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A minimal model of peptide binding predicts
ensemble properties of serum antibodies
Victor Greiff1,6, Henning Redestig1,2,5,6, Juliane Lück1, Nicole Bruni1,3, Atijeh Valai1, Susanne Hartmann4,
Sebastian Rausch4, Johannes Schuchhardt5 and Michal Or-Guil1*

Background: The importance of peptide microarrays as a tool for serological diagnostics has strongly increased
over the last decade. However, interpretation of the binding signals is still hampered by our limited understanding
of the technology. This is in particular true for arrays probed with antibody mixtures of unknown complexity, such
as sera. To gain insight into how signals depend on peptide amino acid sequences, we probed random-sequence
peptide microarrays with sera of healthy and infected mice. We analyzed the resulting antibody binding profiles
with regression methods and formulated a minimal model to explain our findings.

Results: Multivariate regression analysis relating peptide sequence to measured signals led to the definition of
amino acid-associated weights. Although these weights do not contain information on amino acid position, they
predict up to 40-50% of the binding profiles’ variation. Mathematical modeling shows that this position-
independent ansatz is only adequate for highly diverse random antibody mixtures which are not dominated by a
few antibodies. Experimental results suggest that sera from healthy individuals correspond to that case, in contrast
to sera of infected ones.

Conclusions: Our results indicate that position-independent amino acid-associated weights predict linear epitope
binding of antibody mixtures only if the mixture is random, highly diverse, and contains no dominant antibodies.
The discovered ensemble property is an important step towards an understanding of peptide-array serum-antibody
binding profiles. It has implications for both serological diagnostics and B cell epitope mapping.

Background
The functional antibody repertoire (FABR), the set of all
antibodies produced by plasma cells at any one time,
determines the immune system’s perception of the anti-
gen universe. The FABR is shaped throughout the life of
an individual by various stages and selection events dur-
ing B cell development that take place in the fetal liver,
in the bone marrow and in secondary lymphatic organs.
As the FABR is subject to constant change due to con-
tinuous antigen encounter and establishment of immu-
nological memory [1], it encompasses a variety of
specificities and affinities for a wide range of antigens
[2]. The FABR’s investigation thus provides the possibi-
lity to gather information about both past and on-going

immune responses, and ultimately about the immune
state of the body [3].
Since the FABR is highly diverse and the production

of antibodies is a hallmark of many infectious and auto-
immune diseases, high-throughput immunoblot and
microarray technologies have been used intensively for
large-scale profiling of serum antibody binding [4-9].
Antibody profiling data is widely used for serological
diagnostics by exploiting the fact that sera of control
and diseased individuals may differ substantially in their
FABRs [7,8,10-12]. Currently, serum-antibody profiling
is usually performed by incubating a serum sample with
a peptide or protein microarray. Afterwards, the reactiv-
ity of antibodies is estimated by measuring the fluores-
cence from a fluorochrome-coupled secondary antibody
that binds to the constant region of the subset of serum
antibodies studied [13,14].
The importance of peptide microarrays as a tool for

serological diagnostics has strongly increased over the
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last decade. However, interpretation of the binding sig-
nals is still hampered by our limited understanding of
the technology [15]. This is in particular true for arrays
probed with antibody mixtures of unknown complexity,
such as sera. To gain insight into how signals depend
on peptide amino acid sequences, we probed random-
sequence peptide microarrays with sera of healthy and
infected mice.
For prediction of antibody binding profiles, we use a

multivariate regression model based exclusively on the
peptide library’s amino acid composition without taking
into account amino acid positional information. This
approach is related to methods of linear B cell epitope
prediction which rely on propensity scales for epitope
prediction [16-19]. Our method contrasts, however, with
previously reported quantitative structure-activity rela-
tionship (QSAR) modeling which, in conjunction with
physico-chemical properties, relates amino acid positions
and amino acid compositions of peptides and monoclo-
nal antibodies to various response variables [20-22]. We
propose to examine, in vitro and in silico, the extent to
which the validity of our approach depends on the com-
position of antibody mixtures.
The regression model led to the definition of amino

acid-associated weights (AAWS) as predictors of anti-
body-peptide reactivity. We found that the position-
independent peptide amino acid composition accounts
for up to 40-50% in variation of antibody-peptide bind-
ing for healthy mice.
We demonstrate with a mathematical model the ensem-

ble properties of highly diverse, random antibody mixtures
in which no antibody dominates. We call these mixtures
“unbiased” and show that the properties of unbiased mix-
tures are the foundation to a high predictive performance
of AAWS. We hypothesize that serum antibodies of healthy
individuals resemble an unbiased mixture, while during an
acute immune response, specific antibodies dominate anti-
body-peptide binding thus lowering predictive perfor-
mance. Based on in silico and in vitro evidence, our work
thus suggests that the faithfulness of antibody-peptide bind-
ing prediction with propensity scales [16-19] decreases with
increasing antibody dominance in a mixture.

Results
In order to investigate the binding of antibody mixtures
to large random-sequence peptide libraries, we asked
two main questions: i) what is the impact of the pep-
tides’ amino acid composition on the binding to serum
antibodies, ii) and how does the serum-antibody compo-
sition influence binding prediction?

Experimental setup
To study the impact of amino acid composition of ran-
dom-sequence peptide libraries on measured signal

intensity, serum samples from 15 BALB/c mice bred
under specific pathogen-free (SPF) conditions were col-
lected. These mice were infected with HB (Additional
file 1, Figure S1). Further serum samples were collected
at 10 dpi (days post infection; 15 samples), at 14 dpi (13
samples) and at 18 dpi (15 samples) totaling 58 serum
samples. Microarrays of nPep = 255 random-sequence
peptide probes (hereafter referred to as standard library)
were incubated with the serum samples. The peptide
arrays used have been shown to be suitable for serologi-
cal diagnostics by Bongartz et al. [10]. Each probe con-
sisted of l = 14 out of 20 proteinogenic amino acids.
IgM and IgG antibody binding was simultaneously
detected by means of isotype specific fluorochrome-
labeled polyclonal secondary antibodies. In addition to
serum samples, the peptide library was incubated sepa-
rately with 13 different human monoclonal IgG
antibodies.
The fluorescence signal intensities were read, log-trans-

formed and corrected for the signal from the polyclonal
secondary antibody binding directly to the peptide
probes. Subsequently, the signal intensities were mean-
centered and scaled to unit variance, which resulted in a
normalized vector �s for each IgM and IgG serum sample
and for each of the 13 monoclonal antibodies. We use
the terms signal intensity or antibody binding profile
interchangeably to denote �s . Each signal intensity vector
�s has as many components as there are peptides in the
standard random peptide libary. For brevity, our analysis
focuses on the IgM data. The IgG data can be found in
the Supporting Information (Additional file 2, Figure S2,
Additional file 3, Figure S3, and Additional file 4, Figure
S4). More details on the experimental setup and normali-
zation procedures can be found in Methods.

A regression model based exclusively on peptide amino
acid composition predicts antibody binding profiles
We built a linear statistical model to relate the amino
acid composition of our peptide library to measured sig-
nal intensities

�s = X�w + �ε, (1)

where �s(255 × 1) is the signal intensity vector and X
the amino acid composition matrix (AACM) of the pep-
tide library. The X matrix is formed by counting the
occurrences of each of the 20 amino acids in each pep-
tide which results in a matrix with 20 columns and 255
rows. Importantly, X does not contain information
about the position of an amino acid in a given peptide
sequence.
The AAWS vector �w(20 × 1) indicates the contribu-

tion of every amino acid to the measured signal inten-
sity. Furthermore, the residual of the regression model,
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�s , captures the part of �s which cannot be explained by
X alone. AAWS and residuals were estimated by partial
least squares regression (PLS) (see Methods for details
on the data analysis).
Once the vector �w has been estimated, we use the

regression model to predict measured signal intensities
given the peptides’ amino acid composition. Figure 1
illustrates that the predicted signal intensities �̂s = X�w
are in good agreement with signal intensities �s mea-
sured for the serum of one healthy BALB/c mouse. In
order to evaluate the performance of the regression
model, we focus on the predictive performance, Q2,
which was determined by 10-fold cross-validation
(Methods). The predictive performance equals 1 for per-
fect predictions and is close to zero for poor predictions.
All 58 BALB/c serum samples resulted in a median

predictive performance of 0.39 (Figure 2).

A minimal model of antibody-peptide binding
We hypothesize that the high predictive performance of
our regression model is due to properties of an antibody
ensemble. We test this hypothesis with the help of a
model that simulates binding between peptides and anti-
bodies. In this model, the binding affinity of simulated
monoclonal antibodies depends non-linearly on amino
acid positions in the peptide sequences (Equations 2
and 4). The model we propose is similar to bit string
models [23-26] in that it uses vectors as simple repre-
sentations of peptides and antibodies. The peptide string

is represented by unique real numbers taken from a vec-
tor of assigned AAWS, denoted �h , the twenty compo-
nents of which were drawn from a uniform distribution

on the closed interval 0[1]. A peptide
→
pi of l amino

acids is thus represented by a vector of l numbers
drawn from �h .
An antibody binding site is represented by a vector

→
ak

of length l. The binding strength of each position is
given by a number between -1 and 1 that is drawn ran-
domly from a uniform distribution and is scaled such

that
→

(ak)
T

→
ak = 1 . The binding association between pep-

tide
→
pi and antibody

→
ak is computed as the dot product

of the two vectors, yi,k = (
→
ak)T

→
pi . Thus, the binding

association yi, k depends explicitly on an amino acid’s
position in a given peptide sequence.
An expression for the simulated signal intensity, based

on the law of mass action, can be obtained from classi-
cal Langmuir adsorption theory [27]:

Si =

∑nAb
k=1 [Ab]kKi,k

1 +
∑nAb

k=1 [Ab]kKi,k
(2)

where [Ab]k is the concentration of antibody k with
∑nAb

k=1
[Ab]k = 1. The thermodynamic equilibrium
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Figure 1 Predicted signal intensity (�̂s ) against measured signal �s of a healthy BALB/c mouse serum sample. The prediction depends
exclusively on the amino acid composition of the peptide sequences and is based on the regression model (Equation 1). Predictive
performance: Q2 = 0.5. Signal intensities were measured with the standard peptide library of 255 14-mers.
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association constant for antibody k binding peptide i is

defined as Ki,k = exp
(

−�rGo

RT

)
with

�rG = exp
(

β0 + β1yi,k
RT

)
. Logarithmizing the results of

Equation 2, and centering them to zero and unit var-
iance, we obtained a vector of normalized simulated sig-
nal intensities �ssim . A more detailed description of the
mathematical model can be found in Methods.

Simulations show that the prediction of antibody binding
profiles based exclusively on peptide amino acid
composition improves with increasing antibody diversity
We first simulated signal intensities for nAb = 150 bind-
ing to a simulated peptide library of 255 14-mers. The
peptide library used in the simulation determines the
amino acid composition matrix Xsim. We estimated
simulated intensities �ssim (Figure 3A) and respective
weights �wsim (Figure 3B) using the linear regression

model �̂ssim = Xsimw
→
sim . Prediction of simulated signal

intensities yielded a predictive performance (Q2) of 0.40,
and the correlation between �h and �wsim was found to
be r = 0.92 (Figure 3B), which indicates a very good
recovery of �h . Recall that signal intensities were simu-
lated in an amino acid position-dependent manner,
while the composition-based regression model (Equation
1) relies on the amino acid position-independent matrix
Xsim.
Further, our simulation framework enabled us to show

in silico that the predictive performance increases with
growing antibody diversity (Figure 4A). The same is true

for the pairwise correlation of computed AAWS (�wi
sim) ,

which nears perfection (r = 1) with increasing antibody
diversity (Figure 4B), as does the correlation of AAWS
with �h (Additional file 5, Figure S5). Therefore, when
using a position-independent linear statistical model for

the prediction of antibody-peptide binding, high anti-
body diversity is a prerequisite for good predictive
performance.

Predictive performance differs for monoclonal and serum-
antibody binding profiles
In order to test our in silico-based prediction that pre-
dictive performance depends heavily on antibody diver-
sity when only taking into account the peptide library’s
amino acid composition, we compared the predictive
performance of the 58 BALB/c mouse serum samples
(antibody diversity nAb >> 1) with that of the 13 human
monoclonal IgG antibodies (antibody diversity nAb = 1).
We found both a significantly higher predictive perfor-
mance (Figure 2A, p < 0.001) and significantly higher
pairwise correlations between AAWS for serum antibo-
dies (Figure 2B, p < 0.001) than for monoclonal antibo-
dies, which confirms the predictions of our
mathematical model (Figure 4).

Predictive performance decreases in the course of an HB-
infection
In order to quantify the influence of immune response
stage during HB-infection on predictive performance,
we divided the mouse serum samples into three groups:
healthy, acute phase (10 and 14 dpi), and early chronic
phase (18 dpi) [28]. We found that predictive perfor-
mance (Figure 5A) and pairwise correlation of AAWS
decrease significantly in the course of the immune
response (Figure 5B).
In order to compare the experimental results with the

mathematical model, we simulated signal intensities for
100 random mixtures of 16000 different antibodies (Fig-
ure 6A and 6B, case I) and found that, when multiplica-
tive Gaussian noise is introduced into the simulated
signal intensities, both predictive performance and pair-
wise correlation of AAWS decrease (Figure 6A and 6B,
case II). By increasing the concentration of one
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Figure 2 Predictive performance and pairwise correlation of AAWS are higher for serum IgM than for monoclonal antibodies. (A)
Predictive performance values were calculated for monoclonal (mAb) and serum IgM antibody (Sera IgM) binding profiles. (B) Shown is the
pairwise correlation (r) of the corresponding AAWS �wj . In both (A) and (B), mAb signifies antibody binding profiles from 13 monoclonal
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standard peptide library of 255 14-mers. Corresponding AAWS ( �wj ) were determined using Equation 1.
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1 4 16 64 256 1024 4096 16384

Figure 4 Simulations show that predictive performance of antibody binding profiles improves with increasing antibody diversity.

Antibody binding profiles (�sisim ) were simulated for antibody mixtures of 1 to 16384 different antibodies. (A) Predictive performance increases

with increasing number of antibody variants (nAb), (B) as does the correlation (r) between all pairs of predicted AAWS �wi
sim . In both (A) and (B),

a simulated random peptide library (Xsim) of 255 14-mers and assigned AAWS ( �h ) were generated once and were kept constant across all

simulation runs. Notably, varying Xsim for every simulation run did not change either of the boxplot distributions. For every mixture of nAb-
different antibodies, 100 simulations with newly generated random antibody mixtures were run. Antibody binding profiles were computed using

Equation 2. Corresponding AAWS ( �wi
sim ) were determined using Equation 1.

Greiff et al. BMC Genomics 2012, 13:79
http://www.biomedcentral.com/1471-2164/13/79
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monoclonal antibody (the dominant antibody) to a suffi-
ciently high level (Figure 6A and 6B, cases III and IV),
predictive performance is decreased.

Stages of murine immune response differ in their amino
acid-associated weights
In order to test whether the AAWS determined for all
58 BALB/c mouse serum samples were systematically
different from one another, we applied principal compo-
nent analysis to them. Together, the first two principal
components yield a strong separation of healthy and
diseased mice. Also, acute and early chronic samples

separate (Figure 7). Thus, during an immune response
against HB, AAWS change in a systematic way.

Average amino acid-associated weights of healthy mice
correlate with amino acid physico-chemical properties
but not with widely used amino acid scales for epitope
prediction
Because of both the good predictive performance and
the high pairwise correlation of AAWS of healthy
BALB/c mice, we considered their average AAWS as
representative of healthy BALB/c mice (Figure 8). The
differences between weights in Figure 8 indicate the
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Figure 5 Predictive performance and pairwise correlation of AAWS decrease for serum IgM antibodies in the course of the HB-
infection. (A) Predictive performance values (Q2) were computed from serum IgM antibody binding profiles across three stages of immune
response: healthy, acute, early chronic. (B) Shown is the pairwise correlation (r) of the corresponding AAWS �wj . Numbers of BALB/c mouse serum
samples: 15 samples from healthy mice; after infection with HB: 15 samples at 10 dpi and 13 samples at 14 dpi (acute phase), and 15 samples at
18 dpi (early chronic) totaling 58 BALB/c mouse serum samples. Differences in predictive performance (Q2) between healthy and both acute
phase and early chronic phase mice are significant (p < 0.01), as are differences in pairwise correlation (r) between all three stages of immune
response (p < 0.001). Antibody binding profiles were measured with the standard peptide library of 255 14-mers. Corresponding AAWS ( �wj )
were computed using Equation 1.
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Figure 6 Predictive performance and pairwise correlation of simulated AAWS decrease both with introduction of multiplicative
Gaussian noise and antibody dominance. (A) Predictive performance (Q2) and (B) pairwise correlation of AAWS (r) for different simulated

cases. (I) For a given peptide library and given assigned AAWS ( �h ) we simulated 100 realizations of binding profiles for a mixture of 16000

different antibodies. (II) Same as in I, but Gaussian multiplicative noise was introduced into the simulated signal intensities. (III) Same as in II, but
the concentration of a single antibody (dominant antibody) was increased 10-fold. (IV) Same as in II, but concentration of one (dominant)

antibody was increased 1000-fold. For both (A) and (B) a simulated peptide library (Xsim) and assigned AAWS ( �h ) were generated once and kept

constant across the entire simulation. Simulated antibody binding profiles (�sisim ) were computed using Equation 2. Corresponding AAWS

( �wj
sim

) were computed using Equation 1. In each of the 100 runs, a newly generated random antibody mixture of nAb = 15999 different

antibodies was simulated to which the dominant antibody was added. This antibody was randomly generated once at the beginning of the
simulation and was kept constant across all four simulation cases. Gaussian noise term: N (μ = 0, s = 0.01).
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difference in contribution to normalized signal intensity
corresponding to an amino acid substitution. Trypto-
phan, phenylalanine and tyrosine, all of which have aro-
matic residues, contribute most to the signal intensity.
AAWS represent a priority scale for peptide-antibody

binding assigning to every amino acid the importance of

contribution to the measured (or simulated) signal
intensity. In addition, analogously to QSAR modeling,
AAWS can a posteriori be conceived of as a vector
representing correlates of the respective amino acids’
physico-chemical properties. We therefore correlated
the average AAWS (Figure 8) with the z-scale developed
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Figure 7 Stages of immune response differ in their AAWS. 58 BALB/c mouse serum samples were put into three groups, each
corresponding to one stage of immune response: healthy, acute and early chronic. Serum IgM antibody binding profiles were determined using
the standard peptide library consisting of 255 14-mers. Corresponding AAWS ( �wj ) were determined with Equation 1. AAWS were then projected
by principal component analysis onto a 2-dimensional subspace spanned by the first two principal components (PC1, PC2). Together, the first
two principal components yield a strong separation of healthy and diseased mice. Also acute and early chronic samples separate, although less
clearly. The proportion of variance explained by PC1 and PC2 is 90% and 3.4%, respectively. Number of BALB/c mouse serum samples: 15 from
healthy mice; after infection with HB: 15 samples at 10 dpi and 13 samples at 14 dpi (acute phase), and 15 samples at 18 dpi (early chronic).
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by Sandberg and colleagues [29]. The z-scale aggregates
in matrix form 26 physico-chemical amino acid proper-
ties for every one of the 20 examined amino acids
(Additional file 6, Figure S6). The average AAWS yield
an absolute correlation coefficient higher than 0.3 with
the following physico-chemical properties: side chain
van der Waals volume, alpha-polarizability, absolute
electronegativity, number of hydrogen bond donors, total
accessible molecular surface area, and indicator of nega-
tive charge in side chain.
In order to compare the average AAWS with other

published amino acid-scales for epitope prediction, we
correlated them with propensity scales published by Par-
ker and colleagues [17] (hydrophilicity), Kolaskar and
Tongaonkar [30] (antigenicity), Chou and Fasman [16]
(secondary structure) and by Emini and colleagues [18]
(accessibility) and found the resemblance with them to
be poor (absolute values of correlation coefficients smal-
ler than 0.22). Notably, the compared propensity scales
also do not highly correlate (range of correlation coeffi-
cients: -0.61 to 0.67).

Discussion
Amino acid-associated weights are a compact,
information-preserving representation of serum-antibody
binding profiles
A minimal linear regression model defines AAWS as
predictors that are based solely on the amino acid com-
position of a given peptide. For serum antibodies of
BALB/c mice, AAWS account for up to 50% of variation
in antibody binding profiles, whereas monoclonal anti-
bodies generally show poor predictive performance
values. The regression model performs best for healthy
mice (median Q2 = 0.43, Figure 5). Furthermore, we
find AAWS to be comparable across healthy BALB/c

mouse serum samples (Figure 5B). During the immune
response against HB, however, predictive performance
decreases steadily. Accordingly, pairwise correlations of
AAWS are highest for healthy mice and decrease during
the immune response (Figure 5). Therefore, we hypothe-
size that the average AAWS for healthy mice, shown in
Figure 8, are a signature of health. AAWS of infected
mice, in turn, are systematically different from AAWS
of healthy mice and can be separated by principal com-
ponent analysis.

Simulated unbiased antibody mixtures show ensemble
properties
In order to interpret the reported experimental results,
we built a mathematical model based on the law of
mass action. We defined a property vector �h that char-
acterizes each peptide’s amino acid binding strength. In
this model, the binding signals for a given simulated
monoclonal antibody depend on the amino acid’s posi-
tion in a given peptide.
For a single simulated antibody, AAWS calculated by

the amino acid composition-based linear regression
model generally yield neither good predictive perfor-
mance nor a high correlation with assigned AAWS �h .
However, highly diverse antibody mixtures with ran-
dom–in the sense of an independent identically distribu-
ted–repertoire, and no dominant antibodies, show both
a close to perfect predictive performance and recovery
of assigned AAWS �h (Figure 4 and Additional file 5,
Figure S5). Our mathematical model thus predicts that
high predictive performance and high correlation of esti-
mated AAWS and �h are ensemble properties of such
antibody mixtures: the average affinity of these mixtures
does not depend on the epitope’s amino acid position
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anymore. In contrast to that, the monoclonal antibody-
epitope affinities do. We call random and highly diverse
antibody mixtures that are not biased by dominant anti-
bodies “unbiased”. In fact, introducing, in simulations, a
dominant antibody by increasing the concentration of a
single antibody decreases predictive performance (Figure
6A). In addition, we showed that noise reduces predic-
tive performance (Figure 6A).

Serum samples of healthy BALB/c mice show signs of
unbiased antibody mixtures
As shown in our mathematical model, unbiased anti-
body mixtures are characterized by high predictive per-
formance values. In view of the relatively high predictive
performance of antibody binding profiles of serum sam-
ples from healthy BALB/c mice, we postulate that these
sera exhibit properties of unbiased antibody mixtures.
The first prerequisite for an unbiased mixture is high

diversity. This requirement seems to be met. The poten-
tial antibody diversity is very high [31], and the func-
tional diversity is estimated to be of the order of 104

[32]. However, fulfillment of the second requirement,
the independent identical distribution of antibody bind-
ing sites, is harder to claim. On the one hand, the anti-
body repertoire is composed of preexisting gene
segments and shaped by clonal selection, but on the
other hand, V(D)J recombination and–in later stages of
an immune response–somatic hypermutation arrange
and mutate these segments in a largely random fashion
[1]. Our results suggest that randomness in fact prevails.
This is consistent with the hypothesis that antibody
repertoires can potentially recognize the entire antigenic
universe [33,34].
The predictive performance of healthy BALB/c mice is

not perfect but amounts to a median of 0.43. This can
be due to both noise and the fact that serum violates
the assumptions of randomness to a certain degree.
Noise may be caused by varying peptide spot quality on
microarrays and by the experimental procedure itself. It
is known that during a primary acute immune response,
antibodies of a certain specificity for the antigen are
produced in high abundance [35,36]. Therefore, it can
be expected that sera of infected mice deviate from the
properties of an unbiased mixture and would have
reduced predictive performance values. Indeed, this is
corroborated by experimental results (Figures 5 and 7).

Unbiased mixtures represent a special case for which the
use of propensity scales for epitope prediction is justified
The prediction of linear B-cell epitopes was first done
by using propensity scales [19,37,38]. These scales assign
a propensity value to every amino acid based on a priori
studies of their physico-chemical properties. We found

that our average AAWS, a posteriori termed signature
of health (Figure 8), are not significantly correlated to
widely used propensity scales.
Blythe and Flower tested 484 amino acid propensity

scales on a set of 50 epitope-mapped proteins. They
found that even the best set of scales perform only mar-
ginally better than random [39]. We show that unbiased
mixtures represent a special case for which the converse
holds true: antibody binding profiles of unbiased mix-
tures can be predicted based on AAWS. We show that
the use of amino acid scales becomes increasingly less
justified with increasing dominance of antibodies in a
serum. In fact, each of Blythe and Flower’s experiments
used polyclonal antibodies raised against the whole pro-
tein [39]. We conjecture that the used polyclonal anti-
body mixtures were biased, that is, they contained
dominant antibodies. In this regard, our study provides
a possible explanation to Blythe and Flower’s survey.
More generally, our work suggests that results obtained
with polyclonal antibody mixtures tend to be skewed by
the inherent ensemble properties, which obscure the
affinities of epitope-specific antibodies.

Technological features may bias amino acid-associated
weights
We have shown that antibody mixtures exhibit ensemble
properties. Resulting AAWS were shown to be consis-
tent across healthy mice and qualitatively different from
AAWS of infected mice (Figure 7). We have also pro-
vided a possible explanation for the difference between
AAWS of healthy and infected mice: dominant antibo-
dies in the course of the immune response.
However, the actual signature of health values shown

in Figure 8 should be interpreted with caution. In addi-
tion to being indicative of both amino acid antibody
binding preferences and physico-chemical properties
(Figure 8 and Additional file 6, Figure S6), signal inten-
sity may also be influenced by two other factors: (i) the
accessibility of peptides and (ii) a possible interaction of
aromatic amino acids and aromatic labeling dyes.
Accessibility may bias the resulting signal intensities

systematically. For example, we find that cysteine contri-
butes negatively to the signal intensity. This could partly
be due to its ability to form disulfide bonds, which
causes increased aggregation of cystein-containing pep-
tides, and diminishes their surface exposure. This would
lead to reduced antibody-peptide binding and accord-
ingly to reduced signal intensity. Furthermore, it cannot
be ruled out that aromatic amino acids interact via π-
stacking with the aromatic labeling dyes Alexa Fluor
546 and 647 which are coupled to the secondary antibo-
dies. Indeed, it has recently been found that TAMRA,
another aromatic dye, cross-reacts with individual
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amino acids in a peptide sequence [40]. In order to
minimize this effect, we performed secondary antibody
correction on the log-transformed signal intensities.

Conclusions
We show that due to ensemble properties of unbiased
mixtures, the position of amino acids in a linear epitope
is no longer determinative for binding prediction. We
found that prediction of peptide-binding as well as con-
sistence of AAWS was best in sera of healthy BALB/c
mice. Therefore, we defined a signature of health char-
acterizing the binding behavior of serum of healthy indi-
viduals. This finding has far-reaching significance for
the field of serological diagnostics.
Furthermore, our findings have also deep implications

for the field of B cell epitope mapping as we have dis-
covered an important special case which enables amino
acid scale prediction of peptide binding. We show that
amino acid scale prediction of peptide binding is justi-
fied only for unbiased mixtures. For other cases, alterna-
tive methods have to be sought. We thus showed that a
knowledge of the composition of the used polyclonal
mixture is essential for both the choice of the prediction
method as well as the interpretation of results.
In the future, it will be of great interest to investigate

the effects of a more detailed representation of binding
in the mathematical model, and to study the effect of
non-uniform antibody concentration distributions on
predictive performance. Indeed, it has recently been
shown for healthy zebrafish that the B cell clone reper-
toire follows a power-law distribution [41]. Thanks to
our minimal assumptions approach, the conclusions of
our model are independent of species, genetical back-
ground and individual exposure history. Future studies
have to verify these predictions.

Methods
Ethics Statement
Animals were housed and handled following national
guidelines and as approved by our animal ethics
committee.

Mice
BALB/c mice were bred and maintained under specific
pathogen-free (SPF) conditions by the Department of
Molecular Parasitology, Humboldt University Berlin,
Berlin, Germany. Infection of mice with HB was carried
out by oral gavage with 200 L3 stage larvae in distilled
water.

Sera
Mice were narcotized and bled either by cardiac or
retro-orbital puncture at the age of 8 weeks. Blood sam-
ples were collected from healthy SPF-BALB/c mice (n =

15), which were then infected with HB. Blood was col-
lected at three time points post infection (dpi): at 10 dpi
(n = 15), 14 dpi (n = 13) and 18 dpi (n = 15). The blood
was allowed to clot at room temperature and centri-
fuged. The supernatant was stored at -20°C.

Monoclonal antibodies
The 13 human monoclonal antibodies were kindly pro-
vided by the group of Hedda Wardemann (Max Planck
Institute for Infection Biology, Berlin, Germany). Ten
different Ig gene sequences of IgG+ memory B cells
from 2 healthy human donors, PN and VB, (PN115,
PN138, PN16, PN89, VB1, VB142, VB161, VB176,
VB18, VB4) [42] and three further ones from 3 other
human donors ED38 [43], eiJB40 and mGO53 [44] were
expressed as detailed in [45].

Random peptide library
The peptide library consists of 255 different 14-mer
peptides. Their sequence was designed with a random
generator. Repetitions of three or more consecutive
amino acids were not allowed.

Peptide synthesis and microarray design
The peptide library was displayed in five identical sub-
arrays on each slide purchased from JPT Peptide Tech-
nologies GmbH, Berlin, Germany. Furthermore,
TAMRA-derived peptides, as internal fluorescence con-
trol, and mouse-IgM, mouse-IgG, human-IgM and
human-IgG as secondary antibody controls, were
included on each sub-array. Peptide microarrays were
stored at 4°C.

Antibody binding assays
The microarrays were briefly immersed in 100% v/v etha-
nol, washed three times with T-PBS (phosphate buffered
saline containing 0.05% w/v Tween20), three times with
deionized water and dried by centrifugation. Since the
microarray surfaces had been pre-treated to minimize
unspecific binding of the target antibodies, no blocking
step was required prior to incubation. All incubations
were performed using a five-well adhesive incubation
chamber (Multiwell GeneFrameTM, ABgene Germany,
Hamburg, Germany) with a total assay volume of 45μL
per well. Serum was diluted 1:10 in T-PBS and monoclo-
nal antibodies were applied in a concentration of 10μg/
mL. We showed in a technological case study that
approximately 10μg/ml of antibody are best for reliable
signal intensity measurements [14]. The concentration of
IgM in in the serum of healthy SPF BALB/c mice was
found to be around 0.50 mg/ml [46], which yields 50μg/
ml for a 1:10 dilution. The diluted sera are thus within
the optimal binding range. After incubation for four
hours at room temperature, the microarrays were washed
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three times with T-PBS and three times with deionized
water. Serum-antibody binding was detected with poly-
clonal goat anti-mouse IgM-Alexa Fluor 546 and polyclo-
nal goat anti-mouse IgG-Alexa Fluor 647 (Invitrogen Ltd,
Paisley, UK), simultaneously.
Monoclonal antibody binding was detected with poly-

clonal goat anti-human IgG Alexa Fluor 647 (Invitrogen
Ltd, Paisley, UK). Secondary antibodies were diluted in
T-PBS (20μg/mL, 300μL) and incubated for one hour at
room temperature. The microarrays were washed three
times with T-PBS, three times with deionized water,
rinsed with running deionized water and dried by cen-
trifugation. Water, ethanol and PBS were filtered.

Signal detection
Fluorescence signals were measured on a GenePix micro-
array scanner (Molecular Devices GmbH, Ismaning, Ger-
many) with a 532 nm laser using green (~ 550-600 nm)
emission filters and with 635 nm laser using red (~ 650-
690 nm) emission filters. An image file was generated at a
resolution of 10μm using the scanner-associated GenePix®

Pro software. Signal intensities were quantified with Gene-
spotter™ software (MicroDiscovery GmbH, Berlin, Ger-
many). Genespotter provides a fully automated grid-
finding function, resulting in a reproducible read-out pro-
cedure. Signal intensities for each spot were calculated
from a circular region around the center of the spot. Spots
were examined for auto-fluorescence, but no relevant cor-
relation between peptide composition and the fluores-
cence of clean microarrays was observed. Measured raw
signal intensities were logtransformed (log(I)). Subse-
quently, the signal arising from the polyclonal secondary
antibody was removed according to the linear model:

log(I) = β0 + β1 log(ISecondaryAntibody) + ε. (3)

By PLS-based computation of the intercepts, b0 and
b1, we replaced log(I) with the resulting PLS-computed,
mean-centered and scaled-to-unit variance residuals ε
for further analysis. The results reported in the main
text of this paper are based exclusively on the calculated
normalized residuals.

Statistics
The two-sided, non-paired Wilcoxon rank sum test was
used to compute all p-values. P-values were regarded as
significant when p < 0.05. Association between variables
was assessed by Pearson correlation (r) unless otherwise
stated.

Generation of simulated signal intensities with a
mathematical model
Peptides and antibody binding sites were modeled as
strings. Binding strengths between antibodies and the

various amino acid residues of a peptide, referred to as
assigned AAWS �h , were sampled from the uniform dis-
tribution on the closed interval 0[1]. A binding site on

an antibody
→
ak was simulated in a similar fashion with a

random number from the closed interval [-1, 1] for
every sequential position and scaled such that

(
→
ak)T

→
ak = 1 . The binding association between peptide

→
pi and antibody

→
ak was calculated by yi,k = (

→
ak)T

→
pi .

Based on the interpretation of the binding association
as being negatively linearly proportional to the standard
Gibbs free energy change of reaction, ΔrG

o, the binding
affinity Ki, k, that is, the thermodynamic equilibrium
association constant for antibody k binding peptide i, is
defined as shown in Equation 4.

Ki,k = exp
(

−�rGo

RT

)
= exp

(
β0 + β1yi,k

RT

)
(4)

Similar to a bit string model approach in [47], our
approach to calculating Ki, k assumes additivity in free
energy of binding, an assumption that is supported by
experimental results [48,49]. The signal intensity that we
measure on the array is assumed to be proportional to
the ratio of bound-to-total surface of the peptide spot,
Si. An expression for this quantity, based on the law of
mass action, can be obtained from classical Langmuir
adsorption theory [27] resulting in Equation 2 with R =
8.314472, T = 273.15 + 25, b0 = 0 and b1 = RT.
At last, signal intensities were log-transformed, mean-

centered, and scaled to unit variance. If Gaussian noise
(N (μ = 0, s = 0.01)) was introduced into simulated signal
intensities, the noise term was introduced before logarith-
mic transformation of the data. We showed that, for
monoclonal antibodies, visibly fluorescent spots have at
least a K-value of 107M-1 [14].

Partial least squares regression
All calculations involving PLS were carried out with the
pls package [50] for the R statistical programming envir-
onment [51].

Model diagnostics
The predictive performance is defined as:

Q2 = 1 −
∑

(ŝLeftout − sLeftout)
2∑

s2Leftout
. (5)

The vector �sLeftout is the left-out test data set, the sig-

nal intensity of which is predicted ( �̂sLeftout ) from the
remaining training data set. The left-out test data repre-
sented randomly chosen 10% of the total data set.
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Principal component analysis
Principal component analysis was performed using the
pcaMethods R-package [52].

Additional material

Additional File 1: Supporting Figure S1: Experimental setup:
infection of BALB/c mice with Heligmosomoides bakeri and
collection of blood samples at three different stages of immune
response. Serum samples from 15 BALB/c mice raised under specific
pathogen-free conditions were collected. These mice were infected with
the intestinal nematode Heligmosomoides bakeri formerly known as
Heligmosomoides polygyrus [53]. Further serum samples were collected at
10 dpi (days post infection; 15 samples), at 14 dpi (13 samples), and at
18 dpi (15 samples) totaling 58 serum samples. The serum was isolated
and subsequently incubated with random peptide libraries. We
categorized the serum samples into healthy (0 dpi; 15 samples), acute
phase (10 and 14 dpi; 15 and 13 samples respectively) and early chronic
phase (18 dpi; 15 samples), thus delineating the three major stages of
immune response of a mouse, before and after primary infection with
HB. Practical experimental difficulties reduced the intended number of
usable 14 dpi samples from 15 to 13.

Additional File 2: Supporting Figure S2: Removing the signal of the
secondary antibody accentuates differences between binding
profiles of monoclonal and serum antibodies. (A) The predictive
performance values (Q2) were calculated for monoclonal (mAb) as well
as serum IgM (sIgM) and IgG (sIgG) antibody binding profiles before
(blue) and after (red) correction of the measured log-transformed signal
intensities by removal of the polyclonal secondary antibody-correlated
signals using PLS. (B) Shown is the pairwise correlation (r) of the
corresponding AAWS �wj . For the two statistical measures, signal
correction entails a significant decrease in the mAb median, whereas
sIgM and sIgG medians remain largely unchanged. Both before and after
secondary antibody correction of antibody binding profiles, sIgM profiles
have higher predictive performance (Q2) and a higher median pairwise
correlation (r) of AAWS than sIgG profiles. In (A) and (B), mAb signifies
antibody binding profiles from 13 monoclonal antibodies and sIgM/sIgG
serum IgM and serum IgG binding profiles from 58 BALB/c mice sera,
respectively. Antibody binding profiles were measured with the standard
peptide library of 255 14-mers. Corresponding AAWS ( �wj ) were
determined with Equation 1.

Additional File 3: Supporting Figure S3: Predictive performance and
pairwise correlation of amino acid-associated weights are higher
for serum IgG than for monoclonal antibodies. (A) Predictive
performance values (Q2) were calculated for monoclonal (mAb) and
serum IgG antibody (Sera IgG) binding profiles. (B) Shown is the pairwise
correlation (r) of the corresponding AAWS �wj . In both (A) and (B) mAb
signifies antibody binding profiles from 13 monoclonal antibodies and
Sera IgG binding profiles from 58 BALB/c mice sera. Differences in
predictive performance (Q2) and pairwise correlation (r) of AAWS
between monoclonal and serum IgG antibodies are significant (p <
0.001). Antibody binding profiles were measured with the standard
peptide library of 255 14-mers. Corresponding AAWS ( �wj ) were
determined with Equation 1.

Additional File 4: Supporting Figure S4: Predictive performance and
pairwise correlation of amino acid-associated weights decrease for
serum IgG antibodies during the course of the immune response.
(A) Predictive performance values (Q2) were computed from serum IgG
antibody binding profiles across three stages of immune response:
healthy, acute, early chronic. (B) Shown is the pairwise correlation (r) of

the corresponding AAWS �wj
sim

. Number of BALB/c mice serum samples:

15 from healthy mice, after infection with HB: 15 samples taken at 10 dpi
and 13 samples taken at 14 dpi (acute phase) and 15 samples taken at
18 dpi (early chronic) totaling 58 BALB/c serum samples. Differences in
predictive performance (Q2) between both healthy and early chronic
phase mice and healthy and acute phase mice are significant (p < 0.05) as
are differences in pairwise correlation (r) between all three stages of

immune response (p < 0.001). Antibody binding profiles were measured
with the standard peptide library of 255 14-mers. Corresponding AAWS

( �wj ) were computed using Equation 1.

Additional File 5: Supporting Figure S5: Simulations show that
recovery of assigned amino acid-associated weights is positively
correlated to antibody diversity. This Figure is complementary to
Figure 3. Antibody binding profiles were simulated for antibody mixtures
of 1 to 16348 different antibodies. The correlation (r) of simulated AAWS

((�wi
sim) ) with assigned AAWS ( �h ) increases with increasing antibody

diversity. Both a simulated random peptide library (Xsim) of 255 14-mers

as well as assigned AAWS �h were generated once and kept constant

across the whole simulation. Simulated antibody binding profiles were
computed with Equation 2, detailed in the results section. Corresponding
AAWS were determined with Equation 1. For every mixture of nAb-
different antibodies, 100 simulations with newly randomly generated
antibody mixtures were run.

Additional File 6: Supporting Figure S6: Correlation between 26
physico-chemical properties and the average AAWS of healthy
mice. The average AAWS of healthy mice were correlated with the z-
scale published by Sandberg and colleagues [29]. The shown correlation
coefficients are Spearman-Rank-correlation coefficients. Same
abbreviations were used as by Sandberg and colleagues [29]. MW
(molecular weight), TLx (thin layer chromatography at various
conditions), vdW (side chain van der Waals volume), NMx (NMR-proton
shift at pD = x), logP (10 log (octanol/water) partition coefficient),
EHOMO (energy of highest occupied molecular orbital), ELUMO (energy
of lowest unoccupied molecular orbital), HOF (heat of formation), POLAR
(a-polarizability), EN (absolute electronegativity), HA (absolute hardness),
Stot (total accessible molecular surface area), Spol (polar accessible
molecular surface area), Snp (non-polar accessible molecular surface
area), HDONR (number of hydrogen bond donors), HACCR (number of
hydrogen bond acceptors), Chpos (indicator of positive charge in side
chain), Chneg (indicator of negative charge in side chain). Legend: Red,
positive correlation coefficients; blue, negative correlation coefficients.

List of Abbreviations
AACM: Amino acid composition matrix; AAWS: Amino acid-associated
weights; FABR: Functional antibody repertoire; HB: Heligmosomoides bakeri;
PLS: Partial least squares regression.
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