorphic primer pairs in 24 cultivated accessions.
PIC values ranged from 0.08 to 0.67, and had an average
value of 0.34 (Additional file 1: Table S1), with primer
HS233 giving the maximum PIC value of 0.67. Phylogen-
etic relationships between the cultivars were assessed by
constructing a UPGMA dendrogram using similarity
coefficients (Figure 3). At a similarity coefficient>0.75,
the largest subgroup consisted of 15 accessions, com-
prising 7 Chinese-released cultivars, 5 Chinese local ses-
ame accessions and 3 exotic sesame accessions. The M5
accession (Gonder-2) had the lowest similarity value of
0.49 and was clustered into a distant subgroup. The next
most distant cultivars were M16 and M7, splitting into
subgroups at similarity values of 0.66 and 0.64, respect-
ively. Our results indicate that geographic sources of the
accessions in this study do not correspond well with the
genetic distances between accessions and as a result the
genetic relationships among exotic, local germplasm and
cultivars are not clear.
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Table 2 Repeat motif type distribution in >15 bp and >18 bp genic-SSRs
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Repeat motif type SSRs >15 bp SSRs >18 bp
Number Frequency (%) Number Frequency (%)
Perfect Mono- 129 1.99 21 057
Di- 2,592 39.97 1,764 48.01
Tri- 1,845 2845 770 20.96
Tetra- 335 517 78 212
Penta- 652 10.05 109 297
Hexa- 932 1437 932 2537
Total 6,485 100.00 3674 100.00
Imperfect Mono- 82 3727 77 3831
Di- 137 6227 123 61.19
Tri- 1 045 1 0.50
Total 220 100.00 201 100.00
Compound Perfect Mono-Mono- 35 14.29 22 9.78
Di-Di- 199 8122 193 85.78
Tri-Tri- 4 1.63 4 1.78
Mono-Di- 4 1.63 3 1.33
Mono-Tri- 2 0.82 2 0.89
Di-Tri- 1 041 1 044
Total 245 100.00 225 100.00
Imperfect Mono-Mono- 12 321 12 353
Di-Di- 352 94.12 318 93.53
Tri-Tri- 6 1.60 6 1.76
Mono-Di - 1 0.27 1 029
Mono-Tri- 1 0.27 1 0.29
Di-Tri- 2 053 2 0.59
Total 374 100.00 340 100.00
Total 7,324 4,440
Genetic mapping Discussion

The analysis above indicated that 18 markers (6.52%)
were polymorphic between the parents of our mapping
population (M16 and M17). After screening the 96 F,
mapping population, 14 genic-SSR markers were distrib-

uted among 9 linkage groups (Figure 4).

mer pairs (SSRs >18 bp).

In order to identify useful SSR markers and obtain tran-
scriptomic information on disease resistance and devel-
opmental processes, we sequenced the transcriptomes of
24 sesame samples and identified 2,164 genic-SSR pri-

Frequency (%)
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Figure 1 Frequency distribution of the six perfect SSR unit types.
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Table 3 Number and frequency of six types of perfect
SSR repeat motif in sesame

SSR motif Repeat motif number and frequency Most abundant

unit SSR >15 bp SSR >18 bp type

Mono- 2 (029%) 1 (0.18%) (A/Dn

DI- 3 (0.44%) 3 (0.54%) (AG/Cn

Tri- 18 (2.629%) 18 (323%) (GAA/TTON

Tetra 50 (7.28%) 33 (5.92%) (ATAC/GTAT)
Penta- 184 (2678%) 72 (12.93%) (AMAAG/CTTTDN
Hexa- 430 (6259%) 430 (77.20%) (GAAAAA/TTTTTON
Total 687 (100%) 557 (100%)
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Genic-SSR markers are considered to have strong po-
tential for genetic analysis and linkage map construction
in crop species due to their specificity and high degree
of conservation [16-21]. Although 120 EST-SSRs have
previously been developed from 3,428 EST sequences
and utilized in sesame genetic diversity analysis and
mapping [8,10,22], polymorphic markers are few, and
marker-assisted gene mapping for important sesame
traits or biological processes such as disease resistance,
sesame growth and development, and seed formation
has thus not been widely implemented.

Genic-SSR distribution

Here, to accurately analyze the frequency of SSRs in the
transcribed regions of the sesame genome, we compared
the numbers and types of SSR motif sequences of SSRs

Table 4 Frequency of different repeat motifs in perfect SSRs (>15 bp and >18 bp)

Number of Motif copies Mono- Di- Tri- Tetra- Penta- Hexa- Total Frequency (%)
2 0 0 0 0 0 0 0 0.00 (0.00)
3 0 0 0 0 543 742 1,285 (742) 19.81 (20.20)
4 0 0 0 257 93 150 500 (243) 7.71 (6.61)
5 0 0 1,075 59 10 32 1,176 (101) 18.13 (2.75)
[§ 0 0 452 14 1 4 471 7.26 (12.82)
7 0 0 169 3 1 3 176 2.71 (4.79)
8 0 828 81 2 2 1 914 (86) 14.09 (2.34)
9 0 549 45 0 0 0 594 9.16 (16.17)
10 0 358 13 0 1 0 372 574 (10.13)
" 0 254 4 0 1 0 259 3.99 (7.05)
12 0 178 2 0 0 0 180 278 (4.90)
13 0 103 1 0 0 0 104 1.60 (2.83)
14 0 70 0 0 0 0 70 1.08 (1.91)
15 51 50 0 0 0 0 01 (50) 1.56 (1.36)
16 40 52 1 0 0 0 93 (53) 43 (1.44)
17 17 28 2 0 0 0 47 (30) 0.72 (0.82)
18 1 19 0 0 0 0 30 046 (0.82)
19 4 7 0 0 0 0 1 0.17 (0.30)
20 2 16 0 0 0 0 18 0.28 (0.49)
21 0 10 0 0 0 0 10 0.15(0.27)
22 1 19 0 0 0 0 20 031 (0.54)
23 0 23 0 0 0 0 23 0.35 (0.63)
24 2 21 0 0 0 0 23 035 (063)
25 1 5 0 0 0 0 6 0.09 (0.16)
26 0 2 0 0 0 0 2 0.03 (0.05)
Total 129 2,592 1,845 335 652 932 6,485 100.00

(1) (1,764) (770) (78) (109) (932) (3,674)
Frequency (%) 1.99 3997 2845 5.17 10.05 14.37 100.00

(0.57) (48.01) (20.96) (2.12) (297) (25.37)

Data for SSRs >18 bp is given in brackets.
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100bp

Figure 2 Polymorphism of the primer HS233 in 25 sesame accessions. 6% PAGE of 24 cultivar accessions and one wild species M: DNA
marker; Lanes 1~ 25: Samples M1~ 25 (Additional file 2).

\

>15 bp and >18 bp. A total of 7,324 (17.21%) (SSRs Distribution of repeat motif types

>15 bp) and 4,440 SSRs (10.43%) (SSRs >18 bp) were  Of the perfect repeat motifs types, tri-nucleotide repeats
identified in 42,566 uni-transcript sequences, with an  have generally been observed to have the highest fre-
average of one SSR per 6.55 kb and 10.81 kb, respect- quency in many crops, including cotton, barley, wheat,
ively. By the parameter of sequence length (Kb) per SSR  maize, sorghum, rice and peanut [25-27]. However, here,
marker, the distribution frequency of genic SSRs is both  as in previous studies on sesame and some Rosaceae
lower than that of previous EST-SSRs developed from  species, the most abundant repeat motif type was the di-
EST sequences in sesame (8.68% (SSRs >18 bp), one nucleotide [8,28]. Hexa-nucleotide repeats were the sec-
EST-SSR per 4.99 kb) [8]. This frequency of occurrence  ond most abundant (25.37%), followed by tri-nucleotides
of sesame genic-SSRs (SSRs =18 bp) is relatively higher  (20.96%) in SSRs =18 bp. Moreover, of the hundreds of
than in other crops, including wheat (one EST-SSR per  types of repeat motifs, the (AG/CT)n di-nucleotide
17.42 kb), rice (one per 11.81 kb), maize (one per motifs showed the highest frequency, in agreement with
28.32 kb) and soybean (one per 23.80 kb) [23]. Further- recent results in sesame and other species [8,27,29,30].
more, it has been emphasized that the frequency of SSRs  As in other dicot plants, such as Arabidopsis [29], soy-
is correlated with many factors, such as SSR detection bean [23] and peanut [26], but different from some
criteria, dataset size, database-mining tools, different cereal species [27,31,32], the (GAA/TTC)n motif was
species and different materials [8,24]. the most abundant of the tri-nucleotide repeat motifs.
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Figure 3 UPGMA dendrogram of the genetic relationships among 24 cultivated sesame accessions. The dendrogram was generated using
the Jaccard similarity coefficient based on 32 polymorphic primer pairs.
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Figure 4 Distribution of 14 new polymorphic SSR markers across the 9 linkage groups of the F2 backbone genetic linkage map. * new
sesame genic-SSR markers.

Similar to wheat, sorghum and peanut [26,27], the GC/
GC repeat was not found in any of the perfect and im-
perfect SSR categories in sesame.

Polymorphic nature of the genic-SSR markers

To determine the level of polymorphism among our set
of new genic-SSR markers, we validated 300 primer pairs
using 25 sesame accessions. 276 (92.0%) successfully
yielded PCR amplicons, in line with previously reported
ratios of 60-92.2% amplification [8,23,28,33-36]. 203
(73.55%) of the genic-SSRs that yielded amplifiable pro-
ducts in cultivated sesame also produced PCR amplicons
in a wild sesame species. The ratio of polymorphic SSR
was similar to that for EST-SSRs in other crops with a
range of 40-89% [16,17,31,37,38].

Some reports indicated that the low polymorphism of
SSR markers in sesame is likely due to its narrow genetic
basis [7,8]. Dixit et al. (2005) found that only ten out of
50 SSR markers developed from a sesame DNA library
were polymorphic in 16 sesame accessions [7]. Wei et al.
(2008) developed 50 EST-SSR markers from the 3,328
sesame ESTs published in NCBI, and found that only 27
(61.4%) were polymorphic in the 36 sesame accessions

tested (34 cultivated sesame accessions and 2 wild ses-
ame accessions) [8]. In this study, a similar level of poly-
morphism was observed; only 32 (11.59%) genic-SSR
markers were polymorphic in 24 cultivars, 18 (6.52%)
were polymorphic in one mapping population, and 167
(60.51%) were polymorphic between the 24 acessions
and a wild sesame accession. Furthermore, the level of
polymorphism in sesame was also similar to other crops
[21,26]. In wheat, no more than 6.25% of primers exhibit
polymorphisms between the parents of any individual
mapping population, although 81.25% of detected EST-
SSRs have been reported to exhibit polymorphisms in 18
alien species [21]. In peanut, 26 (10.3%) EST-SSRs exhib-
ited polymorphisms between 22 cultivated peanut acces-
sions and 221 (88%) were polymorphic between 16 wild
peanut species [26].

Our results indicate that large numbers of poly-
morphic SSR markers can be obtained when large
volumes of transcript sequences or datasets are used,
even though genetic diversity is restricted in sesame cul-
tivars. Compared with other SSR detection methods, the
de novo RNA sequencing approach used here is well-
suited for mining and developing large numbers of
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genic-SSRs in sesame, and can rapidly enrich the num-
bers of functional markers available to use in marker-
assisted gene selection and QTL analysis.

Phylogenetic analysis of 24 cultivated sesame accessions
Our dendrogram, based on genetic similarity results, did
not divide our sesame accessions into clear groupings.
The distribution of these sesame accessions was not
based on their geographical sources, in agreement with
some previous reports [2-5]. The average PIC value of
genic-SSRs obtained here was 0.34, similar to that
obtained in our previous study [8]. Most of the varieties
released in China were clustered in the same subgroup
in the dendrogram, suggesting the limited genetic diver-
sity and narrow basis of Chinese sesame cultivars. To
enlarge the genetic basis, more exotic accessions should
be used in future sesame breeding programs. One possi-
bility would be to introduce Gonder-2 (M5, Ethiopia),
the outlying accession in our dendrogram, as a parent
for sesame breeding or other genetic research.

Utilization of genic-SSR markers in genetic mapping

We anchored 14 of our newly developed genic-SSR mar-
kers in the sesame genetic map (Figure 4), nearly twice
the number of those anchored in recent sesame genetic
map study [10]. Using these newly designed genic-SSRs,
the density of SSR markers in the sesame genetic map
will greatly increase in the near future. In addition, puta-
tive functions of 11 of the 14 anchored genic-SSRs were
identified with BLASTX. These genic-SSRs will be very
valuable in studies of gene mapping, comparative gen-
ome analysis and marker-assisted selection.

Conclusions

2,164 genic-SSR markers were identified from 42,566
uni-scaffolds in a comprehensive transcriptome study.
276 of the 300 primer pairs chosen for validation suc-
cessfully yielded PCR amplicons in 24 cultivated sesame
accessions. This set of genic-SSR markers will be valu-
able for genetic research in sesame on aspects such as
growth and development processes or biotic stress traits,
since our transcriptome data was derived from different
organs, developmental stages, and stress treatments.

Methods

Plant materials

The 24 samples analysed in RNA-seq experiments (Add-
itional file 2: Table S2), included four accessions of culti-
vated sesame (Sesamum indicum L., 2n =26), one wild
species (Sesamum radiatum Schum. & Thonn., 2n = 64)
and their distant hybrid progeny. Samples were grown
under normal conditions in a greenhouse at 25°C with
14 h light per day, or in an experimental field at Yua-
nyang Experimental station, HAAS. To evaluate biotic
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stress, seedlings were inoculated with a 10°/mL conidio-
phore suspension of Fusarium oxysporum f. sp. sesami
(No. HSFO 09030) for 0, 6, 24 or 48 h at 25°C in a
greenhouse before harvesting. Control plants were
inoculated with sterilized water. Plant parts, including
the whole seedling, developing seeds (harvested at differ-
ent days after flowering (DAF)), germinated seeds, and
developing flowers (1-8 mm size), were harvested,
immersed in liquid nitrogen and stored at -70°C before
RNA extraction.

The 24 cultivated accessions and one wild species used
(Additional file 3: Table S3) to validate the polymorphic
nature of genic-SSR candidate markers were samples
from the sesame germplasm collection at the Henan
Sesame Center, HAAS, Zhengzhou, China. The F, segre-
gating population used to validate the 300 sesame genic-
SSR marker candidates consisted of 96 lines and was the
same as that used in the construction of the first sesame
genetic map [10].

RNA isolation and library preparation

Total RNA was isolated with TRIzol (Invitrogen) accord-
ing to the manufacturer’s instructions and total mRNA
was then purified using oligo (dT) magnetic beads.
c¢DNA libraries were prepared according to Illumina se-
quencing sample preparation protocols. In total, 24
paired-end cDNA libraries were constructed with an in-
sert size ranging from 280 bp to 320 bp.

lllumina sequencing and de novo transcriptome assembly
cDNA libraries were sequenced on an Illumina sequen-
cing platform (GAII) using a 75 bp or 100 bp paired-end
approach. Integrated high-quality paired-end Illumina
reads (>Q20) were assembled using the de novo assem-
bler Velvet and Oases [39]. After all adaptor sequences,
empty reads and low quality sequences were removed
from the raw reads, the resultant contigs were built into
uni-scaffolds based on paired-end information using
TGI Clustering (TGICL) tools [40].

SSR detection and development of primer pairs

To detect SSR markers, 42,566 uni-transcript sequences
containing 2-6 repeat motifs were screened using SSRIT
[41], and mono-nucleotide SSRs were identified using its
EditPlus function. The SSR motif detection criterion was
a minimum length of either 15 or 18 bases. Primers for
the >18 bp genic-SSRs in microsatellite sequences were
designed with Primer3 [42], based on the following core
criteria: a G/C content between 40% and 70%, an anneal-
ing temperature between 54°C and 63°C, a minimum
product length of 100 bp, and a primer length of 18-24
nucleotides. All candidate SSR primer pairs were synthe-
sized by BGI (Shenzhen, China). Functional analysis of
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the transcriptome sequences was carried out with blastn
and blastx (NCBI).

DNA extraction, PCR amplification and electrophoresis

To validate the SSR markers, genomic DNA was
extracted from 25 accessions as described by Paterson
et al. [43]. DNA amplification was performed in a 10 pL
reaction mixture containing 1 x Buffer, 2.0 mmol/L
MgCl,, 0.1 mmol/L dNTPs, 1 pmol/L of each primer,
0.5 U Taq polymerase, and 80 ng template DNA. SSR-
PCR amplification was performed on a PTC-225 ma-
chine (M] Research, MA, USA) using the following pro-
file: 1 cycle of 3 min at 94°C, 31 cycles of 1 min at 94°C,
50 s at 56-63°C, 1 min at 72°C and a final cycle of
6 min at 72°C. Amplicon electrophoresis was performed
as described by Zhang et al. [44].

SSR genetic similarity analysis and mapping

To estimate the allelic variation of SSRs in the 25 acces-
sions, the polymorphism information content (PIC) of
each SSR primer was calculated as following: PIC =1-
S Pi%, where Pi is the frequency of the i ™ allele for a
given SSR marker, and # is the total number of alleles
detected for that SSR marker [45]. Coefficients of genetic
similarity for the 24 cultivated accessions used in this
study were calculated using the SIMQUAL program of
NTSYS-pc Version 2.10 [46]. A neighbor-joining den-
drogram was constructed based on the genetic similarity
matrix with the SHAN clustering program [33,47] of
NTSYS-pc using the UPGMA algorithm. We used 18 of
our new polymorphic markers to screen the 96 F, segre-
gation population, 14 of which were integrated into the
first sesame genetic linkage map using JoinMap ver. 3.0
program [48].

Additional files

Additional file 1: Characteristics of sesame genic-SSR primers used
in this study. The SSR primer name, primer sequence, annealing
temperature, repeat motif, product length, allele no., PIC value, E-value
(nr) and annotation (nr) are given.

Additional file 2: 24 sesame samples used for RNA-seq.

Additional file 3: Characteristics of the 25 sesame accessions used
in the SSR validation. M1 ~ M8 are exotic sesame accessions from 8
countries; M9 ~M16 are China released sesame cultivars, M17 ~M24 are
China local sesame accessions, M25 is a wild species (Sesamum radiatum).
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