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Abstract

Background: Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA
replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly
unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative
genomics, we explored whether other processes have evolved in parallel with each polymerase.

Results: Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of
genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the
transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving
enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set
belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-
evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least
two origins for the degradosome.

Conclusion: DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of
bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the
degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation
pathways existed in the progenote community at the end of the RNA genome world.
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Background
Future developments of Synthetic Biology require that
patterns of gene organization in genomes are carefully
taken into account [1]. Following the pioneering work
of Sueoka [2], Lobry and co-workers identified a replica-
tion-linked bias in the nucleotide distribution in bacter-
ial chromosomes. Subsequently, a bias in favor of genes
transcribed in the same direction as that of the move-
ment of the replication fork was observed in most bac-
terial genomes [3,4]. The bias was correlated with the
presence in the genome of a single origin of replication.
Taken together, these observations led to the construc-
tion of algorithms meant to identify in silico the origins
of replication [5]. The cause of the bias has been a mat-
ter of speculation until it was observed that Firmicutes
displayed the strongest bias [6,7] reaching 87% in

organisms such as Thermoanaerobacter tengcongensis
[8]. A first hypothesis proposed that the bias was favor-
ing genes requiring high expression [9]. Yet, there was
no correlation between gene expressivity and transcrip-
tion from the leading strand. Indeed, many genes of the
replications machinery are expressed at a low level, and
they are transcribed from the leading strand [10]. The
leading strand bias had therefore to be accounted for by
physical constraints: transcription of key genes must
avoid head-on collision with the replication machinery
to prevent formation of truncated transcripts. The latter
are known to be toxic for the cell, in particular when
they code for polypeptides belonging to protein com-
plexes (see [11] for a general description of the process).
A further observation noticed that organisms that

were strongly biased in the leading vs lagging strand
replication encoded two DNA polymerases III, DnaE
and PolC, rather than a single one [12]. DnaE was ori-
ginally identified in Escherichia coli [13] whereas PolC
was identified in Bacillus subtilis [14]. Yet, in contrast
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with the situation in Eukarya where the presence of two
polymerases is the norm, most bacterial species listed in
genome reference databases code for only one DNA
polymerase III. In E. coli, the same structural type of
DnaE replicase acts on both the leading and lagging
strand. Two identical replicase molecules are held
together in a complex with the replicative helicase and
subunits with priming activities, allowing two identical
alpha catalytic subunits to assume different functions on
the two strands of the replication fork [15]. In contrast,
in B. subtilis, asymmetric DNA synthesis requires repli-
cative DNA polymerases with two distinct structures,
DnaE and PolC. In contrast to PolC, DnaE, which repli-
cates the lagging strand, is devoid of 3’ –> 5’-proofread-
ing exonuclease activity and has a low processivity (1-75
nucleotides), requiring additional factors to fulfill its role
in replication [16].
DnaE and PolC differ both in structure and activity

[15]. This prompted us to explore whether their genes
co-evolved with consistent groups of genes, allowing us
to propose scenarios of the origins of the replication
machineries. In particular the cell manages compart-
mentalization via the cell’s envelope, appendages, but
also nanomachines such as the ribosome, ATP synthase,
the degradosome and many others [17]. We present
here a phylogenetic profile analysis focused on the bac-
terial dnaE and polC genes and show that proteins co-
evolving with PolC have distinct features, and may form
a specific kind of degradosome. The consequences in
terms of the origin of bacteria are discussed.

Methods
To separate between the history of DnaE and that of
PolC, we established a heuristics meant to identify genes
that co-evolved in bacterial genomes. The approach is
straightforward: we first identify orthologous genes by
pairwise comparison to compute phylogenetic profiles;
we subsequently compare them after statistical valida-
tion, taking into account the phylogenetic distances
between organisms with co-occurring genes; finally, we
combine phylogenetic profiling with other methods that
take into account the genomic context.

Pairwise gene comparison and phylogenetic profiles
Phylogenetic profiling uses binary vectors that, taking
genes one by one, identify in which organisms an ortho-
log is present (resp. absent). To this aim, Tatusov intro-
duced the notion of “occurrence vector” for groups of
orthologous proteins [18]. Here we used the complete
RefSeq NCBI database of bacterial genomes [19] com-
paring the cognate proteomes using BlastP (all genes of
a proteome against all proteomes). We subsequently
identified orthologs using bidirectional best hits (BBH)

as described by Koonin and co-workers [20]. Next, we
retained orthologs according to the distribution of a
gene similarity scores, s, designed to take into account
biological constraints other than orthology, using rele-
vant thresholds (see equation 4 for definition of the
thresholds).
Lacking an evolutionary model common to all gen-

omes, we chose the simplest model: the similarity score
we used is the direct convolution of identity (i) and cov-
erage (c: length of the BlastP alignment divided by the
length of the longest protein) of the BlastP hits:

s = i*c (1)

We computed the values of s for each gene ortholog
present in the target organism. As an example, Figure 1
(left panel) displays the behavior of sorted s for 8 genes
of the B. subtilis histidine pathway. The x axis indicates
the number of orthologs of the target gene having a s
score below x. The curves displayed in Figure 1 show
that if we used a common threshold (score of the y
axis) for all genes, we would find inconsistent levels of
orthology. For example, fixing the threshold at 40 (arbi-
trary units, dashed black line) for the gene hisF retained
almost all hisF orthologs but only some hisC orthologs
(selected orthologs have similarity scores above the
threshold). Ths is because there is no common molecu-
lar evolutionary clock [21] for the genes in the pathway:
hisC orthologs genes maintain their function despite a
high rate of mutation, generating BlastP hits with lower
similarity scores. This constrasts with the evolution of
hisF orthologs. Had we used the same threshold for
hisC and hisF genes we would not have found them to
be correlated.
We therefore selected orthologous genes verifying the

following formula:

s>avg(s) (2)

This allowed us to select orthologous genes with a
similarity score s above the average of s, avg(s) (see Fig-
ure 1 right panel). Now, the number of orthologous
genes selected for the genes hisF and hisC is almost the
same. As a consequence, if these orthologs belong to
the same organisms, the two genes will be found to be
correlated, a functionally relevant observation.
Next, we included in the model the fact that ortholo-

gous genes must have a similar homology score because
positive selection pressure tends to retain only a limited
number of mutations among those that are constantly
created. This implies that a high density of similarity
score should correspond to families of organisms that
keep the function of a gene with no alteration. To this
aim, we first computed the distribution of s values, d(s),
for each ortholog of target genes.
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Figure 2 shows how d(s) varies for the histidine path-
way’s genes of B. subtilis. We subsequently retained the
orthologs genes verifying the following formula:

d(s)>avg(d(s)) (3)

Finally, we took into account the fact that proteins may
keep their function while suffering different mutation rates
(a different threshold for each gene) and that families of
organisms that keep the function of a gene have similar
homology scores because they undergo positive selection
pressure (high densities of homology score). To this aim
we selected orthologs with a similarity score s above the
average and otherwise orthologs genes with a s density
above the average, combining (2) and (3).

s>avg(s) OR d(s)>avg(d(s)) (4)

Figure 3 shows an example of this selection (selected
orthologs genes have their s values indicated in grey) for
hisI orthologs.
Relevant selection of orthologs has been computed for

each gene of the target organism. This allowed the
building up of binary vectors of presence/absence for
these genes to explore the hypothesis that functionally
linked genes have the same occurrence vectors. The
next step was then to compare together these occur-
rence vectors to underscore functional relationships that
group together genes of the target organism.

Comparison of phylogenetic profiles
As previous authors, we assumed that in the course of
evolution functionally-related genes tend to be gained or

lost together. This results in a correlation of their occur-
rence vectors. The first exploration of this hypothesis
compared co-occurrence profiles using Hamming’s dis-
tance [22]. Subsequently, many different statistical
approaches to compare phylogenetic profiles have been
used, such as mutual information [23], Pearson correla-
tion coefficient [24] and Fisher’s test [25]. Here we used
the phi coefficient to compare phylogenetic profiles of
two genes X and Y. This measure is similar to the Pear-
son correlation coefficient. In fact, a Pearson correlation
coefficient estimated for two binary variables will return
the phi coefficient:

φ = (n11 ∗ n00 − n10 ∗ n01) /[(n11 + n10) (n01 + n00) (n10 + n00) (n01 + n11)]1/2 (5)

With n11, the number of organisms in which X and Y
are present; n00, the number of organisms in which X
and Y are absent; n10, the number of organisms in
which X is absent and Y is present; n01, the number of
organisms in which X is present and Y is absent. The
formula is symmetric:

φ(X,Y) = φ(Y,X) (6)

Measure of phylogenetic distances
The Pearson correlation, as other statistical methods,
ignores that organisms are phylogenetically related and
that the phylogenetic kinships may be biased. This must
be taken into account, as the genome samples that have
been sequenced is considerably biased, in terms of rela-
tive phylogenetic proximity. This may have a negative
influence on our predictions. To reduce the effect of

Figure 1 Curves of sorted similarity score s (equation 1) for 8 genes of the B. subtilis histidine pathway. The x axis represents the
number of orthologs of the target gene having a s score below y. Left panel: The same threshold (dashed black line at 40) for all genes is used.
Right panel: Different thresholds chosen according to the average of s are used for each gene.
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this phylogenetic skew, we modified the formula, taking
into account the phylogenetic distance between organ-
isms in which the genes co-occur. The idea was to give
a larger weight to genes co-occurring in distant organ-
isms than to those present/absent simultaneously in clo-
sely related organisms. As we do not have a detailed
model that would account for the sampling bias in gen-
ome data, we used a plausible straightforward phenom-
enological measure of the proximity between two
organisms, A and B, D(A,B):

D(A,B) = 1 -
(
N(A,B)/max(N(A),N(B))

)
(7)

with N(A,B) the number of genes occurring in organ-
isms A and B, N(A) the number of genes in organism A
and N(B) the number of genes in organism B.
In the absence of a model describing genome evolu-

tion, and knowing that there is a considerable anthropo-
morphic bias in the choice of the organisms that have
been sequenced we chose a somewhat arbitrary non-lin-
ear model to increase the weight of distant organisms.
Our formula to measure the functional link between
two genes X and Y is now:

φ(X,Y)*D(A,B)3 (8)

with A and B the most distant organisms in which
genes X and Y co-occur.

Coupling with genomic context methods
Further biologically-relevant factors must be taken into
account to construct a plausible heuristics. A great
many methods use the genomic context of genes to pre-
dict functional links between proteins. For example,
functional links are suggested by conservation of gene
neighbourhood and gene order [26], gene fusion events
[27], correlation of the genes’ evolutionary rate [28] and
correlation of genes’ occurrence in organisms (phyloge-
netic profiles). In [23] an evaluation of the methods that
emphasized these factors showed that conservation of
the gene neighborhood and the gene order covered 45%
of the functional interaction between genes of Myco-
plasma genitalium. In the present work, the gene neigh-
borhood was measured using the Syntonizer software
(implemented in the MicroScope platform [29]), which
is based on an exact graph-theoretical approach to mea-
sure synteny [30]. A factor K was used: K(X,Y) = 1 if

Figure 2 Distribution d(s) of orthologs s values (equation 1) for the histidine pathway’s genes of B. subtilis.
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the two genes X and Y are found at least once in syn-
teny and 0.9 otherwise.
The final formula to compute the co-evolution score

C between two genes X and Y is then:

C(X,Y) = φ(X,Y)*D(A,B)3*K(X,Y) (9)

with j(X,Y) the correlation score between phyloge-
netic profiles of the genes X and Y, D(A,B) the distance
between the most distant organisms A and B in which
the genes X and Y co-occur and K(X,Y) a factor mea-
suring the conservation of genes neighborhood.
This phylogenetic profile method (PhyloProfile) has

been integrated in the MicroScope platform [29]. It is
directly available in the gene editor and allows the
users to compute dynamically co-evolution scores of
the target gene against all genes of the organism of
interest.

Construction of clusters of co-evolution
Finally, following computation of the relevant phyloge-
netic profiles, we constructed co-evolution clusters. To
this aim, we computed co-evolution scores, C, for all
genes of B. subtilis, E. coli and Acinetobacter baylyi. If n

is the number of genes of an organism, we obtained n*
(n-1) scores. These scores were used to build up net-
works in which nodes correspond to genes and edges
correspond to scores of co-evolution between genes.
Applying a clustering method on these networks will
allow construction of partitions of these genomes into
clusters of co-evolving genes. Here we used as a cluster-
ing method the Markov Cluster algorithm (MCL; Van
Dongen 2000; http://micans.org/mcl/) that is designed
to cluster large numbers of relationships in a similarity
space. The MCL algorithm is a fast and scalable unsu-
pervised cluster algorithm for networks, based on simu-
lation of flows in graphs. It has successfully been
applied for clustering large sets of protein sequences
[31,32]. In the present work, clusters corresponding to
functionally relevant processes, such as metabolic path-
ways (histidine biosynthesis...) or global functions
(degradosome ...) were obtained, depending on the
threshold used in the clustering procedure.
As a validation of our approach we verified that

molybdopterin biosynthesis and use have disappeared in
a concerted way, as observed in Pseudoalteromonas
haloplanktis [33].

Figure 3 Distribution d(s) of orthologs s values (equation 1) for gene hisI of B. subtilis. Orthologs of hisI which have their s values
indicated in grey correspond to orthologs selected applying equation 4.
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Results
The contrasted replication-associated gene orientation
bias uncovered between most bacterial clades and Firmi-
cutes prompted us to explore the underlying phyloge-
netic constraints that support this discrepancy. To this
aim we meant to uncover the functions that co-evolved
with either DnaE or PolC.
To get a first crude view of the processes underlying

this replication-associated bias we used the JMP® soft-
ware (SAS Institute, Cary, NC) to compute a hierarchi-
cal clustering of the B. subtilis essential genes [34]
according to their occurrence proportion in different
Bacteria clades (Figure 4). Three main clusters were
obtained. Unexpectedly, they were all related to DNA
replication. This substantiated the conjecture that the
way replication is organized was indeed at the core of
some important functional variation specific to bacteria
forming a given clade.
We observed the following, from top to bottom in

Figure 4: A first cluster corresponded to genes present
in almost all bacterial clades. This cluster contains
dnaE, which, however, seems to be absent from the Dei-
nococcus-Thermus and Chlamydia-Verrucomicrobia
clades. It also comprises the bulk of the translation
machinery (ribosome protein genes), including a limited
number of tRNA synthetases, RNA polymerase genes,
core iron-sulfur metabolism, and the core genes
required to synthesize an envelope (Additional file 1).
The second cluster (in blue) corresponded to genes
spanning the whole domain Bacteria. It comprizes most
genes of tRNA synthetases and the remaining set of
ribosomal protein genes. Remarkably it clusters with
dnaA as well as the gene for DNA primase. Finally, the
third cluster corresponded to genes mostly specific to
Firmicutes. This cluster co-evolves with polC, genes
involved in cell division and genes involved in RNA
degradation.
While already revealing, this first analysis cannot give

us a detailed view of gene co-evolution as it is based on
a considerably biased sample of genomes. Indeed, gen-
omes have been chosen to be sequenced as a function
of the history of biological studies in the academic
world (and particularly oriented towards bacteria of
medical interest), and not based on a view spanning the
whole tree of life, with equal weight for all extant spe-
cies. In general, finding the same frequency of gene
occurrence in a clade does not imply that these genes
are simultaneously present or absent in the same organ-
isms. This is particularly true when clades are made of
only a few organisms (Thermotogae, Acidobacteria,
Chloroflexi, Deinococcus have less than twelve organ-
isms). Naturally, this is much less so in clades that are
well represented (Firmicutes and gamma-Proteobacteria

comprize more than 250 organisms). Furthermore this
preliminary analysis was only based on the essential
genes of B. subtilis, and it is well established that func-
tional ubiquity does not equate to gene ubiquity: a same
function could be essential in other clades, but per-
formed by a gene of a completely different descent.
In order to investigate more accurately gene co-evolu-

tion we needed therefore to analyze the occurrence pro-
files of all B. subtilis genes at the level of several
phylogenetically distant model organisms rather than
clades. To this aim, we designed a specific phylogenetic
profile heuristics (PhyloProfile, see Methods) and based
our exploration on the recently re-sequenced and re-
annotated genome of B. subtilis [35] in parallel with that
of the reference sequence and annotation of E. coli [36],
an organism phylogenetically distant from B. subtilis.
The method allowed us to identify clusters of genes that
specificallly co-evolved with dnaE and polC.

Genes co-evolving with dnaE
As a possibly ancestral protein, DnaE co-evolves with a
very large number of genes. We used different co-evolu-
tion scores thresholds (0.50 to 0.90) to investigate how
the proteins of the whole proteome clustered with
DnaE. When the threshold was higher than 0.75, the
number of genes co-evolving with DnaE stabilized to
approximately 250 genes. As an example, using 0.77 as a
threshold, we listed the genes co-evolving with DnaE
from B. subtilis (Additional file 1). This list matched
remarkably well with the key genes coding for the per-
sistent functions that are required to allow reproduction
and replication [37], substantiating the validity of the
heuristics.
Most of the genes coding for the translation and tran-

scription machineries, including factors and enzymes
involved in modification and maturation of basic com-
ponents of the machineries, were found in the list. This
list also comprized the genes coding for the major meta-
bolic pathways allowing construction of the cell: pyrimi-
dine and purine biosynthesis and salvage, the core of
the glycolytic/gluconeogenesis pathway (eno, gapA, pgk,
tpiA...) and ATP synthase, as well as the secretion
machinery. A number of components of the replication
apparatus (DnaA, DnaC, DnaG, DnaN, GyrAB, LigA,
PcrA, RnhB, SsbA) and genes involved in recombination
and repair (Nth, Obg, PolA, RadA, RecA, RecG, RecN,
RecO, RuvAB) were present as well in this set of pro-
teins co-evolving with DnaE. Remarkably, a set of func-
tions was missing from this list, that which corresponds
to many components of RNA degradation (see below)
[38]. Indeed, we found only a very limited set of RNA
maturation and catabolism genes: rnc (coding for RNase
III), rnhB (already mentioned, allowing degradation of
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RNA/DNA hybrid sequences during replication of the
DNA lagging strand) and pnpA, a gene coding for an
enzyme degrading RNA while preserving phosphate
bond energy, polynucleotide phosphorylase.
Beside genes coding for known functions, a consistent

set of genes coding for unknown functions was present
in most bacterial clades. The corresponding list of the
corresponding 33 « y » B. subtilis genes within the lar-
ger DnaE-related gene set is displayed in Table 1. These
genes were further analyzed as they correspond to
unknown or poorly identified functions that, if under-
stood, would enhance considerably our understanding of

bacteria. In the course of this exploration, we benefited
from continuous re-annotation of the updated genome
sequence [35]. Using the most recent publications, this
limited the unknowns to at most 18 genes. Interestingly,
the majority of the newly identified functions was
involved in ribosomal RNA metabolism (rsmI(yabC),
rsmD(ylbH), rlmN(yloN), rimP(ylxS), hflX(ynbA), cpgA
(yloQ)), further substantiating the DnaE/translation con-
nection. We also found in this set the hibernation pro-
moting factor (hpf(yvyD)) and further genes involved in
recombination and repair (uup(yfmR), recD(yrrC), rarA
(yrvN)). All of these genes have a counterpart in E. coli.

Figure 4 Hierarchical clustering of occurrence proportion vectors of B. subtilis essential genes in clades of the domain Bacteria.
Squares show the proportion of a phylum (ascending from white to black) having an occurrence of a gene. The dendogram depicts distances
between the proportion vectors. This dendogram separates B. subtilis essential genes into three clusters. The first one (red) contains dnaE and
corresponds to genes occurring in the majority of bacterial clades. The second one (blue) contains dnaA and spans the whole domain of
bacteria. The last one (green) contains polC and is composed of genes essentially specific to Firmicutes. The computing and visualization of the
clusters was performed using the JMP® software (SAS Institute, Cary, NC).

Engelen et al. BMC Genomics 2012, 13:69
http://www.biomedcentral.com/1471-2164/13/69

Page 7 of 15



A gene, shorter in B. subtilis than in E. coli, codes for a
function important for mRNA turnover, rpsA in E. coli
and ypfD (renamed rpfA) in B. subtilis. This gene codes
for ribosomal protein S1 in E. coli and there is a clear
indication, in this case, that the ribosomal protein func-
tion has been superimposed on the general function of
mRNA presentation to the degradosome [39]. This is a
first indication that there is divergence between proteins
functionally related to DnaE polymerase III in E. coli
and B. subtilis, in particular at the level of RNA
degradation.
Starting with the B. subtilis nomenclature, we grouped

the 18 remaining genes of unknown function according
to common features, either extracted from the literature

or using the neighborhood software STRING [40], with
the hope to further uncover some of the associated
functions. Despite its consistently valid outcomes we
refrained from using our PhyloProfile to avoid circular
validation. Interestingly, all but one (yolJ, a gene belong-
ing to bacteriophage SPbeta, that disappeared from Phy-
loProfile when the threshold was increased) of these co-
evolving genes have at least one clear ortholog in E. coli.
yaaK belongs to an operon involved in DNA replication
and repair, its STRING pattern further subtantiates this
functional association. yabD and yrrK yrrL are con-
nected together and relate to genes of the translation
machinery (metG, ksgA, serS, rsmG) as well to genes
involved in DNA metabolism and aromatic compounds

Table 1 Genes of unknown function co-evolving with Bacillus subtilis dnaE

Label B. subtilis old name E. coli Function

BSU00200 yaaK yaaK ybaB DNA binding protein1

BSU00360 rsmI yabC yraL ribosomal RNA small subunit methyltransferase I2

BSU00390 yabD yabD ycfH metal-dependent DNase1

BSU00480 yabJ yabJ yjgF putative enzyme resulting in alteration of gene expression

BSU05910 ydiB ydiB yjeE putative ATPase or kinase UPF0079

BSU05920 ydiC ydiC yeaZ putative chaperone or protease

BSU05950 ydiF ydiF ybiT putative ABC transporter (ATP-binding protein)3

BSU07370 uup yfmR ycbH putative ABC protein involved in RecA-independent precise excision of transposons1

BSU07900 rbn yfkH yihY putative ribonuclease BN2

BSU09240 yhcW yhcW yniC putative phosphoglycolate phosphatase

BSU14350 yknX yknX ybjY (macA) putative efflux permease3

BSU15010 rsmD ylbH yhhF ribosomal RNA small subunit methyltransferase D2

BSU15380 ylmE ylmE yggS conserved hypothetical protein

BSU15750 rlmN yloN yfgB 23S rRNA m2A2503 methyltransferase2

BSU15780 cpgA yloQ rsgA (yjeQ) GTPase involved in ribosome and sacculus morphogenesis2

BSU16590 rimP ylxS yhbC ribosome maturation factor2

BSU17430 hflX ynbA hflX ribosome associating GTPase2

BSU21450 yolJ yolJ “-” putative glycosyltransferase

BSU22880 rpfA ypfD “-” rpsA RNA degradation presenting factor (ribosomal protein S1 homolog)2

BSU24790 yqgX yqgX ycbL putative metal-binding hydrolase

BSU24890 folN yqgN ygfA 5-formyltetrahydrofolate cyclo-ligase

BSU25320 yqfG yqfG ybeY putative metal-dependent hydrolase

BSU25620 yqeL yqeL ybeB putative ribosomal maturation protein2

BSU27370 yrrL yrrL yceG conserved hypothetical protein

BSU27390 yrrK yrrK yqgF putative Holliday junction resolvase1

BSU27480 recD yrrC recD exodeoxyribonuclease V alpha chain1

BSU27490 yrrB yrrB yciM putative tetratricopeptide repeat family protein

BSU27530 rarA yrvN ycaJ DNA-dependent ATPase1

BSU27700 yrbF yrbF yajC component of the preprotein translocase

BSU28360 rdgB ysnA yggV (rdgB) inosine/xanthosine triphosphate pyrophosphatase (subunit A)

BSU30680 ytjA ytjA yidD conserved hypothetical protein

BSU35310 hpf yvyD yhbH ribosome-associated sigma 54 modulation protein2

BSU36950 tamT ywlC yrdC tRNA threonylcarbamoyladenosine biosynthesis protein2

1: DNA metabolism

2: RNA metabolism

3: transport
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biosynthesis. yabJ (yjgF in E. coli) codes for a putative
enzyme with a 3D known structure conserved in all
three domains of life [41]. Here, it is related to inter-
mediary metabolism via aminotransferase PatB, the con-
trol of purine metabolism (purR, relA, gmk, rdgB),
isoleucine biosynthesis and to proteolysis (via ClpX). In
contrast, in E. coli, it is related to catabolism of threo-
nine, pyrimidine metabolism and to a network of genes
of unknown function. ydiB (coding for a putative shiki-
mate dehydrogenase [42]), ydiC and ydiF connected to
ribosome maturation and sulfur metabolism. yhcW con-
nects to ilvA and translation; yknX, in an operon coding
for a putative efflux permease, down regulated in the
presence of benzoate [43]; ylmE to cell division and pro-
line and purine/polyphosphate metabolism; yqgX to
translation via aspartyl and histidyl tRNA synthetases, as
well as D-tyrosine deacylase, transformylase and RelA;
yqfG to translation and phosphate metabolism; yqeL and
ytjA to translation and tRNA modification; finally, yrrB
and yrbF are connected to several genes involved in
tRNA modification.
In summary, DnaE co-evolves with most of the repli-

cation, recombination, translation, transcription and
secretion machineries, and with some of the core meta-
bolic biosynthetic pathways. We noted however the
absence of a consistent RNA degradation pathway as
well as most enzymes of the envelope biosynthetic path-
ways. This suggested that both RNA degradation and
envelope biosynthesis, while functionally essential, might
derive from different descent in different bacterial
clades.

Genes co-evolving with polC
The list of the 162 genes co-evolving with polC differed
considerably from that co-evolving with dnaE (Addi-
tional file 1). In particular, among those, 69 were genes
of unknown function, a considerable proportion (Table
2). Interestingly, when analyzing their neighborhoods
with STRING, we observed that there was seldom any
connection with the dnaE-related networks, as if polC
had evolved from a completely different origin. We also
noticed that almost all genes in the list, while present in
B. subtilis, do not have an ortholog in E. coli. This is
exactly the opposite of what we found with genes co-
evolving with dnaE. As for DnaE, the PolC-related pro-
teins could be clustered into functionally significant
groups (Tables 2 and 3). Remarkably, many of these
clusters correspond to some aspect of RNA metabolism.
Using STRING, these genes could be further clustered
into seven groups (Table 3), the other ones remaining
isolated.
Group 1 clusters a subunit of the DNA replication

complex, DnaH(YabA), together with putative RNA

binding proteins (YaaA and YabB). Distant homologs
exist outside of Firmicutes, in particular in Eukarya.
Group 2 comprizes proteins involved in the Firmicute

degradosome network and possibly involved in stress
management (YabR and YugI (general stress protein
GSP13 [44], essential in Staphylococcus aureus [45]),
both displaying a S1 motif [46]).
Group 3, the largest group, is organized around sev-

eral proteins, most of which small or very small. They
have often a known 3D structure but do not yet have an
idenfied function. They are involved in RNA metabolism
(transcription, RNA modification and turnover): YitL, an
RNA binding protein, RnpZA(YkzG), a component of
the omega subunit of RNA polymerase, YktA (possibly
involved in polyamine metabolism, YlbG (possibly
involved in activity of a conserved small RNA, CsfG
[47]), YozE, of unknown function, YqgQ (putative sin-
gle-strand nucleic acid binding protein involved in tran-
scription [48]), and finally YrzL (essential in S. aureus
[45]) and YutD, unknown proteins that are possibly
hydrolases. With STRING we observed that this cluster
is further connected to RnjA, the non-orthologous func-
tional equivalent of RNase E in proteobacteria [49].
Many of these proteins are members of UniProt
Unknown Protein Families (UPFs), most of which asso-
ciated to Firmicutes and sometimes Archaea and
Eukarya. This cluster further connects via YqgQ to
DNA replication and recombination, to energy-depen-
dent proteases, to divalent metal transporters and to
proteins involved in shaping the cell. Via YloU (with a
paralog, YqhY), YloV (dihydroxyacetone kinase-like),
YlxM (conserved in Mycoplasma sp.), YnzC, YfmM
(proposed to code for polyphosphate-AMP phospho-
transferase in Staphylococcus epidermidis [50]), YmdB
(putative phosphoesterase), YqeG (essential in S. aureus
[45]), this cluster again comprises a large number of
UPFs. It has some connection with the recombination
machinery (RecA, RecG) and the envelope (PlsX, Ffh).
YloU has similarity to yeast S-adenosylmethionine-
dependent tRNA (uracil-5-)-methyltransferase. This may
be significant, because in A+T-rich Firmicutes this activ-
ity differs from that in most other organisms, TrmFO,
the methylating activity, depending on methylene-tetra-
hydrofolate rather than AdoMet, thus suggesting
recruitment for another RNA modification activity [51].
Finally a sub-cluster of this large group associates YlbM
(member of a ribonucleoprotein complex), YqeG
(hydrolase), YqeK, YqeH (phosphohydrolase), and YybT
(a putative phosphodiesterase, with motif GGDQV
related to that of cyclic-diGMP synthesis and degrada-
tion). It is connected to Cca, RplI and YqeI, a putative
RNA binding protein. Again, this cluster has a clear
RNA metabolism flavour.
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Table 2 Genes of unknown function co-evolving with Bacillus subtilis polC

label B.
subtilis

E.
coli

Function Functional connection String
groups

BSU00030 yaaA ybcJ putative RNase or phosphorylase; conserved in yeast; very weak in E. coli2 RNA/DNA metabolism group 1

BSU00330 yabA
dnaH

“_ subunit of the DNA replication complex1 DNA polymerase and “y”
network

group 1

BSU00340 yabB “_ putative RNA methyltransferase2 RNA metabolism group 1

BSU00630 yabR “_ putative RNA degradation protein; polyribonucleotide nucleotidyltransferase or
phosphorylase2

degradosome network
with RfaA

group 2

BSU31390 yugI “_ putative RNA degradation protein or phosphorylase or nucleotidyl transferase; degradosome network
with RfaA

group 2

BSU01750 ybbP “_ homolog of YabR and RpfA2 DAC domain protein present in Archaea group 3

BSU01760 ybbR “_ substrate for Sfp phosphopantetheinyl transferase-catalyzed protein labeling by
small molecule-CoA conjugates

group 3

BSU40510 yybT “. phosphodiesterase acting on cyclic dinucleotides; possibly nanornase2 RNA metabolism group 3

BSU15060 ylbM “_ conserved hypothetical protein, found in a ribonuleoprotein complex in Mus
musculus2

RNA metabolism group 3

BSU25630 yqeK “_ putative hydrolase group 3

BSU25680 yqeG “. putative hydrolase group 3

BSU11030 yitL “_ RNA-binding protein2 RNA metabolism group 3

BSU19680 yozE “. conserved hypothetical protein2 RNA metabolism group 3

BSU24860 yqgQ “_ putative single strand nucleic acid binding protein2 RNA metabolism group 3

BSU14540 ykzG “_ omega subunit of RNA polymerase2 RNA metabolism group 3

BSU16610 ylxR “_ putative RNA binding protein; putative new fold2 RNA binding group 3

BSU27380 yrzB “_ putative anti-sigma factor group 3

BSU15830 yloU “_ conserved hypothetical protein group 3

BSU15840 yloV dhaL putative dihydroxyacetone/glyceraldehyde kinase group 3

BSU08680 ygaC “_ putative factor, domain associated with ribonuclease E and G, possibly involved
in Fe-S group formation2

degradosome network group 3

BSU15970 ylxM “- conserved hypothetical protein2 RNA/DNA metabolism group 3

BSU27950 ysxB “- conserved hypothetical protein with ribosomal function2 ribosome group 3

BSU16000 ylqC “- putative RNA binding protein2 RNA binding group 3

BSU25670 yqeH “- GTPase involved in ribosome 30S assembly2 ribosome group 3

BSU16970 ymdB “- putative phosphoesterase group 3

BSU27400 yrzL “- conserved hypothetical protein functionally linked to alanine tRNA loading2 RNA metabolism group 3

BSU32310 yutD “- conserved hypothetical protein2 RNA metabolism group 3

BSU14640 yktA “- conserved hypothetical protein group 3

BSU15000 ylbG “- conserved hypothetical protein group 3

BSU17880 ynzC “- conserved hypothetical protein group 3

BSU22190 ypsA “- conserved hypothetical protein group 3

BSU07420 yfmM “- putative polyphosphate-AMP phosphotransferase group 3

BSU07430 yfmL “- putative ATP-dependent RNA helicase2 RNA metabolism group 3

BSU00970 yacP “- putative ribonuclease with PIN and NYN domains; similar to eukaryotic RNases2 RNA metabolism group 4

BSU23950 yqjA “- conserved hypothetical protein putative group 4

BSU32280 yutG “- phosphatidyl-glycerophosphatas e A group 4

BSU16845 ymfF “- putative metalloprotease protein metabolism group 4

BSU16860 ymfH “- putative processing protease protein metabolism group 4

BSU09800 yheA “- conserved hypothetical protein group 4

BSU09930 yhaM “- 3’-5’ exonuclease2 DNA/RNA metabolism group 4

BSU01450 ybxA
ecfA

“- energizing coupling factor ABC multiple influx transporter (ATP-binding protein)3 specific transport group 5

BSU01460 ybaE
ecfB

“- energizing coupling factor ABC multiple influx transporter (ATP-binding protein)3 specific transport group 5

BSU01470 ybaF
ecfT

“- permease component of the EcfAB influx transporters3 specific transport group 5

BSU11590 yjbL “- putative phosphatase group 6
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Group 4 comprises YmfF and YmfG, two peptidyl
hydrolases of unknown substrates, perhaps associated to
transport of peptidyl siderophores [52] and connects to
YheA (related to metabolism of aromatics (YwbD,
AroC, TyrA, AroF)). It contains proteins such as YqjA
(a putative membrane bound protein), YacP (possibly
involved in ribosomal RNA maturation), connected to a
network with tRNA synthetases CysS and GltX and with
sigma factor SigH. It also comprises YhaM (a 3’-5’ oligo-
nucleotidase) and YutG (a putative phosphatidyl-glycer-
ophosphatase A).
Group 5 has now an identified function: it corre-

sponds to the EcfABT energy-dependent activating part
of a multi-substrate transporter [53].
Group 6 clusters together YjbL, a putative phospha-

tase, YjbO, similar to RluD pseudouridylate synthase
and YjbM, connected to RelA and RNA polymerase
(RpoABCZ) as expected from its putative function in
ppGpp synthesis and turnover. This homolog of RelA/
SpoT seems to be specific to A+T-rich Firmicutes. It is
also connected to riboflavin and folate biosynthesis.

Group 7 associates YtpP and YtpR, connected to
tRNA synthetases PheST, AlaS and MetG, as well as
DNA polymerase PolA and methionine sulfoxide reduc-
tase MsrA. It contains also YtoP (FrvX, a glutamyl ami-
nopeptidase in E. coli).
Finally, the 20 remaining genes do not belong to clear

clusters and do not have obvious functions. Yet, six
among them (ykuJ, ylmH, yqxC, ysgA, ytqB, ywlB) code
for proteins having RNA binding properties. ynbB and
yneF are connected to sulfur metabolism and possibly
tRNA modification. Protein YtxG has an homolog
involved in DNA repair in Mus musculus. YodJ and
YtcB are protein likely to be involved in murein synth-
esis or turnover.

Discussion
Cells encode several DNA polymerases that fulfill a vari-
ety of reactions: genome replication, repair and recombi-
nation. Eukarya have two types of DNA replicases. In
the same way, the genomes of the Firmicutes clade have
a unique heterodimeric DNA polymerase III a-subunits,

Table 2 Genes of unknown function co-evolving with Bacillus subtilis polC (Continued)

BSU11600 yjbM “- (p)ppGpp synthetase group 6

BSU11620 yjbO rluD pseudouridylate synthase2 RNA metabolism group 6

BSU29820 ytpR “- putative protein with RNA binding domain2 RNA binding group 7

BSU29840 ytpP “- putative thiol-disulfide oxidoreductase with thioredoxin domain5 sulfur metabolism group 7

BSU29860 ytoP frvX glutamyl aminopeptidase; deblocking enzyme (wrong annotation in E. coli) protein metabolism group 7

BSU13480 ykrK “_ conserved hypothetical protein

BSU14100 ykuJ “_ putative RNA-specific modification enzyme subunit2 RNA metabolism network
of “y” genes

BSU14130 ykuL “_ conserved hypothetical protein

BSU15410 ylmH “_ factor involved in shape determination, RNA-binding fold2

BSU17440 ynbB “_ putative C-S lyase5 sulfur metabolism

BSU17699 ynzK “_ putative membrane protein

BSU17910 yneF “_ conserved hypothetical protein; methionine-rich5 sulfur metabolism

BSU19620 yodJ “_ D-alanyl-D-alanine carboxypeptidase lipoprotein4

BSU24260 yqxC “_ putative methyltransferase with RNA binding domain2 RNA binding

BSU28650 ysgA “_ putative RNA methylase2

BSU29780 ytxG pqiB homolog involved in DNA repair in Mus musculus1 DNA repair

BSU29980 ytjP “_ putative dipeptidase protein metabolism

BSU30460 ytrA “_ transcriptional regulator (GntR family)

BSU30490 ytqB “_ putative RNA methylase2 RNA metabolism

BSU30870 ytcB “_ putative UDP-glucose epimerase4

BSU36340 ywpE “_ putative sortase

BSU36910 ywlG “_ conserved hypothetical protein; present in Archaea and Eukarya

BSU37340 ywiB “_ putative RNA binding protein possibly involved in aminoacyl-tRNA editing2 RNA binding

BSU38499 ywzH “_ conserved hypothetical protein

BSU40939 yyzM “_ conserved hypothetical protein

1: DNA metabolism

2: RNA metabolism

3: transport

4: envelope metabolism

5: sulfur metabolism
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PolC and DnaE [54]. In contrast the E. coli replicase is
made of two identical DnaE subunits. The difference
between the replicase of E. coli and that of B. subtilis is
further reflected by the composition of the other subu-
nits of DNA polymerase III that differ from those in
other clades. In E. coli, a single protein, the AAA+
ATPase DnaC (counterpart of DnaI in B. subtilis), is
used to load helicase DnaB [55]. In contrast, in B. subti-
lis and other low-G+C Firmicutes, three different pro-
teins, DnaD, DnaB (no counterpart in E. coli, used for
loading to DnaC), and the AAA+ ATPase DnaI, are
needed to load the replicative helicase (DnaC in B. sub-
tilis is the counterpart of DnaB in E. coli). DnaA binds
first, followed by DnaD and then DnaB, and finally the
DnaI-mediated loading of helicase occurs [56].
The existence of two replicases implies a physical dif-

ference in the replication process that should be
reflected in a bias in nucleotide strand composition.
Analysis of compositional strand asymmetries of prokar-
yotic genome sequences in terms of the presence or
absence of PolC has found not only a correlation with
PolC [12], but also with a purine asymmetry [7]. This
latter asymmetry is however probably not the result of
the physical differences in the leading and lagging
strands replication, but, rather, the consequence of the
increase in the gene content of the leading strand in
organisms with PolC, which alleviates conflicts between
the transcription and replication machineries [10,57]. In
particular it was noticed that G seems to favour the
leading strand in most bacterial genomes, which fits
with an over representation of genes in this strand in
Firmicutes, as coding regions are overrepresenting GNN
codons [58].

DNA composition analysis is of limited interest per se,
as it does not provide much information about gene
functions. The present study showed that while the
functional connection of the DnaE subunit spans the
whole domain Bacteria, with almost all functions that
are expected to make a minimal genome, this is not so
of the PolC co-evolving genes. Furthermore, the latter
group of genes seems highly specific and related to ori-
ginal features of biological processes, RNA metabolism
in particular.
PolC is the subunit of DNA replicase that replicates

the leading strand of the DNA double helix in Firmi-
cutes. Structural data on the PolC family of replicases
shows that it evolved separately from DnaE [59]. This
process requires in addition to PolC, ten other proteins.
In addition to these 11 proteins, lagging strand replica-
tion requires DnaE and primase [56]. Progression of the
replisome implies that DnaE uses Okasaki fragments as
primers, and these fragments need to be removed, so
that they do not interfere with progression of PolC-
mediated leading strand replication progression [60]. It
is even suspected that, because replication of the lagging
strand must be slow, bacterial replicases are made of
not of two, but three replication subunits, two of them
involved in replication of the lagging strand [61].
In this context, management of the degradation of

RNA derived from Okazaki fragments has a central
importance. In particular degradation of nanoRNAs,
fragments of size smaller than 5 nts, becomes crucial, as
they can enter the replication bubble. It is established
that PolC discriminates against RNA primers while
DnaE uses RNA primers efficiently [54,56]. As a conse-
quence it can be expected that PolC co-evolved with a

Table 3 Genes groups identified using the STRING software [40]

Groups STRING genes

group
1

yazA yabB yaaT yaaR yabC yabA yaaA yadB tmk holB dnaN dnaA dnaD recF

group
2

yabR rpfA yugI yabMNOPQ hprT rpmE divIC rpfA(ypfD) alaRT ftsZ gatA ppiB acpS alaS aroD cbsA cca cotD csbA ctsR cysS defB dltC dltD
dnaB dnaC dnaD ecsB ffh ftsK ftsL ftsY glcU glmM gluKP glyQS gpsB hcrA infB jag kapB lepA ltaSA lysA mecAB mtnN murB mutSB nadD
nrnA nusA obg polC priA prmA rbfA recA recG recU recX rex ribC ribT rimM rmpA rnc rnhB rnjA rplI rplS rplU rpmB rpmF rpoZ rpsP rpsR

rsiW

group
3

scpAB sdaAA sdaAB sfp sigW smc speA spoIIIAD spoIVFA spoIVFB spoVS suhB sul tkt trmD truB ung uppS yaaQ yaaR yabF yabO yazC ybbP
ybbR ydcK yebG yerH yetN yfhJ yfmKLMO ygaBCD yhaL yhcV yheA yisL yitKL yizA yktAB ykzG ylaH ylbFGMNP yloUV ylqC ylxMPQRS ymdAB
yneABER ynzC yozE ypeQ ypsA yqeGHIKLM yqfC yqgNQY yqhP yqzF yrdA yrrKLM yrzBL yslB ysxB ytpI ytwI yuiB yutDEM yuzB yvcKL ywfO

ywnH yybPRST yycHI

group
4

yacOP yueI yazC yvcS ywhD ylaL yozC yetH yqjB artMQ sigH ispDF cysS gltX cysE radA yqjAB mecB yutGH yneR ftsL cinA veg ydaS ypjQ
yheA yojF ymxH fabR ymfFGHIJ lgt mreC recFG ctsR ybaF yheAB yqgQ yhaMO ywbD aroCF tyrA cwlJ yhaMNO rpe tmk rsgA ksgA thiN

smpB topA cca

group
5

ksgA ecfAB ecfT ytlC cbiOA cbiOB rpsI rpoA truA rplQ rplM skfE ykoCD yuiG bioY

group
6

ywpF ywhD ymfK ywzC ylaL ywjG ypjB bofC ppnKA ndk rpoZ rpoABCE relA pyk folE yjbLMO yaaC ytzF lspA prfB truAB rluB

group
7

yrvN polA msrB pheST metG alaS ispG ytpPQRST ytoPQ ysdC ytzB comEA
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particular type of RNA degradosome. Indeed, in the pre-
sent work, many proteins co-evolving with PolC could
be seen as associated to properties of a Firmicutes-speci-
fic degradosome (or downstream from it) [39], compriz-
ing nanoRNases such as NrnA [62], an RNase which
degrades short oligoribonucleotides (and which is pre-
sent in the smallest genome of an autonomous living
organism, M. genitalium) but also RnmV, MrnC(YazC),
YacP, Rny(YmdA), YhaM, YkzG, YlbM, YlmH, RnhC
(YsgB) and YybT, proteins that are not present in the E.
coli degradosome (Additional file 1). The presence of a
particular type of RNase H (RnhC), required to hydro-
lyze RNAs belonging to RNA-DNA hybrids, essential in
B. subtilis [63], is particularly revealing, as it further
supports the conjecture that the co-evolution we
observed is related to RNA turnover. A further related
observation is that there is no global counterpart of the
degradosome proteins in those evolving with DnaE,
except for the core phosphorylase, polynucleotide phos-
phorylase, and a specific RNase H (RnhB) of descent dif-
ferent from that of RnhC. NanoRNases (essential for
degrading Okazaki fragments) have now been identified
from three descents: Orn in gamma-Proteobacteria,
NrnA in Firmicutes) and NrnC in alpha-Proteobacteria
[64]. This indicates that there may exist more than two
degradosomes in the Bacteria domain. Further work
similar to the one presented here will tell.
Finally, we remarked that the genes that co-evolve

with polC have often counterparts in the three domains
of life. This suggested that, despite their absence from
the genes co-evolving with the majority of the essential
cellular processes, these genes are of very ancient des-
cent. Interestingly, many of the corresponding functions
are related to RNA metabolism but also to phosphate or
polyphosphate metabolism.

Conclusion
Analysis of the genes co-evolving with the two forms of
DNA replicase found in Bacteria, DnaE and PolC
revealed that, while DnaE co-evolved with the transla-
tion and transcription machineries, PolC co-evolved
with proteins that do not belong to the same group. In
particular PolC co-evolved with a form of the RNA
degradation machinery that is distinct from that charac-
terized in gamma-Proteobacteria, the E. coli degrado-
some [38]. Among other possibilities, this observation
suggests that, while there may exist a last common
ancestor to the translation/transcription machinery, this
was probably not so for the machineries leading to
RNA turnover, which may have appeared independently
on several occasions. The RNA world, that developed
RNA-centered metabolism [65], predated the RNA gen-
ome world, in which RNA synthesis and turnover must
have been essential. Our observations are consistent

with the discovery of DNA and DNA replication at
least twice [66] suggesting that the origin of present liv-
ing organisms was a community of organisms develop-
ing more or less independently from one another (the
progenote hypothesis [67,68]), splitting and fusing as
time elapsed until the present domains were more sta-
bly defined.

Additional material

Additional file 1: Gene clusters obtained using PhyloProfile with a
threshold of 0.77. The first two clusters comprise the dnaE and the polC
clusters. At the end of the list many clusters contain only two genes that
co-evolve significantly.
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