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Abstract
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in the CNVtools package.

Background: Structural variations such as copy number variants (CNV) influence the expression of different
phenotypic traits. Algorithms to identify CNVs through SNP-array platforms are available. The ability to evaluate
well-characterized CNVs such as GSTMT (1p13.3) deletion provides an important opportunity to assess their

Results: 773 cases and 759 controls from the SBC/EPICURO Study were genotyped in the GSTMT region using
TagMan, Multiplex Ligation-dependent Probe Amplification (MLPA), and lllumina Infinium 1 M SNP-array platforms.
CNV callings provided by TagMan and MLPA were highly concordant and replicated the association between
GSTM1T and bladder cancer. This was not the case when CNVs were called using lllumina T M data through available
algorithms since no deletion was detected across the study samples. In contrast, when the Log R Ratio (LRR) was
used as a continuous measure for the 5 probes contained in this locus, we were able to detect their association
with bladder cancer using simple regression models or more sophisticated methods such as the ones implemented

Conclusions: This study highlights an important limitation in the CNV calling from SNP-array data in regions of
common aberrations and suggests that there may be added advantage for using LRR as a continuous measure in
association tests rather than relying on calling algorithms.
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Background

The glutathione S-transferase mu 1 (GSTMI) gene is
located in the 1p13.3 band and codes for the cytosolic
enzyme GST-p that plays a role in carcinogen detoxifica-
tion. Many structural variations have been described that
overlap this gene in the Database of Genomic Variation
[1] (Figure 1). A common copy number variant (CNV)
has been well characterized and reported on the basis of
the frequency of homozygous deletions of the entire
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coding region (known as the GSTMI-null genotype),
which varies between 29% and 51% across ethnic groups
[2-4].

Due to the established role of GSTM1I in detoxification
and the high frequency of homozygous deletions in the
population, GSTMI has been extensively investigated in
association with many chronic diseases, in particular,
with asthma [5] and different types of cancers [4,6], in-
cluding bladder cancer [7]. In a large case—control study,
we reported that 63% of bladder cancer cases and 47%
of controls harbored the GSTMI-null genotype, leading
to an OR=1.7 (95%CI 1.4 — 2.0) [8]. This is a well-
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Figure 1 GSTM1 locus and reported CNVs. Source: Database of Genomic variation, accessed June 2011.

established association as it was replicated in several in-
dependent studies and confirmed in a meta-analysis [8].

Reliable and accurate technologies such as qPCR or
Multiplex Ligation-dependent Probe Amplification
(MLPA) are available to genotype CNVs in targeted
regions of the genome. High-throughput SNP-array plat-
forms now offer the possibility to explore CNVs at a
genome-wide scale. For instance, Illumina Infinium 1 M
provides intensity data of both alleles at each SNP allow-
ing the detection of CNV breakpoints and the estima-
tion of the associated number of copies. Monomorphic
probes were also included in genomic regions known to
harbor CNVs but that were not well covered by SNPs.
Opverall, this platform contains 1,071,820 probes, among
them 206,665 are located in reported CNV regions and
17,202 are monomorphic probes specially designed for
CNV purpose.

Assessing CNV data across the genome-wide level
using SNP-arrays is a daunting problem and requires
stringent quality control (QC) measures to minimize the
noise related to an analytical scheme that relies on sliding
windows across SNPs [9-11]. The assessment also
requires that CNVs is called based on the raw intensity
data (Log-R ratio, LRR) from each probe. Several calling
algorithms, such as PennCNYV, have been developed
[9,10,12,13] but these algorithms have a very low sensitiv-
ity when applied to large data sets [14-16]. In turn, the
probability of false negatives remains a major challenge.

To limit false negative callings, a strategy that by-
passes the calling step and directly performs the associ-
ation test using LRR measures has been proposed
[17-19]. Alternatively, methods have been developed
allowing the simultaneous calling and association test es-
timation. These methods account better for the calling
uncertainties but are yet to be validated in sufficiently
large studies [20,21].

The objective of this study was to compare the assess-
ment of a CNV at the GSTM1I locus and its association
with bladder cancer by applying LRR and PenCNV to
data derived from the Illumina Infinjum 1 M SNP-array
platform with that derived from TagMan (qPCR) and
MLPA genotyping in subjects included in the Spanish
Bladder Cancer/EPICURO (SBC/EPICURO) Study.

Methods
Samples
The SBC/EPICURO Study is a hospital-based case—con-
trol study conducted between 1998 and 2001 and
described in detail elsewhere [8]. In summary, 18 hospi-
tals in 5 Spanish regions (Barcelona, Vallés/Bages, Ali-
cante, Asturias, Tenerife) participated in the Study with
a total of 1,219 cases and 1,271 controls having been
interviewed. Controls were matched to cases for gender,
age and hospital. Detailed epidemiological information
of known and potential risk factors for bladder cancer
was collected. Genomic DNA was available for most of
the individuals; and after exclusion based on DNA qual-
ity, tumor morphology and ethnicity [8], a total of 2,314
individuals (1,157 cases and 1,157 controls) were suitable
for the genetic analysis.

Informed consent from all subjects and ethical ap-
proval from local and NCI, USA, institutional review
boards were obtained.

GSTM1 genotyping

Three genotyping methods were applied to assess the
number of copies at the GSTM1 locus. TagMan assays
were conducted at the Genotyping Core Facility — Na-
tional Cancer Institute (CGF-NCI), USA, using the
SNP500CancerID: GSTM1-02 probe [8]. MLPA assays
were performed at the Pompeu Fabra University (UPF,
Barcelona) by using optimized custom probes described
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elsewhere [22]. A genome-wide Illumina Infinjum 1 M
SNP-array scan was performed at the CGF-NCI, USA
[7]. The latter platform provided information on 5
probes located in the the GSTM1I locus (Figure 1).

While a different number of individuals were analyzed
by each platform, a common set of 1,532 blood-derived
samples (773 cases and 759 controls) was available for
comparison. Details on the sample sets used for each
genotyping platforms are provided in Additional file 1
Table S1 and Additional file 1 Figure S1.

Retrieving CNV information from lllumina Infinium 1 M
SNP-array

The Beadstudio software (Illumina Inc.) was used to
process the data. Briefly, for each SNP probe, allele spe-
cific fluorescence intensities corresponding to the two
alleles, named respectively A and B, were obtained and
normalized to adjust for global differences in intensity
and to scale the data as described in [23]. Genotype
clusters have been calculated using our own data. The
reliability of the SNP genotyping was evaluated through
the analysis of duplicated samples; the observed con-
cordance was >99.5%. The log R Ratio (LRR) was com-
puted by taking the log2 value of the ratio of the sum of
the normalized intensities, Rops, divided the value Rey,
expected based on the genotype clusters. The LRR value
depends on the number of CNV copies carried by the in-
dividual: typically for individuals belonging to the geno-
type clusters who carry only 2 copies (normal state), the
LRR is around 0, while for individuals carrying less or
more copies, the LRR is expected to be negative and
positive, respectively. Beadstudio also computes the pro-
portion of B alleles in the genotype, referred to as the B
allele frequency or BAF, from the normalized intensities.
For individuals carrying two copies, the BAF should be
around 0, 0.5 or 1, depending on whether their geno-
types are AA, AB, or BB, respectively.

For CNV calling, we used PennCNYV [9] as, for our data
set we obtained a better reliability (0.65) based on repli-
cated samples for this algorithm in comparison to other
two algorithms [16]. PennCNV implements a Hidden-
Markov model (HMM) in which the hidden states are
the number of copies (from 0 to 4 copies), and the
observed states are the LRR and the BAF values at each
probe. One of the HMM parameters is the vector of
expected LRR values for each hidden state, the default
values for 0, 1, 2, 3 and 4 copies are respectively -3.53,
-0.66, 0, 0.40 and 0.68. According to PennCNV authors
recommendations, we excluded all individual samples
fulfilling at least one of the following criteria: a standard
deviation of the LRR values over the 1 M probes > 0.28, a
median BAF value out of the range [0.45 - 0.55], a BAF
drift >0.002, a wave factor out of [-0.04 - 0.04]. The BAF
drift summarizes the departure of the BAF from the
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expected values when 2 copies (0, 0.5 and 1). The wave
factor aims to identify samples in which the LRR is not
consistent across the genome; it summarizes the variabil-
ity of the average LRR values in sliding windows.

Statistical method for association testing with LRR
The association between GSTM1 signal and bladder can-
cer risk was first tested using the LRR values. To this
end, we used logistic regression models where, after ad-
justment for gender, age, region and tobacco consump-
tion, the disease status was modeled as a function of the
LRR at each of the five probes located in the gene (5
tests were performed). Second, we applied the associ-
ation testing method implemented in the CNVtools
package, which unifies genotyping and association test-
ing into a single model by incorporating a dichotomous
disease variable into the mixture model for the signal
[20]. As recommended by the authors, the method was
run using a summarized measure of the LRR across the
5 SNPs located in the GSTMI gene obtained after apply-
ing a principal component analysis and followed by a
linear discriminant function. This analysis was also
adjusted for gender, region, tobacco consumption and
age. Since CNVtools only allows the adjustment for
qualitative variables, we categorized the age in 4 classes
according to its quartiles.

Analyses were performed using the statistical software
R2.9. (http://www.r-project.org) and the Vennarable R
package (Jonathan Swinton).

Results

The concordance rate between TagMan and MLPA for
GSTM1I-null identification was high but not complete:
96.2% over the entire sample (cases and controls) and
95.8% when considering only the controls. TagMan and
MLPA detected 402 (52.96%) and 401 (52.83%) controls
carrying a homozygous deletion, respectively, and 289
controls (38.1%, both platforms) carrying a heterozygous
deletion (Additional file Table S2). These values were
consistent with the reported rate of deletion in the Euro-
pean population. In contrast, when we conducted an
analysis with PennCNV on the Illumina 1M SNP-array
data, no deletion was detected among the 759 controls
and 773 cases.

As shown in Figure 2, the average LRR values for the 5
[lumina probes located at the GSTM1I locus was higher
than expected based on the number of copies reported
by TagMan or MLPA. Indeed, for the individuals with
two copies according to both TagMan and MLPA, the
LRR for the five probes was 0.17 on average, higher than
0, the value expected when 2 copies of the gene are
present. Similarly, although negative LRR values are
expected when a deletion is present, we observed posi-
tive values (0.08) in individuals with one copy and only
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Figure 2 LRR distribution according to CNV callings. Average LRR from the 5 probes located at GSTMT according to the CNV calling obtained

from TagMan, MLPA and lllumina/PennCNV.

slightly negative values (-0.10) in individuals with a
homozygous deletion according to TagMan and MLPA
callings. These differences between the observed pattern
of LRR at the GSTM1 locus and the one expected by the
PennCNYV algorithm could explain that no detection was
detected by PennCNV.

However, there was a strong correlation between LRR
values and the estimated number of copies using Taq-
Man or MLPA (analysis of variance - p < 10™*°), suggest-
ing that the LRR values might be useful as an
exploratory approach (Figure 2). Using LRR values from
each of the five probes as explanatory variables in the lo-
gistic regression models, we detected the association
with bladder cancer risk for three of them: (rs4147567:
p=8.00x10"% rs2239892: p=0.01 and rs12068997:
p=0.02) (Table 1). Estimated OR at the 5 SNPs (Table 1)
was <1.0 indicating that an increase of the LRR was pro-
tective for bladder cancer, which was concordant with
the evidence in the literature. Indeed, applying the call-
ings provided by TagMan and MLPA in this sample, we
obtained a significant association (p=3.40x10% OR=
0.74 [0.62-0.87] and p=1.15x 10% OR=0.72 [0.61-
0.85], respectively) between the trend on the number of
copies at GSTM1 and bladder cancer risk.

Table 1 Association between GSTM1 and bladder cancer

When using CNVtools to test for association, indivi-
duals were clustered into two categories based on their
copy numbers. These categories fitted well with their ac-
tual status of having a homozygous deletion or not as
detected by MLPA or TagMan. We observed a high con-
cordance rate, 93.7% and 93.0%, between CNVtools clus-
tering and TagMan and MLPA callings across the overall
sample set. An association signal was detected (OR=
0.66, p = 1.74 x 10°%) using this method adjusting for age,
gender, region and tobacco use, replicating the known
association between GSTM1I and bladder cancer.

Discussion

Genome structural variants and, particularly CNV, are
thought to play an important role in phenotypic vari-
ation and in the development of many complex dis-
eases. In the last few years, several calling algorithms
have been developed to identify CNVs at the whole
genome scale using the same SNP-chips used to per-
form GWAS. However, studies that have evaluated the
available tools have concluded that they lack sensitivity
leading to a large number of false negative callings [14-
16]. While PennCNV algorithm was found to be the
one performing the best in previous comparisons, here

Controls Cases
Data N average (std) of LRR N average (std) of LRR OR [95% CI] p-value
rs12068997 (110,032,359) 756 —0.0091 (0.1066) 767 —0.0223 (0.1086) 0.30[0.11-0.82] 0.0190
rs4147567 (110,034,047) 757 —0.0138 (0.2810) 767 —0.0642 (0.2661) 0.51 [0.35-0.76] 847x 10"
rs1056806 (110,034,670) 757 —0.0031 (0.1105) 767 —0.0096 (0.1061) 0.67 [0.25-1.80] 04279
rs12562055 (110,034,988) 756 —0.0001 (0.1266) 767 —0.0069 (0.1244) 0.83 [0.36-1.95] 0.6754
rs2239892 (110,035,809) 757 —0.0216 (0.2099) 767 —0.0474 (0.2043) 0.51 [0.30-0.85] 0.0103
CNVtools 756 767 0.66 1.74%107
TaqMan 757 767 0.74 [0.62-0.87] 340x10™
MLPA 757 767 0.72 [0.61-0.85] 115%10™

The association was performed by logistic regression models adjusted for age, gender, region and smoking status.
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we demonstrate the lack of sensitivity of PennCNV in a
particular scenario. In the well-characterized region of
GSTM1I, we found that PennCNV did not detect any
deletion in a large sample of cases with bladder cancer
and controls where homozygous deletion was known to
have a frequency of 50% using Tagman and MLPA
technologies. Because PennCNV was designed to iden-
tify unknown CNV regions, we also applied the cnvHap
algorithm that was designed to genotype known CNV
regions [24]. As expected, cnvHap did not detect any
deletion in the GSTMI region in our sample, either. It
is noteworthy the fact that, using CNV calls derived
from Illumina 1 M platform, GSTMI would have never
been associated with bladder cancer. However, when in-
dividual probe LRR values are compared between cases
and controls, the association can be detected and pro-
vide results similar to those obtained when using Taq-
man or MLPA. This observation clearly shows that
PennCNV lacks sensitivity to detect CNV in the
GSTM1 region.

A possible explanation for the lack of sensitivity of
PennCNV (and cnvHap) is the high frequency of the
GSTM]1 deletion in the studied population. Indeed, CNV
calling is done using the LRR that depends both on the
observed (R,hs) and the expected (Rey,) R values. The
Rexp is determined based on the clusters of genotypes. In
the case of GSTM1 where the homozygous deletion is
very frequent, these clusters include a high number of
subjects with a homozygous deletion (GSTMI-null geno-
type). Thus, Rops and Ry, are expected to be similar in a
GSTM1I-null individual and, accordingly, the LRR value
is around 0. The normalization process could also play a
role as it aims at finding three clusters and this is not
possible for GSTM1I locus since the BAF of homozygous
deleted sample is uniformly distributed between 0 and 1,
thus normalization is affecting the intensity values, too.

The fact that the association between GSTM1 CNV
and bladder cancer can be detected with LRR values
without applying a calling CNV confirms the utility of
this measure as a complementary screening strategy to
test for association at the genome-wide level, as already
suggested [17-19]. Indeed, the LRR is a continuous
measure that approximates and correlates well with the
actual discrete number of copies. Nonetheless, it is
affected by the noise contained in the intensity measure-
ment of both alleles obtained through the hybridization
experiments. Thus, using LRR in the association test
may decrease the power of some probes in detecting the
association in comparison of using an accurate calling of
the discrete number of copies. This loss of power would
explain that two of the five probes located in the
GSTM1 locus failed to show association with bladder
cancer risk in our study, and that the three significant
probes only showed a moderate significant p-values

Page 5 of 7

(between 8x10™* and 0.019, Table 1). Nevertheless, even
if the significance of these probes was moderate, we
observed an excess of significant p-values in comparison
to what we could expect under the null hypothesis of no
association in that region. Thus, methods working at the
genome-wide level and searching for regions with an ex-
cess of significant probes could have identified the
GSTM1 region in our study. Alternatively, CNVtools,
performing a joint calling and association testing, might
also be considered, though it is more difficult to apply
than that based on LRR and takes longer to run. The
main caveat with CNVtools and equivalent methods is
the definition of regions of interest.

The GSTMI deletion is located in a region of high se-
quence homology neighbored by a segmental duplication
and this might explain that its breakpoints may slightly
vary and, thus, the difficulties of calling. However, the
locus is defined since the deletion in GSTMI was already
known and approaches based in probes are able to iden-
tify it. Nevertheless, there might be other still unknown
CNVs in the genome showing similar characteristics that
might thus not be easy to call [25]. To increase sensitiv-
ity in CNV identification at the whole genome scale, we
propose performing a genome-wide screen for associ-
ation using LRR values at each probe and then applying
CNVtools for a fine-tuning in the most promising
regions.

Conclusion

In conclusion, our study provides insights into the lim-
itations of CNV-calling algorithms applied to SNP-array
platforms in regions harboring common CNVs, espe-
cially those with full gene deletions. Though our results
focused on a previously characterized CNV, they raise
the possibility that there could be a substantial problem
across unknown regions of the genome with common
CNVs. On the other hand, we showed that by comparing
LRR between cases and controls we were able to identify
hot genomic areas associated with the trait of interest,
supporting the use of this exploratory association assess-
ment at the whole-genome level, which should be pur-
sued with promising efficient calling algorithms.

Additional file

Additional file 1: Table S1. Details on the number of individuals
genotyped by each of the three platforms. Number of callings available
at GSTM1 are also provided. Table S2. GSTMT CNV assessment
conducted by each of the genotyping platforms. We applied the
PennCNV algorithm to call the CNVs from the Illumina 1M array
genotyping data. Figure S1. Venn diagrams describing the common
individuals genotyped by the three platforms a) for the cases and
controls, b) for cases only and ¢) for controls only.

. J

Competing interest
We declare we have no competing interest.



Marenne et al. BMC Genomics 2012, 13:326
http://www.biomedcentral.com/1471-2164/13/326

Authors’ contributions

GM, SJC, NM and EG participated in the design of the study and drafted the
manuscript. GM performed the statistical analysis. FXR, NR, BR, LP, MK, MG
and DTS are involved in the SBCS study and help to draft the manuscript. All
authors read and approved the final manuscript.

Authors’ information
Co-last authors: Nuria Malats, Emmanuelle Génin and Stephen J Chanock

Acknowledgements

We thank Guillermo Pita, Laia Palencia, Kevin Jacobs and Gabriela Andrés, for
their technical help; physicians, field-workers and study participants for
continuous support during the study conduction.

This work was partially supported by the Fondo de Investigacion Sanitaria,
Spain (G03/174, PI051436, PI061614, FI09/00205); Acc.Integrada Hispano-
Francesa, Ministerio de Ciencia e Innovacién (HF2008-0069), Red Temética de
Investigacion Cooperativa en Cancer (RTICC), Instituto de Salud Carlos IIl,
Ministry of Health, Spain; the Intramural Research Program of the Division of
Cancer Epidemiology and Genetics, National Cancer Institute, USA; and by
the EU (HEALTH-F2-2008-201663); and by Egide-PHRC Picasso travel grant.

Author details

1Spanish National Cancer Research Center (CNIO), Madrid E-28029, Spain.
?Inserm UMR-5946, Univ. Paris Diderot, Institut Universitaire d’Hématologie,
Paris F-75010, France. 3Depar‘[ament de Ciéncies Experimentals i de la Salut,
Universitat Pompeu Fabra, Barcelona E-08003, Spain. “Division of Cancer
Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
20852-4907, USA. °Centro de Investigacion Biomédica en Red de
Enfermedades Raras (CIBERER), Barcelona E-08003, Spain. 6Programa de
Medicina Molecular i Genética, Hospital Universitari Vall d'Hebron, Barcelona
E-08003, Spain. 7Department of Genome Sciences, University of Washington,
Seattle, WA 98195, USA. ®Municipal Institute of Medical Research
(IMIM-Hospital del Mar), Barcelona E-08003, Spain. Centre for Research in
Environmental Epidemiology (CREAL), Barcelona E-08003, Spain. '°Centro de
Investigacion Biomédica en Red en Epidemiologia y Salud Publica
(CIBERESP), Barcelona E-08003, Spain. '"National School of Public Health,
Athens G-11521, Greece.

Received: 25 November 2011 Accepted: 20 July 2012
Published: 20 July 2012

References

1. lafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW,
Lee C: Detection of large-scale variation in the human genome.

Nat Genet 2004, 36:949-951.

2. Cotton SC, Sharp L, Little J, Brockton N: Glutathione S-transferase
polymorphisms and colorectal cancer: a HUGE review. Am J Epidemiol
2000, 151:7-32.

3. Engel LS, Taioli E, Pfeiffer R, Garcia-Closas M, Marcus PM, Lan Q, Boffetta P,
Vineis P, Autrup H, Bell DA, Branch RA, Brockmoller J, Daly AK, Heckbert SR,
Kalina I, Kang D, Katoh T, Lafuente A, Lin HJ, Romkes M, Taylor JA, Rothman N:
Pooled analysis and meta-analysis of glutathione S-transferase M1 and
bladder cancer: a HUGE review. Am J Epidemiol 2002, 156:95-109.

4. d'Errico A, Malats N, Vineis P, Boffetta P: Review of studies of selected
metabolic polymorphisms and cancer. IARC Sci Publ 1999, 148:323-393.

5. Minelli C, Granell R, Newson R, Rose-Zerilli MJ, Torrent M, Ring SM, Holloway JW,
Shaheen SO, Henderson JA: Glutathione-S-transferase genes and asthma
phenotypes: a Human Genome Epidemiology (HUGE) systematic review
and meta-analysis including unpublished data. Int J Epidemiol 2010,
39:539-562.

6. Parl FF: Glutathione S-transferase genotypes and cancer risk. Cancer Lett
2005, 221:123-129.

7. Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X, Figueroa JD,
Real FX, Van Den Berg D, Matullo G, Baris D, Thun M, Kiemeney LA, Vineis P,
De Vivo |, Albanes D, Purdue MP, Rafnar T, Hildebrandt MA, Kiltie AE,
Cussenot O, Golka K, Kumar R, Taylor JA, Mayordomo JI, Jacobs KB,
Kogevinas M, Hutchinson A, Wang Z, Fu YP, Prokunina-Olsson L, Burdett L,
Yeager M, Wheeler W, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta
J, Johnson A, Schwenn M, Karagas MR, Schned A, Andriole G Jr, Grubb R
3rd, Black A, Jacobs EJ, Diver WR, Gapstur SM, Weinstein SJ, Virtamo J,
Cortessis VK, Gago-Dominguez M, Pike MC, Stern MC, Yuan JM, Hunter DJ,

20.

21.

22.

Page 6 of 7

McGrath M, Dinney CP, Czerniak B, Chen B, Yang H, Vermeulen SH, Aben KK,
Witjes JA, Makkinje RR, Sulem P, Besenbacher S, Stefansson K, Riboli E,
Brennan P, Panico S, Navarro C, Allen NE, Bueno-de-Mesquita HB,
Trichopoulos D, Caporaso N, Landi MT, Canzian F, Ljungberg B, Tjonneland
A, Clavel-Chapelon F, Bishop DT, Teo MT, Knowles MA, Guarrera S, Polidoro
S, Ricceri F, Sacerdote C, Allione A, Cancel-Tassin G, Selinski S, Dietrich H,
Fletcher T, Rudnai P, Gurzau E, Koppova K, Bolick SC, Godfrey A, Xu Z, Sanz-
Velez JI, M DG-P, Sanchez M, Valdivia G, Porru S, Benhamou S, Hoover RN,
Fraumeni JF Jr, Silverman DT, Chanock SJ: A multi-stage genome-wide
association study of bladder cancer identifies multiple susceptibility loci.
Nat Genet 2010, 42:978-984.

Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, Hein DW,
Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Castano-Vinyals G,
Yeager M, Welch R, Chanock S, Chatterjee N, Wacholder S, Samanic C, Tora M,
Fernandez F, Real FX, Rothman N: NAT2 slow acetylation, GSTM1 null
genotype, and risk of bladder cancer: Results from the Spanish Bladder
Cancer Study and meta-analyses. Lancet 2005, 366:649-659.

Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M:
PennCNV: an integrated hidden Markov model designed for high-
resolution copy number variation detection in whole-genome SNP
genotyping data. Genome Res 2007, 17:1665-1674.

Colella S, Yau C, Taylor JM, Mirza G, Butler H, Clouston P, Bassett AS, Seller A,
Holmes CC, Ragoussis J: QuantiSNP: an Objective Bayes Hidden-Markov
Model to detect and accurately map copy number variation using SNP
genotyping data. Nucleic Acids Res 2007, 35:2013-2025.

ltsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D, Krauss RM, Myers RM,
Ridker PM, Chasman DI, Mefford H, Ying P, Nickerson DA, Eichler EE:
Population analysis of large copy number variants and hotspots of human
genetic disease. Am J Hum Genet 2009, 84:148-161.

Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S,
Hubbell E, Veitch J, Collins PJ, Darvishi K, Lee C, Nizzari MM, Gabriel SB,
Purcell S, Daly MJ, Altshuler D: Integrated genotype calling and
association analysis of SNPs, common copy number polymorphisms and
rare CNVs. Nat Genet 2008, 40:1253-1260.

Pique-Regi R, Caceres A, Gonzalez JR: R-Gada: a fast and flexible pipeline for
copy number analysis in association studies. BMC Bioinforma 2010, 11:380.
Winchester L, Yau C, Ragoussis J: Comparing CNV detection methods for
SNP arrays. Brief Funct Genomic Proteomic 2009, 8:353-366.

Dellinger AE, Saw SM, Goh LK, Seielstad M, Young TL, Li YJ: Comparative
analyses of seven algorithms for copy number variant identification from
single nucleotide polymorphism arrays. Nucleic Acids Res 2010, 38:105.
Marenne G, Rodriguez-Santiago B, Closas MG, Perez-Jurado L, Rothman N,
Rico D, Pita G, Pisano DG, Kogevinas M, Silverman DT, Valencia A, Real FX,
Chanock SJ, Genin E, Malats N: Assessment of copy number variation
using the lllumina Infinium 1 M SNP-array: a comparison of
methodological approaches in the Spanish Bladder Cancer/EPICURO
study. Hum Mutat 2011, 32:240-248.

McCarroll SA, Altshuler DM: Copy-number variation and association
studies of human disease. Nat Genet 2007, 39:537-542.

Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R,
Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavare S,
Deloukas P, Hurles ME, Dermitzakis ET: Relative impact of nucleotide and
copy number variation on gene expression phenotypes. Science 2007,
315:848-853.

lonita-Laza |, Perry GH, Raby BA, Klanderman B, Lee C, Laird NM, Weiss ST,
Lange C: On the analysis of copy-number variations in genome-wide
association studies: a translation of the family-based association test.
Genet Epidemiol 2008, 32:273-284.

Barnes C, Plagnol V, Fitzgerald T, Redon R, Marchini J, Clayton D, Hurles ME:
A robust statistical method for case—control association testing with
copy number variation. Nat Genet 2008, 40:1245-1252.

Gonzalez JR, Subirana |, Escaramis G, Peraza S, Caceres A, Estivill X,
Armengol L: Accounting for uncertainty when assessing association
between copy number and disease: a latent class model. BMC Bioinforma
2009, 10:172.

Rodriguez-Santiago B, Brunet A, Sobrino B, Serra-Juhe C, Flores R, Armengol L,
Vilella E, Gabau E, Guitart M, Guillamat R, Martorell L, Valero J, Gutierrez-Zotes A,
Labad A, Carracedo A, Estivill X, Perez-Jurado LA: Association of common
copy number variants at the glutathione S-transferase genes and rare
novel genomic changes with schizophrenia. Mol Psychiatry 2009,
15:1023-1033.



Marenne et al. BMC Genomics 2012, 13:326
http://www.biomedcentral.com/1471-2164/13/326

23.

24.

25.

Staaf J, Vallon-Christersson J, Lindgren D, Juliusson G, Rosenquist R,
Hoglund M, Borg A, Ringner M: Normalization of Illumina Infinium whole-
genome SNP data improves copy number estimates and allelic intensity
ratios. BMC Bioinforma 2008, 9:409.

Coin LJ, Asher JE, Walters RG, Moustafa JS, de Smith AJ, Sladek R, Balding DJ,
Froguel P, Blakemore Al: cnvHap: an integrative population and haplotype-
based multiplatform model of SNPs and CNVs. Nat Methods 2010, 7:541-546.
Huang RS, Chen P, Wisel S, Duan S, Zhang W, Cook EH, Das S, Cox NJ,
Dolan ME: Population-specific GSTM1 copy number variation. Hum Mol
Genet 2009, 18:366-372.

doi:10.1186/1471-2164-13-326

Cite this article as: Marenne et al.: Genome-wide CNV analysis replicates
the association between GSTM1 deletion and bladder cancer: a support
for using continuous measurement from SNP-array data. BMC Genomics

2012 13:326.

Page 7 of 7

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Samples
	GSTM1 genotyping


	link_Fig1
	Retrieving CNV information from Illumina Infinium 1&nbsp;M &b_k;SNP-&e_k;&b_k;array&e_k;
	Statistical method for association testing with LRR

	Results
	Discussion
	link_Fig2
	link_Tab1
	Conclusion
	Additional file
	Competing interest
	show [note]
	Acknowledgements
	Author details
	References

