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Abstract

Background: Inferring gene orders of ancestral genomes has the potential to provide detailed information about
the recent evolution of species descended from them. Current popular tools to infer ancestral genome data (such
as GRAPPA and MGR) are all parsimony-based direct optimization methods with the aim to minimize the number
of evolutionary events. Recently a new method based on the approach of maximum likelihood is proposed. The
current implementation of these direct optimization methods are all based on solving the median problems and
achieve more accurate results than the maximum likelihood method. However, both GRAPPA and MGR are
extremely time consuming under high rearrangement rates. The maximum likelihood method, on the contrary,
runs much faster with less accurate results.

Results: We propose a mixture method to optimize the inference of ancestral gene orders. This method first uses
the maximum likelihood approach to identify gene adjacencies that are likely to be present in the ancestral
genomes, which are then fixed in the branch-and-bound search of median calculations. This hybrid approach not
only greatly speeds up the direct optimization methods, but also retains high accuracy even when the genomes
are evolutionary very distant.

Conclusions: Our mixture method produces more accurate ancestral genomes compared with the maximum
likelihood method while the computation time is far less than that of the parsimony-based direct optimization
methods. It can effectively deal with genome data of relatively high rearrangement rates which is hard for the
direct optimization methods to solve in a reasonable amount of time, thus extends the range of data that can be
analyzed by the existing methods.

Background
Inferring gene orders and gene content of ancestral gen-
omes has a wide range of applications. High-level rear-
rangement events such as inversions, transpositions that
change gene order are important because they are “rare
genomic events” [1] and can be used to estimate ances-
tral genomes and infer the number of steps that evolve
one genome into another.
The fundamental question in building phylogenies is

how far apart two species are from each other. Hannen-
halli and Penvzner [2] provided the first polynomial

algorithm for computing inversion distance, which can
be used as a representation of the evolution distance
between species. Then by using a direct optimization
approach based on median calculation, which is to opti-
mize each ancestral node in terms of its three or more
immediate neighbors, the phylogeny and ancestral gen-
omes could be reconstructed. Current popular methods
(such as GRAPPA [3], MGR [4] and their new improved
versions) all use this approach and can infer ancestral
gene orders with high accuracy. However these methods
are extremely slow especially when the rearrangement
rate is high. A new method based on the maximum like-
lihood approach is recently proposed [5]. In this
method, the probabilities of all possible ancestral gene
order are calculated based on the present species’ gene
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order data and the ancestral gene orders are recon-
structed to maximize the overall probability. This
method is much faster than the direct optimization
methods under high evolution rearrangement event rate,
but the accuracy of the reconstructed gene order is
lower than that of the direct optimization methods.
In this paper, we propose a mixture method to

enhance the inference of ancestral gene orders. We first
use the maximum likelihood method to reconstruct an
initial ancestral genome. Then we randomly select a
number of gene adjacencies from the ancestral genome
and fix them to run the median calculation. By analyz-
ing the results of each median calculation, we try to
infer the correct gene adjacencies generated by the max-
imum likelihood method. Finally we fix these adjacen-
cies and perform median calculation to get the ancestral
genome. We have conducted extensive experiments on
simulated datasets and the results show that this mix-
ture approach is more accurate than the maximum like-
lihood method. Also our method is much faster than
solely using the median calculation when the rearrange-
ment rate is high. Using this hybrid approach, for those
datasets that are previously too difficult for existing
methods, we will be able to analyze them within a rea-
sonable time frame with very high accuracy.

Genome rearrangements
Given a set S of n genes {1, 2, ..., n}, a genome can be
represented by an ordering of these genes. A gene with
a positive orientation is written as i, otherwise it is writ-
ten as a -i. A genome can be linear or circular. A linear
genome is a permutation on the gene set, while a circu-
lar genome can be represented in the same way under
the implicit assumption that the permutation closes
back on itself. Let G be the genome with signed order-
ing of 1, 2, ..., n. An inversion (also called reversal)
between indices i and j (i ≤ j), transforms G to a new
genome with ordering

1, 2, · · · , i− 1,−j,−(j − 1), · · · ,−i, j + 1, · · · , n
There are some additional events for multiple-chro-

mosome genomes, such as translocation (when the end
of one chromosome switches with the end of another
chromosome), fission (when one chromosome splits to
form two) and fusion (when two chromosomes combine
to become one).
We use a breakpoint graph [6] to represent the per-

mutation with respect to the identity permutation.
Given a genome with permutation π, let the breakpoint
graph that corresponds to it be M (π). The vertex set V
of M (π) is the collection of {2i - 1, 2i}, and i is any dis-
tinct gene of permutation π. Two genes i and j are said
to be adjacent in genome G if i is immediately followed

by j and can be represented by an edge (2i, 2j-1). If i
and -j are adjacent, then it can be represented by an
edge (2i, 2j). The edge set E of M (π) consists of all the
adjacencies in π. For example, for a circular unichromo-
somal genome G2 = 1,4, 2, -3, 5, the vertex set is V =
{1, 2, 3, 4, 5, 6, 7, 8, 9,10} and the edge set is E =
{(10,1), (2, 7), (3, 8), (4, 6), (5, 9)}, as shown in Figure 1.
The breakpoint graph extends naturally to a multiple
breakpoint graph (MBG), representing a set of three or
more genomes.

Inferring ancestral gene order by median calculation
One popular approach to reconstruct ancestral genome
is through direct optimization and the task is to seek
the tree with the minimum number of events, which is
in spirit similar to the maximum parsimony approach
used in sequence phylogeny. The core of these methods
is to solve the median problem defined as follows: given
a set of N genomes with permutations {πi}1≤i ≤ N and a
distance measure d, find a permutation πM that mini-
mizes median score defined as

∑N
i=1 d(πi,πM).

Widely used methods like GRAPPA [3] and MGR [7] (as
well as their new improved versions) both use median cal-
culation to infer phylogenies and ancestral gene orders.
For example, GRAPPA examines every possible tree topol-
ogy and reports the one with the minimum events. For a
given tree, it iteratively updates the gene order on each
ancestral node in terms of its three neighbors through
median calculation until the whole score of the tree
reaches minimum. At this point the gene order obtained
on each internal node corresponds to the inferred ances-
tral genome data and the total number of events is simply
the summation of pairwise distances along all edges.
The median problem is known to be NP-hard [6] under

most rearrangement distances proposed so far. Recently
Xu proposed the concept of Adequate Subgraph [8] and
applied this theory to create the ASMedian solver, which
is the fastest median solver to date. The Multiple Break-
point Graph (MBG) is used to model the median pro-
blem and an Adequate Subgraph is defined as a subgraph
that has number of cycles larger or equal to 3m/2 (m is
half the number of the vertices of the subgraph). Ade-
quate subgraphs allow a decomposition of an MBG into
smaller, more easily solved graphs. The median solution
is the combination of the median solutions for the ade-
quate subgraphs and the remaining MBG, so we can
shrink the known median edges of the adequate subgraph
and reduces the original MBG size.
Figure 2 shows an example of adequate subgraph

decomposition. Given three circular genomes {1, 2, 3},
{1, 2, -3} and {1, 3, 2}, the MBG of these three genomes
are shown on the left. Vertices (2, 3) composes an ade-
quate subgraph according to the definition of adequate
subgraph, so we can shrink (2, 3) from the MBG and
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get a reduced MBG as shown on the right. The final
median solution is also shown in the figure and we can
see that the edges of the median solution are within the
reduced MBG.
By searching the existing adequate subgraphs up to a

certain size and incorporate them into an exhaustive algo-
rithm for the median problem, the ASMedian solver could
significantly reduce the computation time of median cal-
culation, though it still runs very slowly with high gene
rearrangement rate. Given n the number of genes in the
dataset and r the expected number of events per edge,
when the ratio of r/n is larger than 25%, all direct optimi-
zation methods have great difficulty in finishing the analy-
sis even after months of computation. As ASMedian (as
well as other median algorithms) use a branch-and-bound
approach, its performance relies on how to quickly prune
branches. If we can fix some adjacencies before perform-
ing median calculation, the search space will be further
decreased and the problem would be solved much faster.

Reconstruct the ancestral genomes based on maximum
likelihood
Another new approach to reconstruct the ancestral gen-
ome is based on maximum likelihood. Ma proposed a

probabilistic framework for inferring ancestral genomic
orders with rearrangements including inversion, translo-
cation and fusion [5]. When the phylogeny tree is given,
the tree is re-rooted so that the ancestral node to be
inferred becomes the root of the new tree. In this way,
all the leave nodes can be taken into account for recon-
structing the target ancestral node.
Because the gene order of any ancestral node is

unknown, the probabilities of all possible gene adjacen-
cies within the genome need to be calculated. Since
each internal node of the phylogeny tree has two chil-
dren and we assume that both children evolved from
the parent node, the posterior probability of any gene
adjacency within the parent node can be computed
when treating the gene orders of the children as
observed data. The calculation can be performed
recursively from the bottom leaves level to the top
level until the root is reached. At this point the prob-
abilities of all the possible gene adjacencies within the
target ancestral genome are computed. Finally an
approximate algorithm is used to pick up and connect
the adjacencies together to maximize the overall prob-
ability, and these selected adjacencies form the final
inferred ancestral genome.

Figure 1 An example of breakpoint graph. Breakpoint graph of genome G = 1,2,-3,4,-5, with respect to the identity genome G = 1,2,3,4,5.

Figure 2 An example of adequate subgraph. (a) An MBG based on three circular genomes {1, 2, 3} (thick lines), {1, 2, -3} (double lines), {1, 3,
2} (thin lines). (b) The reduced MBG with (2 3) shrunk because (2, 3) is an adequate sub-graph. The dash line indicates the median solution 1, 2,
3, which is the combination of the median solution of the two sub-graphs.
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Methods
We propose a framework that combines both maximum
likelihood and direct optimization approaches to infer
ancestral gene orders. The maximum likelihood method
runs much faster with high genome rearrangement rate
compared with the direct optimization methods, but the
latter can infer more accurate gene orders. To speed up
the latter, we need to reduce the computation time for
the median calculation as it is clearly the bottleneck of
the computation. Our method tries to pick up the cor-
rectly inferred gene order from the maximum likelihood
method and fix these adjacencies in the median calcula-
tion. As a result, the median search space can be signifi-
cantly reduced and the median calculation is
accomplished much faster while the accuracy of the
inferred gene order is also improved.

Reduce median search space by fixing adjacencies
We use Xu’s ASMedian solver which is based on the
Adequate Subgraph theory [8]. In order to speed up the
median calculation, we have to further reduce the med-
ian search space. Given permutation {πi}1≤i≤N, let the
MBG that corresponds to it be M (π). If we assume an
adjacency (i, j) should be present in the final median
solution, we could force {i, j} to become an adequate
subgraph of M (π). The procedure is as follows: For
each permutation π, if edge (i, j) is already present in
the breakpoint graph, we do nothing. Otherwise let (i,
a), (j, b) be the edges corresponding to vertices i and j.
We then remove both edges (i, a), (j, b) and create two
new edges (a, b), (i, j). Figure 3 shows the procedure
stated above. Three permutations are represented by
thin lines, double lines and thick lines respectively. For
the permutation of thick lines, edge (i, j) already exists,
so nothing needs to be done. For the other two permu-
tations, edge (i, j) is not present. For the permutation
represented by double line, we remove the original
edges (c, i) and (d, j) which are incident to vertices i, j
and add an edge (i, j) with double line. For the

permutation represented by thin line, we remove the
original edges (a, i) and (b, j) which are incident to ver-
tices i, j and add an edge (i, j) with thin line. According
to the definition of adequate subgraph, vertices {i, j}
become an adequate subgraph because three edges are
incident to these two vertices [8].
If we can fix a number of adjacencies, an equal num-

ber of adequate subgraphs can be created. Thus we can
shrink these subgraphs from the original multiple break
point graph, and the original median problem will be
greatly reduced. If the adjacencies that we try to fix are
the actual adjacencies present in the final solution, this
fixing procedure will not affect the accuracy of the med-
ian solution.

Infer the correct adjacencies
Based on our observation and simulation, only a part of
the adjacencies inferred by the maximum likelihood
method are the correct adjacencies that are present in
the ancestral genome. It will be desired if we can opti-
mally pick out all the correct adjacencies and fix them
for the median computation. However, it is very difficult
to find out all the correct adjacencies inferred by the
current maximum likelihood method as only a small
percentage of adjacencies are reported with high prob-
ability while others usually have similar small probability
which cannot be used to judge whether an adjacency is
correct or not. Our method to identify the correct adja-
cencies is a randomized approach. First, we will keep
adjacencies that have higher probabilities as “correct”.
Then we will randomly select a number of adjacencies
from those with lower probability and fix them in the
median computation using ASMedian. These randomly
selected adjacencies may contain both correct and incor-
rect adjacencies, but the correct adjacencies are more
likely to lead the inference of other correct adjacencies
within the ancestral genome after the median computa-
tion. Thus after the median is found, we examine the
non-fixed adjacencies in the “ancestral genome”

Figure 3 Fix an adjacency (i,j) in the MBG. On the left is the MBG with three permutations represented by thin lines, double lines and thick
lines respectively. On the right is the MBG with (i,j) fixed for all the permutations.
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generated by the median solver and record the ones that
also appear in the “ancestral genome” generated by the
maximum likelihood method. We repeat the procedure
many times. Finally for each adjacency generated by the
maximum likelihood method, we get the number of
times it appears in the resulted median genomes. The
more it appears, the more likely it is a correct adjacency.
The number of randomly selected adjacencies should

not be too large. Too many fixed adjacencies may con-
tain too many incorrect adjacencies to pollute the med-
ian calculation and leads to bad results. On the other
hand, the number of fixed adjacencies should not be too
small, otherwise the time consumption of median calcu-
lation is unacceptable since the search space is still too
large. In our practice, we randomly choose 70-75% of
the adjacencies and fix them in the median computa-
tions. We also conducted extensive testing to verify that
70-75% is indeed a good choice and the results are
shown later.
When more than three genomes are involved and a

phylogeny is given, we will first infer part of the correct
adjacencies for each ancestral genome that corresponds
to an internal node. We will then use our modified
median solver to iteratively update the gene order of
these internal nodes with those fixed adjacencies. The
tree edge length is the genomic distance between the
nodes and the score of the tree is defined as the sum of
all the tree edge. The iteration stops when the score of
the tree dose not change, suggesting that convergence is
reached. At this time, gene orders contained in the
internal nodes are the final ancestral genomes to be
reported.

Results and discussion
Experimental methods
We use simulated data to assess the quality of our
method as we know the “true” ancestors in simulations.
In our experiments, we use two models to generate the
data. First we generate model tree topologies from the
uniformly distributed binary trees, each with 10 leaves
indicating 10 genomes. We use different evolutionary
rates, of 20%, 24% ... 36% expected rearrangement rates
per tree edge, with 50% relative flucturation. We also
use the model proposed by Lin and Moret [9] to gener-
ate another set of random trees with 10 leaves. The tree
diameters range from 2.0 to 4.0. The Lin and Moret’s
tree model has more unbalanced edge lengths and is
suggested as more biologically realistic.
Once the simulated genomes are generated, we use

our mixture method to infer the ancestral gene order
data. Because we are handling genomes with equal gene
contents, the accuracy can be measured with the num-
ber of correctly inferred adjacencies (the inferred adja-
cencies that also appear in the original ancestral

genome) divided by the total number of adjacencies for
each genome.

Number of replicates required
As discussed before, we use maximum likelihood method
to reconstruct the initial ancestral genome and then ran-
domly select a number of gene adjacencies from the
initial ancestral gene order data and fix them for median
computation. This procedure is repeated until each adja-
cency has been selected for enough times. Finally we
record the number of occurrences of each gene adjacency
that are present in the median results (excluding the case
when it is fixed in median computation) and sort these
adjacencies according to the number of occurrences. If
the number of repeats is large enough, the sorting of the
gene adjacencies will remain almost unchanged.
According to our test, when the number of replicates

is over 100, the sorting of the gene adjacencies comes to
a steady state and there is little change with more
repeated tests are conducted. Since we will pick a cer-
tain percentage of adjacencies with higher numbers of
occurrences, the very small change in adjacency sorting
will hardly affect the result.

Adjacency selection percentage
When we sort the gene adjacencies by the number of
their occurrences in the median calculation result, it is
clear that the more an adjacency appears, the more it is
likely to be a correct adjacency. Thus we can just pick
the adjacencies with large numbers of occurrences and
fix them in the median calculation. However, we need
to determine the threshold of how many adjacencies
should be fixed. We define the selection percentage as
the number of selected adjacencies divided by the total
number of adjacencies. From our experience, we found
that the percentage cannot be lower than 65%, otherwise
the median calculation are still very slow as the search
space is not small enough.
To determine the selection percentage, we use various

percentages, from 65% to 85%, to select the gene adjacen-
cies and fix them to reconstruct ancestral genomes
through median computation. We compare the average
accuracy of the reconstructed gene order under different
selection percentages. Table 1 shows the average accu-
racy of reconstructed gene order under different selection
percentages, using uniform trees with various evolution-
ary rates per edge, while Table 2 shows the results of Lin
and Moret’s tree model with various tree diameters.
From these tables, we can see that when the rearran-

gement rate or the tree diameter is relatively small
(meaning genomes are closely related), the gene accu-
racy reaches maximum values when the selection per-
centage is 70%. When the rearrangment rate or the tree
diameter grows larger, it would be better to use 75% as
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the selection percentage. This is because with larger
rearrangement rates, some correct adjacencies inferred
by the maximum likelihood method are hard to be
inferred by the median calculation, so we should use a
larger selection percentage to include more adjacencies
inferred by the maximum likelihood method.

Accuracy on closely related genomes
First we compare the accuracy of the ancestral genome
reconstructed by our method with the result from both
Ma’s maximum likelihood approach and the pure ASMe-
dian solver. Because ASMedian solver is very time con-
suming, we only perform tests under lower rearrangement
rates and diameters. We perform simulation tests using
the two types of tree models as stated above with various
rearrangement rates and tree diameters. For each config-
uration we run 50 data sets and the results are averaged.
Table 3 shows the comparison under uniform distribution
binary trees with average rearrangement rates ranging
form 12% to 20% and Table 4 shows the comparison
under Lin’s random trees with diameters ranging form 0.6
to 1.2. As mentioned before, we can see that the median
method produces more accurate results than those of the
maximum likelihood method under all situations. Also we
notice that our mixture method could produce a similar
or even slightly better result than solely using ASMedian.

These tables also show that the randomized approach
could effectively infer correct adjacencies from the maxi-
mum likelihood method and leads to equivalent accuracy
of the best median solver.

Accuracy on distant genomes
ASMedian solver cannot finish datasets with higher
rates or diameters, thus for distant genomes, we only
compare the accuracy of the ancestral genome recon-
structed by our method with the result of Ma’s maxi-
mum likelihood approach. To see the effectiveness of
our new approach, we also compare the optimal solu-
tion when all correct adjacencies in the maximum likeli-
hood results can be told, which is impossible in real
data analysis but is trivial in simulation as the truth is
known. This optimal solution is also the upper bound
that our mixture framework can achieve.
Figure 4 shows the comparison under uniform distri-

bution binary trees with different rearrangement rates
per edge. We can see that our method can infer ances-
tral gene order more accurately than Ma’s method. At
the rearrangement rate of 20% we get an average
improvement of nearly 12%. With the increase of rear-
rangment rates, the improvement decreases, but we still
have about 4% in adjacency accuracy comparison when
the rearrangement rate reaches 36%. Compared with the

Table 1 Accuracy of reconstructed gene order (%) under various selection percentages and rearrangement rates with
uniformly distributed tree model

65% selected 70% selected 75% selected 80% selected 85% selected

20% events per edge 89.73 91.93 90.47 89.53 89.24

24% events per edge 80.28 81.92 81.07 80.56 79.81

28% events per edge 71.59 73.12 73.28 71.10 71.63

32% events per edge 63.33 64.52 65.72 65.25 64.81

36% events per edge 59.45 60.87 62.43 60.27 60.15

Table 2 Accuracy of reconstructed gene order (%) under various selection percentages and diameters with Lin’s
random tree model

65% selected 70% selected 75% selected 80% selected 85% selected

Diameter = 2.0 93.49 94.37 93.97 93.01 92.89

Diameter = 2.5 89.02 89.93 89.02 88.31 88.18

Diameter = 3.0 84.75 86.51 85.25 84.58 84.45

Diameter = 3.5 80.21 82.04 82.93 80.58 80.50

Diameter = 4.0 79.14 79.84 80.96 79.37 78.75

Table 3 Reconstructed gene order accuracy comparison with low rearrangement rates under uniformly distributed
tree model

Ma’s method Pure median method Our mixture method

12% events per edge 92.28 98.53 98.49

16% events per edge 86.37 96.25 96.12

20% events per edge 81.54 91.76 92.13
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optimal median result, the accuracy of our method are
about 10% less at the rearrangement rate of 20%. The
difference decreases when the arrangement increases,
and we can see that the result of our method is still
close to the optimal result.
Figure 5 shows the comparison under random trees with

different diameters. Because of more unbalanced edge
lengths which decrease the accuracy of the gene order
inferred by the median calculation, the improvement of
the adjacency accuracy is not as much as the uniform tree
model. But still we have an average improvement of about
7% with diameter equals 2.0. With the increase of dia-
meter, the improvement decreases and finally we still have
more than 3% when diameter equals 4.0. Compared with
the optimal result, the accuracy of our method are about
5% less when the diameter is 2.0. The difference decreases
when the diameter increases, and we can see that under

random tree models with very unbalanced edge lengths,
the difference between our result and the optimal result
are much smaller than that of the uniform distributed tree
model.
In conclusion, our method that randomly picks adja-

cencies from the maximum likelihood method could
achieve accuracy that is comparable to the optimal
result by picking all the correct adjacencies. For distant
genomes, the original median-based parsimony methods
cannot give result in reasonable time and we can expect
that the result of parsimony method will not exceed the
optimal result achieved by fixing part of the correct
adjacencies. As a result, we assume that our method
could achieve similar accuracy for distant genomes com-
pared with the parsimony methods. Also the result
shows that, although the accuracy decreases when gen-
omes are more distant from each other, our method are
still more accurate than the original maximum likeli-
hood method. However, for very distant genomes (rear-
rangement rate over 40% or diameter over 4.5), the
maximum likelihood method can only produce result
with very low accuracy, resulting not enough correct
adjacencies for our mixture method. If we keep the ori-
ginal selection percentage (70% to 75%), the accuracy of
the inferred ancestral genome becomes very low. On the
other hand, if we use lower selection percentages, it will
be very difficult for the median calculation to finish in
reasonable time as not so many adjacencies are fixed.

Table 4 Reconstructed gene order accuracy comparison
with small diameters under Lin’s random tree model

Ma’s
method

Pure median
method

Our mixture
method

Diameter =
0.6

96.75 99.37 99.12

Diameter =
0.9

95.48 97.62 97.31

Diameter =
1.2

92.39 95.81 95.89

Figure 4 Comparison of the reconstructed gene adjacency accuracy with high rearrangement rates under uniform distribution binary
trees.
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Thus inferring the ancestral genome for very distant
genomes is still a challenging problem for our method.

Time consumption
We also compare the time consumption of our mixture
method and the original parsimony method. The time
cost of our mixture method includes the time spent on
the maximum likelihood method and the time for med-
ian calculations with multiple fixed adjacencies. As sta-
ted above, operations for calculating median with
randomly selected adjacencies are independent from
each other, so they can be performed in parallel. The
test is performed on an server with 2.4GHz, 4 core
CPUs. Average running time of the two methods is
reported in seconds.
Table 5 shows the comparison under uniform distri-

bution binary trees with different rearrangement rates
per edge. Table 6 shows the comparison under random
trees with different diameters. The speedups range from
1.8 to over 139 or even more, increasing along as the
rearrangement rates or tree diameters increase. Also we

can see that for distant genomes with rearrangement
rate over 24% or diameter over 2.5, the original parsi-
mony method based on ASMedian solver cannot finish
the computation within reasonable time while our
method can still accomplish computation in relatively
short time. As shown in this table, our mixture method
achieves significant speedups compared with the original
parsimony method.

Conclusions
Ancestral gene order data can be inferred by either med-
ian computations or the maximum likelihood method.
Median calculation can give a more accurate result but is
extremely time consuming under high rearrangement
rates. Maximum likelihood method runs much faster but
the inferred gene order is not as accurate as the result of
median method. We propose a mixture method to infer
the ancestral gene order based on the above two
approaches to improve both time cost and accuracy. The
main idea of our method is to pick the correct gene adja-
cencies through a randomized procedure and reduce the

Figure 5 Comparison of the reconstructed gene adjacency accuracy with high rearrangement rates under Lin’s random tree model.

Table 5 Comparison of average time cost under uniform
distribution binary trees

Rearrangement rate per edge 16% 20% 24% 28% 32%

Pure median method 315 15800 1.4 × 105 N/A N/A

Our mixture method 180 760 1270 1620 1850

Speed up 1.75 20.78 110.23 N/A N/A

Table 6 Comparison of average time cost under Lin’s
random tree model

Tree diameter 1.5 2.0 2.5 3.0 3.5

Pure median method 8500 76400 2 × 105 N/A N/A

Our mixture method 430 840 1430 1920 2230

Speed up 19.76 90.95 139.86 N/A N/A
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median computation cost by fixing these correct gene
adjacencies. Experiments show that our mixture method
produces more accurate ancestral genomes than the
maximum likelihood method while the computation time
is far less than that of pure median method.
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