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Abstract

Background: Neurodegenerative diseases are progressive and irreversible and they can be initiated by mutations in
specific genes. Spalt-like genes (Sall) encode transcription factors expressed in the central nervous system. In
humans, SALL mutations are associated with hereditary syndromes characterized by mental retardation,
sensorineural deafness and motoneuron problems, among others. Drosophila sall mutants exhibit severe
neurodegeneration of the central nervous system at embryonic stage 16, which surprisingly reverts later in
development at embryonic stage 17, suggesting a potential to recover from neurodegeneration. We hypothesize
that this recovery is mediated by a reorganization of the transcriptome counteracting SALL lost. To identify genes
associated to neurodegeneration and neuroprotection, we used mRNA-Seq to compare the transcriptome of
Drosophila sall mutant and wild type embryos from neurodegeneration and reversal stages.

Results: Neurodegeneration stage is associated with transcriptional changes in 220 genes, of which only 5% were
already described as relevant for neurodegeneration. Genes related to the groups of Redox, Lifespan/Aging and
Mitochondrial diseases are significantly represented at this stage. By contrast, neurodegeneration reversal stage is
associated with significant changes in 480 genes, including 424 not previously associated with neuroprotection.
Immune response and Salt stress are the most represented groups at this stage.

Conclusions: We identify new genes associated to neurodegeneration and neuroprotection by using an mRNA-Seq
approach. The strong homology between Drosophila and human genes raises the possibility to unveil novel genes
involved in neurodegeneration and neuroprotection also in humans.
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Background

Neurodegenerative processes, which affect a high pro-
portion of the human population worldwide, result from
very complex interactions at molecular, cellular, histo-
logical and organismal levels, being progressive as well
as irreversible. A great proportion of the human tran-
scriptome is expressed in the central nervous system
(CNS) under a strict spatial, temporal and quantitative
control. Mutations in genes involved in a variety of mo-
lecular and cellular functions, resulting in abnormally
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low or high levels of their corresponding proteins, con-
tribute to the development of some important neurode-
generative diseases such as Alzheimer or Parkinson
(reviewed in [1]).

The evolutionary conservation of key mechanisms for
the development, function and maintenance of the ner-
vous tissue makes the fly Drosophila melanogaster a
good model system for the study of human neurodegen-
erative diseases [1-3]. The use of this model presents
various additional advantages, including the increasing
number of available genetic tools to manipulate gene ex-
pression, with temporal and spatial specificity, through
trans-genes encoding wild type (WT) or mutated forms
of Drosophila or human genes [4].
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The zinc finger transcription factors Spalt-like (SALL)
are expressed in the CNS during embryonic development
in Drosophila and other organisms. In humans, mutations
in SALLI are associated with Townes Brocks Syndrome
[5], while mutations in the SALL4 gene are associated with
the Duane-Radial Ray or Okihiro Syndrome [6,7]. These
syndromes are characterized by limb and renal malforma-
tions, as well as nervous system defects that result in sen-
sorineural deafness and, in some cases, mental retardation
and motoneuron problems [6,8,9].

Two members of the SALL family are known in Dros-
ophila, spalt major (salm) and spalt-related (salr) [10].
The transcription of salm starts shortly after blastoderm
formation and continues throughout embryogenesis,
overlapping partially with salr [11]. salm and salr null
mutations affect several tissues, including the tracheal
system [12], CNS [13] and the peripheral nervous system
[14], and are embryonic lethal in homozygosis. Homozy-
gous sall mutant embryos exhibit degeneration of the
CNS at embryonic stage 16 (13—-16 hours of develop-
ment, Figure 1 A, B, D). In situ studies of sall mutant
embryos and in vitro studies of neurons generated by
sall mutant stem cells, including time-lapse video
recording, demonstrated that the mutant phenotype
exhibits fragility of the nervous tissue, deficient axonal
cytoskeleton and loss of cell adhesion. Consistent with
these findings, a study with transmission electron mi-
croscopy showed a greatly enlarged extracellular space
and several other features indicative of a degenerative
process, including vacuolization and abundant mem-
brane “whorls” and autophagosomes [13]. This suggested
that sall controls, directly or indirectly, the transcription
of genes that are important for the integrity of the CNS,
possibly acting through cell adhesion and the cytoskel-
eton. A few hours later, at early stage 17 (16—18 hours of
embryonic development, Figure 1 A, C, E), part of this
phenotype is reverted, suggesting a potential to recover
from the neurodegenerative process. The recovery could
be mediated by genetic redundancy, either as coinciden-
tal redundancy (i.e. genes performing the same function
at the same developmental stage) or sequential redun-
dancy (genes performing a similar function at different
stages). In this last case, the disappearance of the ultra-
structural sall phenotype in a few hours (from early
stage 16 to early stage 17) could be partially explained
by transcriptional changes taking place during this inter-
val [13]. Genomic studies have subsequently reinforced
this idea by showing that, during this time window, the
Drosophila  transcriptome undergoes rapid global
changes in gene expression [15-17].

Based on the hypothesis that the recovery from neuro-
degeneration could be explained by a reorganization of
the sall mutant transcriptome that partially compensates
the absence of sall genes [13], we used mRNA high
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throughput sequencing (mRNA-Seq) to identify genes
that might have neuroprotective function, by comparing
the transcriptome of Drosophila sall mutant and wild
type embryos from stages 16 and 17.

Our mRNA-Seq analysis demonstrates that a charac-
teristic transcriptional signature identifies the neurode-
generation and  reversal  stages. Thus, the
neurodegeneration phenotype observed at embryonic
stage 16 in sall null mutants is associated with transcrip-
tional changes in genes related to the Redox, Lifespan/
Aging and Mitochondrial diseases groups, while the re-
versal of the neurodegeneration observed at embryonic
stage 17 is associated to the regulation of genes involved
in the Immune and Salt stress response groups.

Results

Analysis of the sall mutant transcriptome

The mutation Dff2 L)32FP-5 used for the present ap-
proach is a small deficiency that covers both salm and
salr genes [18]. Embryos that are homozygous mutant
for these genes die at the end of embryogenesis or be-
ginning of the first larval instar.

Total RNA was extracted from wild type (WT), D2 L)
32FP-5/+ (heterozygous, from now on called He) or Df
(2 L)32FP-5/Df(2 L)32FP-5 (homozygous, from now on
called Ho) embryos at the two time points illustrated in
Figure 1A. ¢cDNAs from two or three independent pool-
preparations for each genotype and developmental stage
were sequenced. Sequencing parameters of the biological
replicas of the studied genotypes are shown in Additional
file 1: Table S1. DESeq package was used for measuring
gene expression differences between the samples analyzed
[19]. Genes showing expression differences among geno-
types and developmental stages that exceeded the thresh-
old defined as statistically significant (p <0.001) were
selected for further analysis. The variance in transcript
representation between differential expression (DE) results
per genotype comparison is shown in Additional file 2:
Table S2. Alternatively, Reads Per Kilobase of transcript
per Million mapped reads (RPKMs) were also calculated
[20] to corroborate the expression variability intra-
samples (Additional file 3: Table S3).

We first compared the global transcriptome profile of
Ho sall mutant embryos with those of He and WT at
embryonic stages 16 and 17.We hypothesized that tran-
scriptional misregulation associated with neurodegenera-
tion occurs mainly at stage 16, and that genes providing
neuroprotection will be regulated mainly at stage 17.
The heatmap in Figure 2A shows the hierarchical clus-
tering of all genotypes at both stages with respect to the
2534 genes that showed differential expression in at least
one of the compared pairs. These results show that the
transcriptome differs greatly from stage 16 to 17, as the
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Early stage 16

Figure 1 Neurodegeneration and reversal stages of sall mutant embryos. (A) Schematic representation of the time points and

Early stage 17

morphological features selected to identify embryos from early stage 16 (neurodegeneration stage) and early stage 17 (neurodegeneration
reversal stage). (B-E) Ultrastructural comparison of the central nervous system in WT (B, C) and homozygous (Ho) sall mutants (D, E) at embryonic
stages 16 and 17. Ho16 embryos (D) show smaller cell bodies, separated by enlarged extracellular space occupied by vacuoles and other
membranous material (arrows), contrasting with WT16 embryos (B, C) that present normal extracellular space. This phenotype is no longer

observed a few hours later in Ho17 (E). Panels B-D are reprinted from Cantera et al. 2002.

three genotypes at each stage segregate together and
separate from the other stage.

The number of genes that showed differential expres-
sion profiles in each of the comparisons between WT16,
Hol6, and Hel6 (Figure 2B) and WT17, Hol7, and
Hel7 (Figure 2C) is indicated by Venn diagrams. The
transcriptome profiles of He and WT embryos showed
differences in less than 100 genes per stage (42 genes up
and 30 down at stage 16; 24 genes up and 70 down at
stage 17). The Ho mutants, instead, showed misregula-
tion of more than 200 genes, most of which were upre-
gulated (190 genes up and 26 down at stage 16; 163
genes up and 97 down at stage 17).

The transcriptome comparison of the three genotypes
at stage 16 generated a list of 249 genes that were sig-
nificantly misregulated in Hol6 or Hel6 sall mutants in

comparison to WT16 (Figure 2B and Additional file 4:
Table S4). Out of those, we discarded 161 genes with
profiles not consistent among all genotype comparisons.
For instance, genes that did not show significant differ-
ences between WT16 and Hol6, nor between Hel6 and
Ho16, but showed significant differences between WT16
and Hel6 were removed from the analysis. The 88
remaining genes were classified in two categories: sall
dose-independent (47 genes) and sall dose-dependent
(41 genes), (Additional file 4).

The transcriptome comparison of the three genotypes at
stage 17 generated a list of 307 genes significantly misre-
gulated in Hol7 or Hel7 sall mutants with regard to
WT17 (Figure 2C and Additional file 4). As mentioned
previously for stage 16, we discarded those genes with pro-
files not consistent among all genotypes comparisons (92
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Figure 2 Comparative analysis of sall mutant transcriptome. (A)
Heatmap representation of a filtered set of 2534 genes that show
differential expression at p <0.001 in at least one of the following
comparatives. At stages 16 or 17: WT vs homozygous (Ho), WT vs
heterozygous (He) and He vs Ho. At the transition from 16 to 17:
WT16 vs WT17, He16 vs He17, and Ho16 vs Ho17. Columns represent
samples and rows genes. Colors represent log2 expression ratio
values with pink being above and green below the row/column
median level of expression (normalized gene counts) as shown by

the scale (pink: genes upregulated; green: genes downregulated). (B-

C) Venn diagrams of differential expression overlap between WT, He
and Ho sall mutant embryos at stage 16 (B) and 17 (C). Numbers
represent upregulated and downregulated genes (top and bottom,
respectively) in the second genotype with respect to the first (e.g.
WT vs Ho represent the number of misregulated genes in
homozygous compared to WT).
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genes). The remaining 215 genes were classified in two
categories: sall dose-independent (151 genes) and sall
dose-dependent (64 genes) (Additional file 4).

We found a dosage effect of Sall on certain genes, con-
sistent with previous results [13]. He sall mutant
embryos have higher transcript levels than Ho for arma-
dillo, cadherin-N and fasciclin- 2 (Additional file 5:
Figure S1A). We also found intermediate transcript
values for other genes in He embryos compared to
those of Ho and WT (Additional file 5: Figure S1B-C).
Among these, at stage 16, we observed genes associated
with tissue regeneration (CG2233, [21]), Lifespan/aging
(mtND2, [22]; dro5, [23]), and salt stress (sala, [24]). At
stage 17, some of the genes showing a dosage effect are
associated with neurodegeneration and salt stress (IM10,
[24,25]), or starvation (CG6283, [26,27]). Interestingly, in
humans the Duane-Radial Ray Syndrome is caused by
the deletion of one copy of SALL4, suggesting that also
in humans two copies of a SALL gene are necessary to
keep the correct levels of its downstream targets [28].
Furthermore, it is reported the dosage-dependent regula-
tion of the target gene knirps by Sall in the Drosophila
wing imaginal disc [29].

Analysis of the transition between embryonic stages 16
and 17

During the transition from early stage 16 to early stage
17, the number of genes that change expression differed
between WT and Ho sall mutant embryos (Figure 3). In
WT embryos, this transition comprised the upregulation
of 1687 genes and downregulation of 312 genes
(Figure 3A). A similar change was detected in He sall
mutant embryos (data not shown). However, Ho
embryos showed less upregulated genes and more down-
regulated genes compared to WT (781 genes upregu-
lated and 416 genes downregulated; Figure 3A). Despite
these differences, Ho sall mutant embryos are able to
pass to stage 17 (tubular intestine, FigurelA), and die
shortly after. Therefore, the genes necessary for the tran-
sition from stages 16 to 17 are likely included in the 872
genes that change during the transition in the three gen-
otypes (664 upregulated and 208 downregulated;
Figure 3B).

modENCODE comparison with differential expression
results

We compared our data with transcriptome data pub-
lished by the modENCODE project [17]. We found good
correlation (Pearson product-moment correlation coef-
ficient) between our mRNA-Seq data and that of mod-
ENCODE, comparing our WT16 data with E12-14hs
data (r=0.79776, Figure 4A) and our WT17 data with
E18-20hs (r=0.81202, Figure 4B). 1175 genes are shared
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Figure 3 Differential expression analysis during the transition from embryonic stage 16 to 17. (A) Analysis of the transcriptome of WT and
Ho sall mutant embryos during the transition from stage 16 to 17. Scatter plot of log2 fold gene expression changes from the first to the second
condition versus the mean counts for each compared pair. Unique counts normalized by the effective library size were used. Each point
corresponds to a gene. Genes without significant change in their expression levels appear along the zero value of the y-axis (grey), and those
whose transcription exceeds the threshold defined as statistically significant (p < 0.001, differentially expressed at 0.1% False Discovery Rate) are
shown in red, above the y-axis zero value (genes upregulated at the transition from stage 16 to 17, number in black) or below (genes
downregulated at this stage transition, number in grey). (B) Venn diagrams of differential expression overlap during the transition 16 to 17 of all
genotypes analyzed. Genotypes analyzed: WT16 vs WT17, He16 vs He17, and Ho16 vs Ho17. Numbers indicate upregulated and downregulated
genes for each comparison (top and bottom numbers, respectively) at stage 17 with respect to 16.
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among the upregulated (64.35%) and 412 genes among
the downregulated (39.16%) in both datasets.

Validation of differential expression results

In order to validate our results, we performed Q-PCR
for selected genes that presented different number of
reads per genotype and stage (Additional file 6: Figure
S2). We chose two genes belonging to the Immune re-
sponse group that showed different profiles in the mu-
tant. According to our sequencing results, dro5 was
highly upregulated in Hol6, but not in Hol7. These dif-
ferences were confirmed by Q-PCR (Figure 4C). Con-
versely, according to our mRNA-Seq results, /M3 did
not show significantly different expression levels be-
tween Hol6 and WT16, but was highly upregulated in
the mutants at stage 17. The same results were obtained
by Q-PCR (Figure 4D). Interestingly, we noted that IM3
and dro5 genes show Sall binding sites in their promo-
ters, and that those sites are conserved among several
Drosophila species (Additional file 7: Figure S3).

Identification of genes potentially involved in
neurodegeneration

The transcriptome comparison of WT and homozygous
sall mutant embryos generated a list of 620 genes signifi-
cantly misregulated at stages 16 and/or 17, including
those that changed during the transition 16 to 17

exclusively in the homozygous embryos (Additional file
8: Table S5). The Additional file 9 shows the complete
list of Gene Ontology (GO) categories enriched among
these 620 genes, after a non-biased analysis with VLAD
online tool (http://proto.informatics.jax.org/prototypes/
vlad-1.0.3). This analysis revealed an enrichment of
genes involved in the oxidation-reduction process in the
WT16 vs Hol6 comparison, as well as an enrichment of
serine-type endopeptidases in the WT17 vs Hol7 and
the Hol6 vs Hol7 comparisons. Next, we performed a
biased GO analysis of these 620 genes, using functional
categories selected after an extensive literature search
(Additional file 10: Tables S6, S8 and S10). Through our
bibliographic search we were able to identify the involve-
ment of some of these genes in neurodegeneration or
neuroprotection, either in Drosophila or in other organ-
isms (72 genes highlighted in red in Additional file 8).
Our hypothesis assumes that changes in transcript levels
in Hol6 in comparison to WT16 (Figure 2B) might re-
veal genes contributing directly or indirectly to the neu-
rodegenerative phenotype as well, as other genes with
several other functions not relevant for this study.
Classification of all the genes misregulated in Hol6
with respect to WT16 in Functional Groups revealed
that 8% belong to the Neuronal group, 7% to the Redox
group, followed by Salt stress (6%), Tissue regeneration
(6%), Lifespan/Aging (6%), and the Neurodegeneration/


http://proto.informatics.jax.org/prototypes/vlad-1.0.3
http://proto.informatics.jax.org/prototypes/vlad-1.0.3

Ferreiro et al. BMC Genomics 2012, 13:483
http://www.biomedcentral.com/1471-2164/13/483

Page 6 of 15

1E-3 0.01 01 1 10 100 1000
E12-14 hs modENCODE

1800
1600
1400
1200
1000
800 -
600
400
200 A

A -

droS

Fold change

WT16 Ho16 WT17 Ho17
u E

mMRNA-Seq of these genes at the indicated genotypes’ comparisons.
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Neuroprotection groups (5%), (Figure 5A and Additional
file 10: Table S6), and by other groups with less than
5% representation. Gene Ontology (GO) analysis of
these genes showed that the groups associated with
Neurodegeneration/Neuroprotection, Redox, Lifespan/
Aging and Mitochondrial diseases were significantly
represented (p <0.01) among Hol6 misregulated genes,
with respect to their representation in the whole Dros-
ophila genome (Figure 5A, highlighted in red). Neur-
onal and Starvation groups were also significantly
represented (p <0.05; Figure 5A, highlighted in green).
Interestingly, 27% of genes misregulated in Hol6
embryos with respect to WT16 have no biological func-
tion experimentally assigned or suggested yet, and could
be considered as new genes potentially associated to
neurodegeneration.

Classification of genes that change transcript levels in
Hol6 when compared to Hel6 in Functional Groups
revealed that 8% belong to the Salt stress group, 7.5% to
the Neuronal group, followed by Tissue regeneration
(6%), Mitochondrial diseases (6%), Lifespan/Aging (6%),
and Redox (5%), and by other groups with less than 5%
representation (Additional file 10: Table S7 and Add-
itional file 11: Figure S4A). GO analysis of these genes
showed that the Redox group was significantly

represented (p <0.01) among Hol6 misregulated genes,
with respect to their representation in the whole Dros-
ophila genome (Additional file 11: Figure S4A, high-
lighted in red). Neuronal, Mitochondrial diseases,
Neurodegeneration/Neuroprotection, Hormonal regula-
tion and Starvation groups were also significantly repre-
sented (p<0.05; Additional file 11: Figure S4A,
highlighted in green). These results are coincident with
those showed in the WT16 vs Hol6 comparative
(Figure 5A).

Identification of genes potentially involved in
neuroprotection

Our hypothesis also assumes that among the genes with
significantly altered transcript levels in Ho17 in compari-
son to WT17 (Figure 2C) might be those with neuropro-
tective function.

Classification of all these genes in Functional Groups
showed that 10% of them belong to the Immune response
group, 9% to the Neuronal group, followed by Salt
stress (8.5%), Neurodegeneration/Neuroprotection (6%),
Lifespan/Aging (5.5%), and other functional groups
(each representing less than 5% of the misregulated
genes), (Figure 5B and Additional file 10: Table S8). GO
analysis of these genes showed that Immune response,
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Figure 5 Classification of genes misregulated in homozygous sall mutant embryos in Functional Categories. (A-C) Graphic representation
of the main functional groups enriched in misregulated genes in homozygous sall mutants (Ho), expressed as percentage of genes in each
group. In red are marked the groups significantly overrepresented with respect to the total Drosophila genome with p <0.01 and in green with
p <0.05. (A) Classification of the genes misregulated in Ho16 compared with WT16. (B) Classification of the genes misregulated in Ho17
compared to WT17. (C) Classification of the genes misregulated in Ho embryos at the transition from stage 16 to 17.
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Salt stress, Neurodegeneration/Neuroprotection, Lifespan/
Aging, Starvation, Redox and Mitochondrial diseases
groups were significantly overrepresented (p < 0.01) among
Ho17 misregulated genes, with respect to their representa-
tion in the whole Drosophila genome (Figure 5B, high-
lighted in red). The Neuronal group was also significantly
overrepresented (p < 0.05; Figure 5B, highlighted in green).
Interestingly, 19% of genes misregulated in Hol7 with
respect to WT17 have no biological function experi-
mentally assigned or suggested yet, and could be poten-
tially associated to neuroprotection.

We also compared gene transcript levels in Hol7 with
respect to Hel7 (Additional file 10: Table S9 and Add-
itional file 11: Figure S4B). Classification of these genes in
Functional Groups revealed that 10% belong to Salt stress
and 10% to Immune response, followed by Mitochondrial
diseases (7%), Neuronal (6%) and Lifespan/Aging (5%),
and by other groups with less than 5% representation. GO
analysis of these genes showed that Salt stress, Immune
response, Mitochondrial diseases, Neurodegeneration/
Neuroprotection and Starvation groups were significantly

represented (p<0.01) among Hol7 misregulated genes,
with respect to their representation in the whole Droso-
phila genome (Additional file 11: Figure S4B, highlighted
in red). These results are coincident with those showed in
Figure 5B. The homozygous embryos show overrepresen-
tation of genes belonging to the same groups than the
comparison between WT17 vs Hol7, supporting the con-
cept that heterozygous embryos are more closely related
to WT than to homozygotes.

Finally, our hypothesis assumes that genes with neuro-
protective function might also be found among the
genes with significantly altered transcript levels at the
transition from stage 16 to 17 only in homozygous sall
mutant embryos but not in WT or heterozygous
(Figure 3B). Classification of all these genes in Func-
tional Groups showed that 8% belong to the Neuronal
group, 6.5% to Tissue regeneration, 6.5% to Lifespan/
Aging, 6% to Salt stress, 6% to Immune response, 5% to
Neurodegeneration/Neuroprotection and 5% to Trans-
membrane groups, followed by other groups with less
than 5% representation (Figure 5C and Additional file
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10: Table S10). GO analysis of these genes showed that
the groups associated with Lifespan/Aging, Immune
response, Neurodegeneration/Neuroprotection, Redox,
Starvation and Mitochondrial diseases were significantly
overrepresented (p <0.01) with respect to their incidence
in the whole Drosophila genome (Figure 5C, highlighted
in red). The Salt stress group was also significantly
overrepresented (p<0.05; Figure 5C, highlighted in
green). The Neurodegeneration/Neuroprotection and
Redox groups were significantly overrepresented among
downregulated genes (p =2.15 x 10°° and p = 1.29 x 10%,
respectively), while the groups for Immune response,
Starvation and Mitochondrial diseases were signifi-
cantly overrepresented among upregulated genes
(p=877%x10"2 p=275x10"* and p=1.36x107, re-
spectively). Finally, 19% of genes misregulated in
homozygous embryos at the transition between stages
16 and 17 have no biological function experimentally
assigned or suggested yet, and could be considered as
new genes potentially associated to neuroprotection.

When we analyzed the transcriptional changes in the
16 to 17 transition in WT embryos, we saw that only the
Immune response, Starvation, Tissue regeneration and
Mitochondrial diseases groups are overrepresented with
respect to the whole genome (Additional file 10: Table
S11 and Additional file 11: Figure S4C). However, this
overrepresentation is in a lower proportion than in
Hol6 vs Hol7 comparison, which is in agreement with
our hypothesis that the transcriptional changes that we
see in the 16 to 17 transition in homozygous embryos
are specifically developed by the homozygous mutant
embryos to try to compensate their neurodegeneration
at stage 16.

Discussion

Analysis of the transition between embryonic stages 16
and 17

Several waves of coordinated down- or upregulation in the
expression of large gene clusters have been detected
throughout the life cycle of Drosophila using microarrays
technology [15,16,30]. A major transcriptional shift occurs
between 11 and 18 hours of embryonic development [16],
which partially overlaps with the time interval studied
here. Our study confirms that the Drosophila transcrip-
tome changes quickly at the transition between stage 16
and 17 of embryonic development, within less than 4—
5 hours, and shows that a major shift occurs also in sall
heterozygous and homozygous mutants, although there
are clear differences in the transcriptome of each geno-
type. The 872 genes that we found to change transcript
levels from stage 16 to 17 in all three genotypes studied
here, most probably include all or most of the genes that
are truly necessary for this developmental transition.
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Analysis of the sall mutant transcriptome

The transcriptome of homozygous sall mutant embryos
was clearly different from those of heterozygous and
WT embryos at both stages. Most of the genes misregu-
lated in homozygous mutants were upregulated at both
stages, in agreement with studies showing that Sall pro-
teins act as transcriptional repressors in Drosophila and
vertebrates [31-33]. The finding that the majority of mis-
regulated genes in embryos with a neurodegenerative
phenotype was upregulated adheres to a general trend
established by genomic studies of neurodegenerative
processes in Drosophila CNS tissue, for example, in par-
kin mutants [34] and in flies with neurodegeneration
caused by transgenic expression of alpha-synuclein or
mutated fau [25]. The opposite relationship was found
in flies with retinal degeneration caused by poly-
glutamine expression [35].

Identification of genes potentially involved in
neurodegeneration

In a previous study we described in detail the phenotype
of sall mutant embryos, which includes several landmarks
of degeneration, such as fragility of the nervous tissue, de-
ficient axonal cytoskeleton, loss of cell adhesion, enlarged
extracellular space, vacuolization and abundant membrane
“whorls” and autophagosomes [13]. Other embryonic phe-
notypes have been described, including malformation of
the tracheal [12] or the peripheral nervous system [14].
Even if some aspects of the phenotype could be attributed
to reasons different than neurodegeneration, the promin-
ent phenotype shown in the CNS prompted us to assume
that genes significantly up or down-regulated at stages 16
and/or 17, and during the transition 16 to 17 specifically
in the homozygous sall mutant embryos might include
many of the genes associated with the neurodegenerative
phenotype and its reversal.

Classification of all the genes whose transcription was
misregulated in Hol6 with respect to WT16 in Functional
Groups, revealed that only 5% of them have been previ-
ously associated to neurodegeneration. The overrepresen-
tation of the Neurodegeneration and the Redox groups
among Hol6 misregulated genes (p=1.28x10"% and
p =759 x 10", respectively) is in accordance with previ-
ous works about neurodegeneration. The misregulated
genes belonging to the Redox group include sugarless
(sgl), associated with the Wingless pathway and to resist-
ance to oxidative damage [36,37]; [(2)01289, which pro-
tects from beta-amyloid toxicity [38]; nine genes codifying
for cytochromes (mt: Cyt-b, mt: Col-III, Cypdgl, Cypdp2,
Cyp6a23, Cypl2cl, Cyp304al) and six genes codifying for
NADH-ubiquinone oxidoreductase chains (mt:NDI-
ND6). A predominance of the Redox group was also found
in flies with neurodegeneration caused by mutation in
parkin [34], expression of human beta-amyloid [38] or
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hyperoxia [39]. The Mitochondrial disease group was also
strongly represented among Hol6 downregulated genes
(p=525%x10"") and included among others technical
knockout, a model for mitochondrial disease [40]. As a
whole, these results reinforced the abundant data support-
ing the existence of a strong correlation between redox
imbalance and neurodegeneration [41-45] and strongly
indicate that SALL proteins are important for normal
mitochondrial function. Interestingly, genes encoding
mitochondrial proteins represent the major group of
genes that are misregulated both, in our model, and in
muscle tissue where salm expression was silenced [46]
(Additional file 12: Table S12).

Gene Ontology analysis of all the genes misregulated
in Hol6 with respect to WT16 showed that the groups
Neuronal (genes associated with nervous system devel-
opment and function) and Starvation were also signifi-
cantly represented (p <0.005). Some examples are Ama,
which encodes a protein important for neuronal cell ad-
hesion (ligand of Neurotactin) also misregulated by poly-
glutamine expression [35]; Hsp23 and Hsp26, that
encode heat shock proteins expressed in CNS and other
tissues, previously associated with longevity [47], mito-
chondrial diseases [40] and tissue regeneration [21];
nicotinic Acetylcholine Receptor a 34E (nAcRa-34E), that
is expressed in the CNS of Drosophila larva and adult,
encodes a protein with nicotinic acetylcholine-activated
cation-selective channel activity; and CG4306, identified
as a Drosophila Orb2 target gene, involved in neuronal
growth, synapse formation, and protein turnover [48].

Identification of genes potentially involved in
neuroprotection

The classification in Functional Groups of all the genes
misregulated in Hol7 with respect to WT17 and in Hol7
with respect to Hol6, allowed us to identify genes poten-
tially involved in the reversal of neurodegeneration. We
found that 5% of these genes have already been associated
with Neurodegeneration/Neuroprotection. Hsp70Bc is a
paradigmatic example, with ample documentation of a
neuroprotective function in flies with neurodegenerative
phenotypes caused by parkin mutations or other reasons
(reviewed by [39,49,50]. We propose that many of the
remaining Hol7 misregulated genes (95%) are probably
also relevant for neuroprotection.

The Immune group was particularly overrepresented
among the genes upregulated in Hol7 (p=6.48x107").
Among others, we found upregulation of 7sfI and seven
IM genes (Immune Induced Molecules: IMI1-4, IMIO,
IM14, IM23) and downregulation of Ect3. Several of these
genes (IM1, IM4, Tsf1) are regulated during Drosophila tis-
sue regeneration [21]. We noticed that during normal de-
velopment many of these genes show a sharp, very large
peak of expression during metamorphosis [17] a time
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when the nervous system is radically remodeled. The im-
portance of the Immune response group was previously
demonstrated in other genomic studies of Drosophila neu-
rodegeneration [25,34,38,39]. IM4 is the second most
upregulated gene in parkin mutants [34], IM10 is upregu-
lated in flies with neurodegeneration caused by mutated
human tau [25], and Ect3 is the homolog of GLBI, a
human gene associated with mental retardation [51].
Other misregulated genes belonging to the Immune re-
sponse group are several members of the Jonah gene fam-
ily (Jon25Bi-iii, Jon44E, Jon65Ai and Jon99F), which
encode proteases and have a clear involvement in prote-
olysis. Two of them (Jon25Bi and Jon25Bii) are also asso-
ciated with mitochondrial function [40].

It has been suggested that the upregulation of immune
genes in Drosophila parkin mutants might be related
with inflammation and other immunological reactions
seen in the nervous tissue of patients with neurodegen-
erative diseases. However, a note of caution is warranted.
Individual genes can have several functions and those
annotated within the immune group in Drosophila are
not an exception. The kappaB transcription factors
encoded by dorsal, dif and relish, for example, besides
being regulators of the immune response to pathogens,
are also key players in pathways that govern the develop-
ment of the body axis, as well as the development and
differentiation of blood, muscle and neuronal cells
[52,53]. We believe that beyond the possible engagement
of immune genes in broad stress responses, including
those constitutive to neurodegenerative processes, some
might have neuroprotective functions as suggested here
by their upregulation during the reversal of the pheno-
type. Future studies should address these possibilities,
taking advantage of the abundance of mutants and gen-
etic tools available for this purpose in Drosophila.

In addition to the Immune response group, the Neuro-
degeneration/Neuroprotection group is also highly
represented among Hol7  misregulated  genes
(p=1.05x 10™%). Besides Hsp70Bc, named above, other
examples of this group are Cyp6a8, CG2065 CGI11825,
GstE1, Prx2540-1 and Prx2540-2 that are associated to
common neurodegenerative diseases, such as Parkinson
and Alzheimer ([25,34,38,39,54]. CG16727, Prx2540-1
and Prx2540-2 are additionally associated with the Mito-
chondrial diseases group [40], that is also well repre-
sented among Hol7 misregulated genes (p =0.00165).
We found some genes implicated in mental retardation,
like LKR [51], also implicated in the stress response to
starvation (Starvation group). This last group is highly
represented as well among Hol7 misregulated genes
(p=8.36x10™"°), by genes like Osi6, CG10814, GRHR,
ACC, CG18135, CG10918, CGY9757, Prx2540-1 and
Prx2540-2 [26,55-57]. Edg91, GstE1 and caz are exam-
ples of genes misregulated in Hol7, also altered during
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tissue regeneration [21], while Cyp6al3, Nplp4, mthi8,
Prx2540-1 and Prx2540-2 are other examples of Hol7
misregulated genes that have been associated with
Lifespan/Aging group (p=1.96x10"° [58-61]).

A salt-stress response might be activated during the
reversal of neurodegeneration

An interesting observation is that a substantial propor-
tion (between 6 and 8.5%) of the genes misregulated in
Ho16 and Hol7 or during the transition between both
stages was also misregulated in response to osmotic
stress caused in WT flies by dietary administration of ex-
cessive salt [24]. This proportion is statistically signifi-
cant with respect to the whole Drosophila genome
among Hol7 upregulated genes (p=1x 10°®). The abun-
dant representation of genes upregulated during the re-
sponse to salt stress [23] in our mutant samples and, in
particular, their enrichment in homozygous embryos by
stage 17, suggests that a salt-stress response might be
activated during the reversal of the neurodegenerative
phenotype. This correlation could explain the phenotype
observed by electron microscopy in the brain of Hol6
embryos ([13]; Figure 1), because the extraordinary en-
largement of the extracellular space, shrunken neuronal
cell bodies and smaller axonal diameter observed at this
stage, could represent an osmotic imbalance driving
water from the cells. Later on, at stage 17 (neurodegen-
eration reversal), the upregulation of genes from the salt
stress response could be part of the mechanism mediat-
ing the disappearance of this phenotype. If this hypoth-
esis is correct, SALL proteins are dispensable for
mounting a rapid response to a hyperosmotic condition,
despite the fact that salm was one of the genes with
highest upregulation 4 hours after the response to salt
stress was initiated [24]. The correlation between salm
and osmotic regulation is nevertheless intriguing, as
mutations in human and mouse SALL genes have been
firmly associated with severe pathologies of kidney de-
velopment and function (reviewed in [10]).

Conclusions
The main contribution of this work is the identification
of a set of genes with abnormally high or low number of
transcripts during the reversal of a neurodegenerative
phenotype (Figure 6), most of which could be newly
associated either to neurodegeneration or neuroprotec-
tion. To our knowledge, this is the first study that
employs mRNA-Seq to approach this issue, comparing
the transcriptome of Drosophila embryonic CNS with a
temporal resolution of less than 5 hours (stages 16 and
17 of embryonic development).

Our analysis included not only the transcriptomic
comparison of homozygous sall mutant and WT
embryos at neurodegeneration and reversal stages, but
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also with heterozygous sall mutants, which do not de-
velop the neurodegenerative phenotype observed in the
homozygous. This allowed us to better identified genes
that could contribute to neuroprotection.

Interestingly, several of the identified genes at stages
corresponding to neurodegeneration and its reversal are
not yet functionally annotated and could be experimen-
tally associated to neurodegeneration and/or neuropro-
tection in future studies. Our analysis also suggests for
the first time, an involvement of Drosophila sall genes in
maintaining or regulating normal mitochondrial func-
tion. In addition, our results suggest that a salt-stress re-
sponse might be activated during the reversal of the
neurodegenerative phenotype. This could be a general
phenomenon mediating neuroprotection not only in our
model of study, but also in other neurodegeneration pro-
cesses, that should be addressed in further experiments.

Given the strong homology exhibited by Drosophila and
human genes, our study might help to better understand
human neurodegenerative diseases by unveiling novel genes
involved in both neurodegeneration and neuroprotection.

Methods

Selection of embryos and RNA extraction

Df2 L)32FP-5 corresponds to a small deficiency on
chromosome 2 that lacks both salm and salr genes [31].
As Df(2 L)32FP-5 stock is homozygous lethal in late
embryonic stages, this deficiency is maintained as an
heterozygote stock with a CyO-GFP balancer (Dfi2 L)
32FP-5/CyO-GFP), which also facilitates embryo selec-
tion by GFP expression. The mutant stock was back-
crossed with the balancer stock until all the chromo-
somes, except the one carrying the mutation, were
substituted before the selection of the embryos.

Embryos were collected at early stage 16 (13—14 hours
of egg development at 25°C) and early stage 17 (around
16 hours) based on midgut morphology and GFP expres-
sion (Figure 1A). WT embryos were selected from an
Oregon R fly stock. Homozygous Df(2 L)32FP-5/Df(2 L)
32FP-5 embryos were selected from a Df(2 L)32FP-5/
CyO-GFP fly stock by the absence of GFP. Heterozy-
gous Df(2 L)32FP-5/+ embryos were also selected by
the absence of GFP from the F1 progeny of Dfi2 L)
32FP-5/CyO-GFP females crossed with white- males.
Fifty embryos per tube were collected in 20 pl of RNA-
later (Ambion) and frozen in liquid nitrogen. Between
two and three different pools (50 embryos each) were
chosen per genotype and stage to obtain biological
replicates for each condition.

Total RNA extracts were obtained from all samples,
using the “Cells to ¢cDNA II” kit (Ambion) according to
the manufacturer’s instructions, quantified using Nano-
drop (Thermo Scientific) and quality assessed by Agilent
2100 Bioanalyzer (Agilent).
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Figure 6 A transcriptional signature identifies the stages of neurodegeneration or neuroprotection in homozygous sall mutant
embryos. (A) The groups of genes significantly over- or underrepresented in each stage are indicated with arrows oriented up- or downwards,
respectively. Black arrows indicate genes putatively associated with neuroprotection, while white arrows represent those groups putatively
associated with neurodegeneration. Big arrows symbolize groups of genes significantly represented with p <0.001 and small arrows groups
significantly represented with p < 0.05. Neurodegeneration of homozygous sall mutants at stage 16 coincides with the upregulation of genes
associated principally to the groups of Neurodegeneration, Redox, Lifespan/Aging and Starvation, and downregulation of other genes belonging
to the Redox group, and genes from Mitochondrial diseases, Neuronal and Neuroprotection groups. The recovery of the neurodegenerative
phenotype at stage 17 coincides with the upregulation of genes of the Immune response group, as well as genes from Mitochondrial diseases
and Salt stress groups, and some from Lifespan/Aging, Starvation, and Neurodegeneration/Neuroprotection groups. This neurodegeneration
reversal stage coincides also with the downregulation of genes belonging to the Redox group, and of other genes belonging to
Neurodegeneration, Lifespan/Aging, Starvation and Neuronal groups. The two photos are reprinted from Cantera et al., 2002.

Expression analysis by PCR

Mutant samples were confirmed by PCR analysis of sall
expression. Selected genes were validated by Q-PCR in
independent RNA samples per genotype. RNA samples
were first treated with 2 pl of DNasel for 15 minutes at
37°C followed by enzyme inactivation for 5 minutes at
75°C. Two micrograms of RNA were retrotranscribed
with random primers using the SuperScript III First-
Strand Synthesis System (Invitrogen) at a 100 pl volume
per reaction, following manufacturer’s instructions. Spe-
cific oligonucleotides for salm, dro5, IM3 and RpL32
were designed using the primer blast tool from NCBI
website [62] (Additional file 13: Table S13). RpL32 was
used as a control.

For Q-PCR, EvaGreen master mix (Biotium) and mi-
Hot Tag mix (Metabion) were used. Reactions were
performed in 20 pl reaction volume (20 ng of cDNA,
1x mi-Hot Taq mix, 1x Eva Green mix, 0.1 uM of each
primer Forward and Reverse) in a CFX-thermocycler
(BioRad) as follows: 95°C for 10 min, 40 cycles of 95°C
for 15 seconds and 60°C for 1 min, and a final exten-
sion of 95°C for 1 min. A melt curve from 60 to 95°C,
with 0.5°C temperature increment every 5 seconds, was
carried out. All the reactions were run in agarose gels
stained with ethidium bromide for validation of amplifi-
cation specificity. RpL32 was used as a control.

RNA sequencing, annotation and differential expression
cDNAs from two or three independent pool-
preparations per genotype and developmental stage were
sequenced. mRNA-Seq libraries were obtained out of
1 pg of total RNA per pool following the mRNA Se-
quencing Sample Preparation kit’s instructions (Illumina
Inc.). In summary, poly-A containing mRNA molecules
were isolated using poly-T oligo-attached magnetic
beads; then, a random chemical fragmentation of the
mRNA was followed by cDNA synthesis, ligation of Illu-
mina’s sequencing universal adaptors and PCR amplifica-
tion of ligated fragments. Libraries containing inserts
between 80 and 120 bp (libraries sizes ranging from 200
to 250 bp) were quantified by Q-PCR, clustered and
amplified on flow-cell lanes and sequenced in a Genome
Analyzer II (Illumina Inc.) for 36 or 38 cycles. The
sequences were submitted to NCBI Sequence Read
Archive (SRA) (http://trace.ncbi.nlm.nih.gov/Traces/sra/
sra.cgi?view=studies) under submission ID: SRA048981.1
and to Gene Expression Omnibus (GEO) database under
accession number GSE38664.

Short reads were aligned to the Drosophila melano-
gaster genome version FlyBase r5.22 with Bowtie [63]
allowing using default options, but selecting only
the best alignment (—-best). Reads were annotated
with the R/Bioconductor Genominator package and
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differential expression measured with the DESeq
package [19]. Aligned reads were also normalized by
RPKMs [20].

Gene Ontology and other bioinformatics analysis
Preliminary non-biased gene ontology (GO) analysis was
carried out using VLAD online tool [64]. Then, func-
tional groups lists of genes were manually elaborated
based on the literature and the following databases:
VLAD [64], AMIGO [65], GATHER [66], GOTM [67]
and FlyBase [68]. Homozygous sall mutant misregulated
genes found in our analysis (at stage 16, 17 and at the
transition between both stages), were then classified in
our “Functional Groups reference lists”. The following
functional groups were constructed from specific litera-
ture sources: Tissue regeneration [21]; Salt stress (genes
overexpressed 4hs after salt treatment, [24]); Mitochon-
drial diseases [40]; Lifespan/Aging [59,60,69-71]. Genes
belonging to functional groups different from selected
“Reference Groups” were categorized under the generic
term “Other”. Genes with no function experimentally
demonstrated or suggested yet, were classified as “Un-
known function”. We then calculated and graphically
represented the percentage of sall mutant misregulated
genes at stage 16 (WT16 vs Hol6; Hel6 vsHol6), 17
(WT17 vs Hol7; Hel7 vs Hol7) and at the transition
between both stages (Hol6 vs Hol7; WT16 vs WT17)
belonging to each “Functional Group reference list”. Fi-
nally, we performed Gene Ontology (GO) analysis using
the FatiGO software of the BABELOMICS package [72].
Additional file 14: Table S14 shows the genes in each
Functional Group category used in this study.

For the analysis of Sall binding sites we used the
MatScan software [73], demanding at most 1 substitu-
tion from the published consensus [11] and using the
BDGP R5/dm3 genome assembly as reference.

We compared our sequencing data with those from
Graveley et al. [17] in two different ways: 1) We calcu-
lated Pearson correlation coefficients between the mod-
ENCODE RNA-seq data from 12 to 14 h embryos
(SRX015647) and our WT16 data and between the mod-
ENCODE RNA-seq data from 18 to 20 h embryos
(SRX015650) and WT17; and 2) we determined the
number of shared genes in the WT 16/17 and 12-14 h/
18-20 h transitions, both for up and down-regulated.
For both analyses we carried out first a median-
normalization of the data in order to transform the ex-
pression values into a comparable scale. In the second
analysis we consider a gene to be differentially expressed
if it is at least 4-fold over- or under-expressed.

For the comparison of our data with that from the si-
lencing of salm in the muscle, we compared the homo-
zygous sall mutant misregulated genes found in our
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experiment with the top 500 genes of the microarrays of
salm downregulated pupal muscle [46].

Additional files

Additional file 1: Table S1. Sequencing parameters of the biological
replicas of the studied genotypes. Genotype symbols: Wild type (WT),
Heterozygous (He), Homozygous (Ho). Letters a, b and ¢ symbolize
different experiments for each genotype. Technical replicates were
grouped (ie: WT16ab).

Additional file 2: Table S2. Differential expression analysis.
baseMean (mean expression level, at the base scale, as a joint estimate
from both conditions); baseMeanA (mean expression level, at the base
scale, as an estimate for condition A); baseMeanB (mean expression level,
at the base scale, as an estimate for condition B); foldChange (fold
change from the first to the second condition); log2FoldChange
(logarithm to basis 2 of the fold change); pvalue (significance of the fold
change); padjusted (p values adjusted for multiple testing with the
Benjamini-Hochberg procedure, which controls false discovery rate);
resVarA (ratio of the single gene estimates for the base variance to the
fitted value in condition A); resVarB (ratio of the single gene estimates for
the base variance to the fitted value in condition B).

Additional file 3: Table S3. RPKM normalization of gene counts.
Genotype symbols: Wild type (WT), Heterozygous (He), Homozygous (Ho).
Letters a, b and ¢ symbolize different experiments for each genotype.
Technical replicates for a same genotype sample were grouped (ie:
WT16ab).

Additional file 4: Table S4. Number of genes significantly
misregulated in homozygous or heterozygous sall mutant embryos
in comparison to WT. Genotype symbols: Wild type (WT), Heterozygous
(He), Homozygous (Ho). Downregulated (D) or upregulated (U) genes in
the second genotype with respect to the first one; E, no significant
changes in expression between the two genotypes.

Additional file 5: Figure S1. Dosage effect of sall genes. (A) mMRNA-
Seq expression plot for arm, Fas-3, Nrg, Fas2, CadN and N genes in
heterozygous (He) and homozygous (Ho) sall mutant embryos at stage
16 showed consistent results with the differences in protein levels
observed by Cantera et al. (Cantera et al. 2002). Notice that heterozygous
sall mutant embryos have higher transcript levels than homozygous for
all these adhesion and cytoskeleton genes, suggesting a dosage effect of
Sall. (B) mMRNA-Seq analysis of the transcriptome of WT16, He16 and Ho16
embryos, showed that five genes are differentially expressed (p < 0.01)
between all the genotypes compared at stage 16 and have intermediate
levels of expression in He16. (C) At stage 17, instead, four of the genes
that are differentially expressed (p < 0.01) between all the genotypes
compared at this stage had intermediate levels of expression in He17.

Additional file 6: Figure S2. Reads mapped along /M3 and dro5
genes. (A, B) 36 or 38 long reads represented by grey lines map on dro5
(A) or IM3 (B) genes. Gene, mRNA and coding sequence (CDS) are
represented on the upper part of each figure. On the left, the different
biological replicates of each genotype analyzed are indicated.

Additional file 7: Figure S3. Putative Sall binding sites in regulated
genes. Graphical representation of dro5 (A) and IM3 (B) genes and the
putative Sall binding sites (pink box in A, green and blue boxes in B) in
the genomic region. Conservation of these sequences in various
Drosophila species is depicted below the graphs.

Additional file 8: Table S5. Misregulated genes in homozygous sall
mutant embryos. Genotype symbols: Wild type (WT), Heterozygous (He),
Homozygous (Ho). Downregulated (D) or upregulated (U) genes in the
second genotype with respect to the first one; E, no significant changes
in expression between the two genotypes. Genes previously associated
with neurodegeneration/neuroprotection are indicated in RED.

Additional file 9: Unbiased Gene Ontology analysis of the genes
significantly misregulated in homozygous sall mutant embryos
using the VLAD online tool. Genes misregulated in homozygous sall
mutant embryos at stage 16, 17 and at the transition between both
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stages (genotype comparisons: WT16 vs Ho16; WT17 vs Ho17; Ho16 vs
Ho17).

Additional file 10: Table S6. Functional classification of genes
misregulated in homozygous sall mutant embryos with respect to
wild type embryos at stage 16. Genotype comparison WT16 vs Ho16.
Wild type (WT), Homozygous (Ho).Table S7. Functional classification of
genes misregulated in homozygous sall mutant embryos with
respect to heterozygous embryos at stage 16. Genotype comparison
Ho16 vs He16. Homozygous (Ho), Heterozygous (He). Table S8.
Functional classification of genes misregulated in homozygous sall
mutant embryos with respect to wild type embryos at stage 17.
Genotype comparison WT17 vs Ho17. Wild type (WT), Homozygous (Ho).
Table S9. Functional classification of genes misregulated in
homozygous sall mutant embryos with respect to heterozygous
embryos at stage 17. Genotype comparison Ho17 vs Hel7.
Homozygous (Ho), Heterozygous (He). Table S10. Functional
classification of genes misregulated in homozygous sall mutant
embryos at the transition from stage 16 to 17. Genotype comparison
Ho16 vs Ho17. Homozygous (Ho). Table S11. Functional classification
of genes misregulated in wild type embryos at the transition from
stage 16 to 17. Genotype comparison WT16 vs WT17. Wild type (WT).

Additional file 11: Figure S4. Functional classification of
misregulated genes. (A-C) Graphic representation of the main
functional groups enriched in misregulated genes in the indicated
genotypes, expressed as percentage of genes in each group. In red
are marked the groups significantly overrepresented with respect to
the total Drosophila genome with p<0.01 and in green with p<0.05.
(A) Classification of the genes misregulated in Ho16 compared with
Hel6. (B) Classification of the genes misregulated in Ho17 compared
to Hel7. (O) Classification of the genes misregulated in WT embryos at
the transition from stage 16 to 17.

Additional file 12: Table S12. Genes regulated by Sall both in
embryonic stages and in and pupal muscle.

Additional file 13: Table S13. Oligonucleotides used for PCR
analysis.

Additional file 14: Table S14. Functional Groups reference list. *GO

categories constructed from specific literature sources.
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