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Abstract

Background: A variety of species and experimental designs have been used to study genetic influences on
alcohol dependence, ethanol response, and related traits. Integration of these heterogeneous data can be used to
produce a ranked target gene list for additional investigation.

Results: In this study, we performed a unique multi-species evidence-based data integration using three
microarray experiments in mice or humans that generated an initial alcohol dependence (AD) related genes list,
human linkage and association results, and gene sets implicated in C. elegans and Drosophila. We then used
permutation and false discovery rate (FDR) analyses on the genome-wide association studies (GWAS) dataset from
the Collaborative Study on the Genetics of Alcoholism (COGA) to evaluate the ranking results and weighting
matrices. We found one weighting score matrix could increase FDR based q-values for a list of 47 genes with a
score greater than 2. Our follow up functional enrichment tests revealed these genes were primarily involved in
brain responses to ethanol and neural adaptations occurring with alcoholism.

Conclusions: These results, along with our experimental validation of specific genes in mice, C. elegans and
Drosophila, suggest that a cross-species evidence-based approach is useful to identify candidate genes contributing
to alcoholism.

Background
Research on the genetics and neurobiology of alcoholism
uses a variety of study designs and model organisms. A
wealth of data are available, including linkage studies in
human alcoholics, microarray studies of inbred mouse
strains’ brains and rat brains exposed to ethanol, and stu-
dies of loss or gain of function of genes in organisms

such as C. elegans and Drosophila [1,2]. Although results
or information across experiments are often compared
by individual researchers in order to generate hypotheses,
interpret results, or prioritize targets for follow up inves-
tigations [3], these analyses are not always done compre-
hensively and rarely include a cross-species approach
[4-7]. While data integration itself can be challenging,
how best to utilize combined results is also unclear.
Although pooled results may yield valuable insights,
there are potential benefits of using more systematic
approaches to generate quantitative rankings that can
then, in turn, guide additional studies. In particular, these
rankings could be applied to choosing molecular targets
for knockdown studies in model organisms or genetic
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association studies in humans. For this and other
approaches, evaluation is often needed in order to deter-
mine whether the rankings are effective at the end of the
data integration process.
Challenges exist for each stage of an integration pro-

cess, including the creation of an empirical gene list
across species and platforms, scoring the information,
and then evaluating the scoring system itself. For exam-
ple, once various data are collected, identifying the best
way to integrate them poses a problem since the criteria
for selecting gene lists often differ substantially across
studies. Specifically in microarray studies, the expression
of gene-specific transcripts is selected via statistical
threshold(s), but individual genes can have multiple
transcripts that may differ in their abundance [8].
Therefore, a given gene can yield multiple expression
values through microarray or next generation RNA
sequencing (RNA-Seq) analyses. Likewise, human
genetic association studies test multiple genetic markers,
usually single nucleotide polymorphisms (SNPs), across
a gene. In contrast, the results of genetic linkage or
quantitative trait locus (QTL) studies in humans or
mice can span tens of megabases and contain potentially
hundreds of genes. Furthermore, low replication rates
and identification of non-functional markers in most
studies makes the search for true genetic signals difficult
[9-11]. While there are issues with data reduction or
summarization, integration at the level of the gene can
be used as a link across a number of commonly used
approaches.
If genetic information is summarized at the gene level,

then each gene in the genome can be assigned a score for
each experiment or data set available. This measurement
can be quantitative or qualitative. For example, p-values
may be assigned to a gene within a quantitative trait
locus (QTL) or a linkage region. However, differences in
gene-specific p-values within an interval of interest may
be misleading since linkage peaks can shift, and variants
responsible for the linkage may not be at the peak itself.
In contrast, large numbers of genes may show altered
expression in microarray studies and represent real
changes due to signal cascades affecting entire gene net-
works. These correlated expression networks, in which a
large number of changes are expected, contrast with link-
age regions, in which most if not all genes do not actually
contain variant(s) linked to the disease. A combined p-
value method can be used for quantitative analyses, but
this approach may present its own challenges. The indivi-
dual data sources may not be weighted equally since the
relative magnitudes of the p-values can be vastly different
across platforms (e.g., mouse and human QTL studies).
To avoid such issues, qualitative scores that measure the
presence or absence of evidence above a threshold may

be used, but thresholds have their own problems. Regard-
less of scoring choice, and despite some problems asso-
ciated with each, a combined gene rank score can be
generated from data integration. These gene rank scores
can be used to perform weighted analysis or to define
gene subsets for further investigation.
The effectiveness of such ranking can be verified by

conducting further testing on genes ranked highly in the
analyses. Alternatively, because the design of genome-
wide association studies (GWAS) is hypothesis free, this
approach offers opportunities to empirically test a rank-
ing method and provide insight into further refinement,
and all or most potential candidate genes can be tested
in one experiment. If higher ranked genes contain more
significant SNPs than a random set of genes, then the
utility of a cross-species and platform integration and
ranking approach would be demonstrated [12]. In this
report, we attempt to implement and evaluate the utility
of the approach outlined above by collecting data across
species and approaches, summarizing at the gene level,
ranking the genes, and testing the rankings in complex
traits related to alcoholism and ethanol response. We
included data generated from ethanol response experi-
ments because this trait is one of the contributing fac-
tors for alcoholism [13].

Results
Ranked gene list
An initial list of 2458 genes that show altered expression
in mouse brain in response to ethanol in two previous
studies [3,14] was used as a starting point. These datasets
were abbreviated as MuAc and MuPref (see Figure 1).
Five additional data sources were used to construct a
score for these genes, including 1) genes showing altered
expression in the prefrontal cortex of human alcoholics
(abbreviated as HuAlc) [15], 2) linkage intervals from
published studies of the Collaborative Study on the
Genetics of Alcoholism (COGA) and the Irish Study of
Alcoholism samples (abbreviated as HuLink) [16-18], 3)
genes contained on a human addiction/alcoholism array
(abbreviated as HuAddChip) [19], 4) those from a smaller
list of ethanol-related genes compiled from Drosophila
(abbreviated as Dr) [20,21], and 5) a short list of ethanol-
related genes compiled from C. elegans (abbreviated as
Ce) [22]. Additionally, genes having cross-species hits
acquired bonus scores (the “Cross” score in our algo-
rithm, see Table 1), as cross-species evidence was
regarded as an important factor in gene salience. Here,
we used score to estimate the evidence of a gene, rather
than using a quantitative measurement (e.g., significance
level, see section Materials and methods). We proposed
10 weighting score matrices (Table 1). The correspond-
ing ranking results are shown in Table 2.
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Alcohol dependence GWAS analysis for ranked genes
To assess the performance of our ranking algorithm and
weighting score matrices, we explored whether the
ranked genes showed non-random enrichment of

significant signals in alcoholism GWAS results. Specifi-
cally, we examined enriched association signals of
ranked genes in the COGA GWAS [23], one of the lar-
gest alcohol dependence GWAS datasets. To increase

Figure 1 Data sources and ranking score results using weighting score matrix 3. The details of weighting score matrix 3 are provided in
Table 1.

Table 1 Ten weighting score matrices used in cross-species data integration and gene ranking.

Weighting score matrix (WSM) Description

WSM1: (0.5,0.5,1,1,0.5,0.5,0.5,1) * HuAlc, HuAddChip, and Cross ** given 1, all others 0.5

WSM2: (0.5,0.5,1,1,0.5,0.5,0.5,0.5) HuAlc and HuAddChip given 1, all others 0.5

WSM3: (0.5,0.5,0.5,1,0.5,0.5,0.5,0.5) HuAddChip given 1, all others 0.5

WSM4: (0.5,0.5,1,1,1,0.5,0.5,0.5) All human data given 1, all others 0.5

WSM5: (1,1,1,1,0.5,0.5,0.5,0.5) All mouse data, human HuAlc and HuAddChip given 1, all others 0.5

WSM6: (1,1,0.5,0.5,0.5,0.5,0.5,0.5) All mouse data given 1, all others 0.5

WSM7: (1,1,1,1,1,0.5,0.5,0.5) All mouse and human data given 1, all others 0.5

WSM8: (0.5,0.5,0.5,1,0.5,0.5,0.5,1) HuAddChip and Cross given 1, all others 0.5

WSM9: (1,1,1,1,1,1,1,1) All given 1

WSM10: (1,1,1,1,1,1,1,0.5) All but Cross given 1

* The weights in the parentheses are in the order for the datasets: MuAc, MuPref, HuAlc, HuAddChip, HuLink, Ce, Dr, Cross, respective. The description of these
datasets is provided in Figure 1.

** Cross denotes the bonus score for genes who had cross-species hits except for genes from human linkage regions (see section Materials and methods).
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the effect of our analyses we filtered the data for minor
allele frequency, Hardy-Weinberg equilibrium deviation,
and failure rate (see section Materials and methods).
This resulted in 958,380 SNPs in our follow up analysis,
with an observed minimum p-value of 9.5 × 10-7. How-
ever, the minimum q-value was 0.605 after False Discov-
ery Rate (FDR) analysis. Of those SNPs approximately
68.7% (658,008/958,380) mapped to the human non-
pseudogenes in NCBI Entrez Gene database, and they
were used in this study. FDR analysis was then per-
formed on restricted subsets of markers based on gene
rank score.
For each ranked gene under different weighting score

matrices, we calculated the q-value of each SNP in the
gene from the COGA GWAS data. The results for the
ten weighting score matrices were summarized in Addi-
tional file 1. For each weighting score matrix, its gene
ranking performance was expected to increase by
improving the q-values of SNPs mapped in the ranked
genes. To quantitatively measure performance and cor-
rect for gene size, we conducted 100 simulations, in
each of which the same number of genes were randomly
chosen from the whole gene set. FDR based q-value
analysis was then performed on the GWAS genotyped
SNPs that mapped to the randomly chosen genes. The
proportion of q-values in each q-value bin (e.g., 0.1-0.2)
was calculated and then compared with those from the
actual ranked alcohol genes. For the simplicity of com-
parison, we separated q-values into different bins. The
results are shown in Additional file 1.
According to our permutation results, the weighting

score matrix 3 had the best performance, since it gave
the lowest q-values among genes (Additional file 1).
This matrix was then used to refine gene scores using
1000 permutations (Table 3). In general, the subset of

SNP results restricted to the scored genes was enriched
for significant effects as the gene rank score increased
from 0.5 to 2.0 (see Table 4). Specifically, the minimum
FDR based q-value was 0.605 for all SNPs passing QC.
The minimum q-value decreased for SNPs in all scored
genes, but then increased for genes with score ≥ 1 or ≥
1.5. However, the minimum q-value became the smallest
(0.357) when this analysis was applied to genes with
score ≥ 2. There were 47 genes whose scores were ≥ 2,
and a total of 2293 SNPs mapped to these genes. For
this gene subset, we found many more SNPs having
small q values, including 27 SNPs with q-value < 0.4
and 39 SNPs with q-value < 0.5, than those in other
gene sets (e.g., gene subset with score ≥ 1.5 or any
scored, Table 4). Although this q-value analysis was not
perfect (e.g., we did not find a steady decrease of q-
value by increasing gene score, Table 4), it suggests that
multi-species gene ranking by optimal weighting matrix
might be effective for prioritizing candidate genes for
complex traits.

Bioinformatics analysis of top ranked genes
As presented above and detailed in Table 5, 47 genes
with score ≥ 2 had promising q-value improvement, and
were used as our high priority list for follow up bioin-
formatics analysis. These genes also had evidence from
at least 2 different species (Figure 1). We first performed
functional enrichment analysis of Gene Ontology (GO)
terms implemented in the WebGestalt tool. In this tool,
each gene set is tested its functional enrichment with
GO annotations based on the hypergeometric test. As
shown in Table 6 the most significantly enriched func-
tional terms belonged to the groupings of neurotrans-
mitter receptor activity, ion binding, and synaptic
structure. The most significantly enriched functional

Table 2 Summary of the genes by their scores using 10
weighting matrices*.

Weighting
matrix

Score

0.5 1 1.5 2 2.5 3 3.5 4

1 1722 535 40 38 102 21

2 1722 535 78 102 21

3 1966 314 131 41 6

4 1722 338 235 137 16 10

5 1966 220 137 112 15 8

6 244 1745 202 222 34 11

7 1966 357 89 29 17

8 1966 314 17 114 41 6

9 1966 314 149 29

10 1966 314 132 17 29

* For each matrix, scores of each gene were summarized based on its
evidence in each dataset (see details in Table 1). Then, the number of genes
in each score range was counted and summarized in this table.

Table 3 Empirical p-values estimated from 1000
permutations based on weighting score matrix 3.

q-
value

Gene score

≥0.5 ≥1 ≥1.5 ≥2 = 2.5

q < 0.9 0.393
(6399)

0.367
(1863)

0.603
(399)

0.191
(866)

0.052
(178)

q < 0.8 0.525 (469) 0.292 (415) 0.441
(163)

0.310
(199)

0.131
(108)

q < 0.7 0.495 (8) 0.228 (164) 0.627 (5) 0.208
(117)

0.118 (72)

q < 0.6 0.286 (5) N/A N/A 0.225 (42) 0.093 (53)

q < 0.5 0.113 (5) N/A N/A 0.122 (39) N/A

q < 0.4 0.012 (5) N/A N/A 0.101 (27) N/A

Based on Table 2, we used weight matrix 3 to rank genes (a total of 2458
genes) and then separated them according to their q-values. The number of
SNPs in each q-value and score category based on COGA dataset is shown in
parentheses. N/A: not available due to absence of the real data at those
categories.
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terms were behavior (pBH = 5.08 × 10-5), gamma-amino-
butyric acid (GABA) signaling pathway (pBH = 8.51 ×
10-5) and cell communication (pBH = 0.0001) in the GO
category of “Biological Process"; GABA receptor activity
(pBH = 3.35 × 10-9), GABA-A receptor activity (pBH =
7.38 × 10-8), and neurotransmitter binding (pBH = 7.38
× 10-8) in the category of “Molecular Function"; and
postsynaptic membrane (pBH = 1.86 × 10-7), chloride
channel complex (pBH = 2.76 × 10-7), and synapse part
(pBH = 3.36 × 10-7) in the category of “Cellular Compo-
nent”. Many of these enriched functional categories are
consistent with the current knowledge of alcohol depen-
dence and ethanol response [24]. These indicate that the
top ranked genes are highly enriched in functions rele-
vant to alcoholism.
To further investigate whether our approach to select-

ing the 47 genes is efficient, we compared the results
with a similar analysis of top-ranked genes based on p
values in COGA GWAS. We assigned the smallest p
value of the marker mapped to a gene to represent
gene-wise association significance. Then, we selected the
most significant 47 genes. No functional term was sig-
nificant in GO term analysis. Of note, our results were
not corrected for gene length bias, a potential problem
in gene-based association studies [25]. This comparison
suggested that our cross-species gene ranking method
may be more useful in extracting biological meaning
from gene lists.
We further examined the function of the 47 genes

selected by cross-species ranking by using the ToppFun
online tool [26]. ToppFun provides enrichment analysis
of candidate genes in many biological categories, includ-
ing GO terms, biological pathways, human and mouse
phenotypes, protein domains, and reference search in
PubMed. We presented the results of ToppFun as com-
plementary information for WebGestalt analysis and
summarized the results of enriched pathways in Table 7

enriched mouse phenotypes in Table 8 and enriched
PubMed citations in Table 9. In the pathway analysis,
ToppFun uses a comprehensive collection of pathways
from major databases such as KEGG, Reactome, and
BioCarta [26]. The most enriched pathway is neuroac-
tive ligand-receptor interaction (p = 5.36 × 10-5). Other
significant pathways included GPCR ligand binding and
G alpha signaling events; here, GPCR denotes G pro-
tein-coupled receptor (Table 7). Moreover, mouse phe-
notype analysis revealed that our selected genes are
involved in neuron-related activity (Table 8). Overall,
pathway and mouse phenotype enrichment analyses
confirmed the results obtained from the GO term
enrichment analysis by WebGestalt, and these analyses
also revealed highlighted genes related to synaptic activ-
ity and GABA signaling as being particularly represented
in significant pathways and mouse phenotypes. Finally,
we queried PubMed references by ToppFun to search
for publications that are overrepresented with genes
from our top ranked list (Table 9). The highest scored
record from this analysis was from a genetic study of
gene expression associated with alcohol consumption in
rats and humans [4], in which 24 of our top genes were
represented in the total of 130 genes described by this
study and showed significant enrichment (p < 1 × 10-6).
The second highest scored record was from an associa-
tion study of 182 candidate genes in anorexia nervosa
(enrichment p < 1 × 10-6).

Discussion
In this work, we applied a unique cross-species, evi-
dence-based gene prioritization strategy for genes
involved in alcoholism. We started with a set of genes
with prior microarray expression evidence of involve-
ment in ethanol response, representing approximately
10% of the human protein-coding genes. These genes
were ranked using additional sources of evidence across

Table 4 Improvement in GWAS-based association FDR as multi-species gene ranking score increases.

FDR
q-value

Total SNPs passing QC Scored Score ≥1 Score ≥1.5 Score ≥2 Score = 2.5

All SNPs 547920 91774 18988 7948 2293 210

< 0.9 48016 6399 1863 399 866 178

< 0.8 643 469 415 163 199 108

< 0.7 6 8 164 5 117 72

< 0.6 0 5 0 0 42 53

< 0.5 0 5 0 0 39 0

< 0.4 0 5 0 0 27 0

< 0.3 0 0 0 0 0 0

< 0.2 0 0 0 0 0 0

< 0.1 0 0 0 0 0 0

< 0.05 0 0 0 0 0 0

Min q 0.605 0.369 0.667 0.636 0.357 0.526
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multiple species, including humans, mice, C. elegans and
Drosophila. We used the COGA GWAS dataset and
applied permutation analysis to evaluate the best weight-
ing score matrix for gene ranking. Based on these
results, we selected the top 47 genes with the best evi-
dence for follow up bioinformatics analysis. Our func-
tional enrichment test of these 47 genes suggested that
this ranking algorithm identifies gene sets with coherent
biological functions relevant to brain responses to etha-
nol and neural adaptations occurring with alcoholism.
Remarkably, higher ranking scores were predictive of
genes containing an enrichment of significant SNP asso-
ciations in the context of COGA alcohol dependence
GWAS results. These results provide initial evidence
that a cross-species analysis of gene networks correlated
with molecular or behavioral responses to ethanol may
provide a powerful strategy to identify candidate genes
that contribute to alcoholism.
The identification of genes mediating biological

responses to ethanol, including the modification of risk
profiles for alcoholism, is an area of intense research
interest due to the possibility of pinpointing targets for
future alcoholism therapies. Recent advances in beha-
vioral genetics and genomics have identified large num-
bers of genes that potentially contribute to phenotypic
responses to ethanol in both human and animal models.
However, little progress has been made in narrowing or
organizing these large lists of genes into a tractable
scheme for understanding the neurobiology and genetics
of alcoholism. One approach that has been used for
large collections of microarray data has been the perfor-
mance of a meta-analysis across data on rodent models
of divergent ethanol drinking collected from multiple
centers and strains [3]. However, this analysis identified
3,800 genes associated with variation in ethanol intake,
making downstream hypothesis-driven studies difficult
to formulate.
As discussed in the Background, in our research

approach, we pursued a gene ranking algorithm con-
structed to integrate data on ethanol-related genes
across species. We recognized that direct behavioral par-
allels with ethanol response across humans, mice, Droso-
phila and C. elegans were likely to be tenuous or non-
existent. However, molecular commonalities underlying
ethanol responses across species, if they could be identi-
fied, should provide a powerful validation mechanism
for candidate genes involved in ethanol behavioral
responses, even if those particular behavioral compo-
nents differ across species.
Our ranking algorithm, while largely empirical at this

stage, identified a ranked list of genes with obvious

Table 5 47 genes with ranked score ≥ 2 using weighting
score matrix 3.

Gene symbol Gene ID Score

TAC1 6863 2.5

JUN 3725 2.5

GABRB1 2560 2.5

GABRA2 2555 2.5

CCKBR 887 2.5

CCK 885 2.5

TMEM165 55858 2

TIMP2 7077 2

TH 7054 2

SPP1 6696 2

SLC6A11 6538 2

PURB 5814 2

PRKCE 5581 2

PPP1R1B 84152 2

PENK 5179 2

PDZRN3 23024 2

PDAP1 11333 2

PC 5091 2

PBX1 5087 2

NTSR2 23620 2

NTRK2 4915 2

NR4A3 8013 2

NPY 4852 2

NPY2R 4887 2

MPDZ 8777 2

MAPK14 1432 2

MAN1A2 10905 2

LAMB1 3912 2

GSK3B 2932 2

GPRC5B 51704 2

GNG12 55970 2

GBA 2629 2

GABRG2 2566 2

GABRD 2563 2

GABRB2 2561 2

GABBR1 2550 2

FOXN3 1112 2

FOSL2 2355 2

EIF4EBP2 1979 2

DDX5 1655 2

CLIC4 25932 2

CHRM1 1128 2

CAPZB 832 2

BDNF 627 2

ATP8A1 10396 2

ASNS 440 2

ABHD4 63874 2
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coherence in terms of functional gene networks. A
remarkably large number of genes already validated as
altering behavioral responses to ethanol were contained
in the higher ranks. In addition, bioinformatics analysis

showed several interesting biological functions that were
over-represented among the ranked genes (Tables 6, 7,
8, 9), which is largely consistent with our previous ana-
lysis based on a network approach [27]. Again, a

Table 6 Functional enrichment test for the 47 top ranked genes using WebGestalt.

GO ID* Term # genes p-value pBH**

GO:0007610 (BP) Behavior 11 1.17 × 10-7 5.08 × 10-5

GO:0007214 (BP) Gamma-aminobutyric acid signaling pathway 4 3.92 × 10-7 8.51 × 10-5

GO:0007154 (BP) Cell communication 29 7.66 × 10-7 0.0001

GO:0007631 (BP) Feeding behavior 5 2.16 × 10-6 0.0002

GO:0050794 (BP) Regulation of cellular process 37 3.00 × 10-6 0.0002

GO:0050789 (BP) Regulation of biological process 38 1.73 × 10-6 0.0002

GO:0033555 (BP) Multicellular organismal response to stress 4 3.21 × 10-6 0.0002

GO:0007186 (BP) G-protein coupled receptor protein signaling pathway 14 4.88 × 10-6 0.0002

GO:0007166 (BP) Cell surface receptor linked signal transduction 19 2.53 × 10-6 0.0002

GO:0065007 (BP) Biological regulation 38 8.70 × 10-6 0.0003

GO:0016917 (MF) GABA receptor activity 6 3.22 × 10-11 3.35 × 10-9

GO:0004890 (MF) GABA-A receptor activity 5 1.93 × 10-9 7.38 × 10-8

GO:0042165 (MF) Neurotransmitter binding 7 2.13 × 10-9 7.38 × 10-8

GO:0030594 (MF) Neurotransmitter receptor activity 6 3.56 × 10-8 9.26 × 10-7

GO:0005254 (MF) Chloride channel activity 6 6.04 × 10-8 1.26 × 10-6

GO:0005253 (MF) Anion channel activity 6 9.06 × 10-8 1.35 × 10-6

GO:0031404 (MF) Chloride ion binding 6 9.06 × 10-8 1.35 × 10-6

GO:0043168 (MF) Anion binding 6 2.64 × 10-7 3.43 × 10-6

GO:0005230 (MF) Extracellular ligand-gated ion channel activity 5 2.22 × 10-6 2.57 × 10-5

GO:0008509 (MF) Anion transmembrane transporter activity 6 3.99 × 10-6 4.15 × 10-5

GO:0045211 (CC) Postsynaptic membrane 8 2.22 × 10-9 1.86 × 10-7

GO:0034707 (CC) Chloride channel complex 6 6.57 × 10-9 2.76 × 10-7

GO:0044456 (CC) Synapse part 9 1.20 × 10-8 3.36 × 10-7

GO:0045202 (CC) Synapse 9 2.51 × 10-7 5.27 × 10-6

GO:0030054 (CC) Cell junction 9 5.88 × 10-6 9.88 × 10-5

GO:0034702 (CC) Ion channel complex 6 1.53 × 10-5 0.0002

GO:0044459 (CC) Plasma membrane part 16 1.70 × 10-5 0.0002

GO:0031226 (CC) Intrinsic to plasma membrane 11 0.0002 0.0019

GO:0005887 (CC) Integral to plasma membrane 11 0.0002 0.0019

GO:0033267 (CC) Axon part 3 0.0003 0.0025

* BP: biological process; MF: molecular function; and CC: cellular component.

** BH: p-value corrected by the Benjamini-Hochberg method (1995) [50].

Table 7 Pathways significantly associated with top candidate genes by ToppFun.

Pathway ID/name Description Source p-value Terms in
query

Terms in
genome

hsa04080 Neuroactive ligand-receptor
interaction

KEGG pathway 5.36 × 10-5 10 256

REACTOME_GPCR_LIGAND_BINDING Genes involved in GPCR ligand
binding

MSigDB: C2.cp -
Reactome

2.66 × 10-3 10 392

REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS Genes involved in Peptide ligand-
binding receptors

MSigDB: C2.cp -
Reactome

4.36 × 10-3 7 173

REACTOME_DOWNSTREAM_EVENTS_IN_GPCR_SIGNALING Genes involved in Downstream
events in GPCR signaling

MSigDB: C2.cp -
Reactome

8.63 × 10-3 10 448

REACTOME_CLASS_A1_RHODOPSIN_LIKE_RECEPTORS Genes involved in Class A/1
(Rhodopsin-like receptors)

MSigDB: C2.cp -
Reactome

1.62 × 10-2 8 292

REACTOME_G_ALPHA_Q_SIGNALLING_EVENTS Genes involved in G alpha (q)
signaling events

MSigDB: C2.cp -
Reactome

2.78 × 10-2 6 157
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number of individual gene members from the con-
structed networks have strong prior validation as candi-
date genes that influence alcoholism traits in humans or
behavioral responses to ethanol in animal models. These
validated genes serve to increase the probability for the
entire gene network playing a role in ethanol responses.
Although gene targeting approaches in animal models

might ultimately be the most robust method for validat-
ing the role of individual genes in ethanol response beha-
viors, such studies are complex and time-consuming. We
chose, as an initial approach to validate our cross-species
ranking algorithm, a study of the association of the gene
ranking score with alcoholism traits in a GWAS analysis.
We found a reduction in the minimum FDR q-value as
the ranking score increased to 2. It is important to note
that this effect is not due to the progressive limiting of
markers examined. In this study, FDR is not dependent
on the number of tests performed.

Although the results are encouraging, the limitations of
the current analysis and possible improvements must be
noted. We noted that when the gene rank score cutoff
increased from 2.0 to 2.5, the size of the q-values
reversed. This observation might be attributed to overly
restricted gene selection given that number of SNPs in
genes dropped from 2293 in 47 genes to 210 in only 6
genes. Another limitation is that the use of genes from
the addiction/alcoholism array represents hypotheses
about important genes, as selected by expert review,
rather than selection from empirical association data. We
could improve the current approach in the following
ways. First, although we included seven datasets in the
gene ranking, many additional datasets now exist or will
be released in the near future that may be used in multi-
species data integration. Additionally, this single GWAS
dataset is likely to be underpowered given the recent evi-
dence showing many loci of small effect influence most

Table 8 Mouse phenotypes significantly associated with top candidate genes by ToppFun.

Phenotype ID Phenotype name p-value Terms in query Terms in genome

MP:0009745 Abnormal behavioral response to xenobiotic 6.77 × 10-7 12 215

MP:0002206 Abnormal CNS synaptic transmission 4.31 × 10-6 14 382

MP:0003635 Abnormal synaptic transmission 3.57 × 10-5 14 450

MP:0002062 Abnormal conditioning behavior 6.87 × 10-5 10 199

MP:0002063 Abnormal learning/memory/conditioning 9.26 × 10-5 13 405

MP:0002065 Abnormal fear/anxiety-related behavior 1.05 × 10-4 10 208

MP:0001362 Abnormal anxiety-related response 3.59 × 10-4 9 179

MP:0002572 Abnormal emotion/affect behavior 8.34 × 10-4 11 329

MP:0001454 Abnormal cued conditioning behavior 1.41 × 10-3 6 66

MP:0003633 Abnormal nervous system physiology 2.44 × 10-3 20 1333

MP:0001399 Hyperactivity 2.57 × 10-3 9 226

MP:0001363 Increased anxiety-related response 2.86 × 10-3 7 117

MP:0009357 Abnormal seizure response to inducing agent 9.04 × 10-3 7 139

MP:0001449 Abnormal learning/memory 1.22 × 10-2 10 349

MP:0003088 Abnormal prepulse inhibition 1.45 × 10-2 5 57

MP:0003313 Abnormal locomotor activation 1.46 × 10-2 13 630

MP:0000950 abnormal seizure response to pharmacological agent 1.53 × 10-2 6 99

MP:0002945 Abnormal inhibitory postsynaptic currents 1.58 × 10-2 5 58

MP:0004008 Abnormal GABA-mediated receptor currents 2.85 × 10-2 3 11

MP:0009747 Impaired behavioral response to xenobiotic 3.45 × 10-2 5 68

MP:0004747 Abnormal cochlear OHC afferent innervation pattern 3.48 × 10-2 2 2

Table 9 PubMed citations significantly over-represented with top candidate genes by ToppFun.

PubMed
ID

Description p-value Terms in
query

Terms in
publication

19874574 Genetical genomic determinants of alcohol consumption in rats and humans. < 1 × 10-6 24 130

20468064 Association study of 182 candidate genes in anorexia nervosa. < 1 × 10-6 15 182

18985723 GABA neurotransmitter signaling in the developing mouse lens: dynamic regulation of
components and functionality.

< 1 × 10-6 7 18

21205893 TrkB receptor controls striatal formation by regulating the number of newborn striatal
neurons.

< 1 × 10-6 6 12

16987237 Reduced expression of neuropeptide genes in a genome-wide screen of a
secretion-deficient mouse.

< 1 × 10-6 8 67
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complex human traits. However, a network or pathway
analysis approach to analyze a set of genes might improve
power [12].
While there are undoubtedly numerous ways to score

or weight genes, we have shown that this simple empiri-
cal approach is effective. Our results demonstrate the
utility of gene ranking after cross-species data integra-
tion. Since this initial study demonstrated the utility of
this approach, we are continuing to expand the number
of data sets and improve the scoring scheme through a
more sophisticated optimization of weighting para-
meters. As more data is included, additional alcohol
GWAS results become available, and more sophisticated
gene ranking algorithms are developed, we expect
improvement in specificity and sensitivity. For example,
there are many gene expression studies in rat brain
from animals evaluated for alcohol-preference behavior
[2,28-31], and they will be integrated in future gene
ranking. However, our initial gene targeting experiments
in animal models, using the ranked gene lists derived in
this study, have already identified several novel genes
that alter ethanol response behaviors in mice, Droso-
phila or C. elegans (unpublished data). This provides
direct support of our cross-species gene ranking.

Conclusion
In this study, we proposed a cross-species, evidence-
based gene ranking strategy and demonstrated it in the
eight alcoholism or ethanol response related datasets
from four species (human, mouse, fly, and worm).
Through the use of permutation and FDR analyses, we
evaluated 10 weighting score matrices and found that
one of them had the best performance. Using this opti-
mal weighting matrix, we selected 47 genes whose
scores were greater than 2 for follow up bioinformatics
analysis. Functional enrichment tests revealed that these
47 genes are involved in brain responses to ethanol and
neural adaptations occurring with alcoholism. Our
results, with further experimental validation in three
animal models, suggest that our approach is useful for
cross-species gene prioritization.

Materials and methods
Cross species gene ranking
In an effort to populate an inclusive gene list with non-
biased data from at least two species, we used published
microarray gene expression data from our own and
other laboratories. As shown in Figure 1, microarray
gene expression data was used from three sources: acute
responses to ethanol in C57BL/6 and DBA2/J mice
(whole genome analysis of samples from reference [14])
that had been supplemented with additional microarray
studies (U74B and U74C arrays, Affymetrix) on the
same samples, a meta-analysis of genes involved in

ethanol preference drinking across multiple mouse
strains [3], and analysis of prefrontal cortex from autop-
sied samples of alcoholic and non-alcoholic brains [15].
We then merged these datasets by utilizing gene homol-
ogy mapping features within the WebGestalt [32]. This
produced a list of 2458 genes. These genes were ranked
by scores resulting from the following algorithm:

S = w1(MuAc) + w2(MuPref) + w3(HuAlc) + w4(HuAddChip)

+w5(HuLink) + w6(Ce) + w7(Dr) + w8(Cross).

The symbols refer to sources diagramed in Figure 1.
MuAc, MuPref and HuAlc refer to presence in the
microarray studies mentioned above. HuAddChip are
selected genes from human association studies on alcohol
dependence using the “addiction chip” designed by David
Goldman and colleagues at the National Institute on
Alcohol Abuse and Alcoholism (NIAAA) [19]. HuLink
refers to genes contained within linkage regions that have
been implicated multiple times across human studies of
alcohol-related phenotypes on chromosomes 1, 4, and 7
[16-18]. The region on chromosome 1 ranges from
D1S1613 at 64,007,000 bp to D1S2624 at 154,898,000 bp
(according to HapMap build 36) and encompasses a vari-
ety of overlapping linkage signals to alcohol-related phe-
notypes, including alcohol dependence, heavy drinking,
sensitivity to alcohol, and tolerance, across a number of
samples [17,18,33-38]. The chromosome 4 region ranges
from D4S2382 at 39,727,200 bp to D4S1615 at
128,429,200 bp and encompasses linkage peaks from four
independent samples [16,18,39-42]. The chromosome 7
region ranged from D7S691 at 41,996,200 bp to D7S1817
at 109,026,000 bp and constitutes the strongest linkage
region in the Collaborative Study of the Genetics of Alco-
holism (COGA) sample [18,43-45]. The invertebrate gene
sets are from published studies in C. elegans [22] and
Drosophila [20,21]. Finally, the “Cross” term is a bonus
score added for cross-species hits for a given gene except
for genes from human linkage regions. The weighting
terms wi (i = 1, 2, 3, ... 8) were empirically chosen with
0.5 or 1.0 in 10 different weighting score matrices (Table
1). After a permutation test with COGA GWAS data, we
found the weighting score matrix 3 could provide the
best performance.

Analysis of COGA alcohol dependence GWAS dataset
The COGA GWAS dataset was used to evaluate the
gene rankings. It contains 1205 cases and 700 controls
[23]. All cases met DSM-IV criteria for alcohol depen-
dence. Controls were defined as individuals who have
consumed alcohol, but did not meet any definition of
alcohol dependence or alcohol abuse, nor did they meet
any DSM-IIIR or DSM-IV definition of abuse or depen-
dence for other drugs (except nicotine). The Illumina
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human 1M chipset was used for genotyping. Only DNA
samples achieving a call rate of > 95% were included. A
total of 1,041,465 SNP markers were used for case-con-
trol analyses. We conducted population stratification
and association analyses using PLINK, a highly flexible,
fast, and user-friendly package for GWAS analysis [46].
In our analyses we included only SNPs if their genome-
wide failure rate did not exceed 0.05. SNPs were further
excluded if minor allele frequency was less than 0.01.
After these data filtering processes, 958,380 SNPs were
used for further analyses. Then, we mapped these SNPs
to non-pseudogenes in the NCBI Entrez Gene database.
Specifically, a SNP belongs to a gene if it locates in the
region within 10 kb upstream to 10 kb downstream of
the gene.

FDR control
To control the risk of false discoveries in GWAS stu-
dies, for each p-value, we calculated a q-value [47,48]. A
q-value is an estimate of the proportion of false discov-
eries among all significant markers (i.e., q-values are
FDRs) when the corresponding p-value is used as the
threshold to declare significance. As argued previously
[49], we preferred this approach to more traditional
multiple testing methods that control the probability of
producing one or more false discoveries for a set of
tests [50]. Our approach was preferred because these q-
values 1) provide a better balance between the compet-
ing goals of finding true positives versus controlling
false discoveries, 2) allow the use of more similar stan-
dards in terms of the proportion of false discoveries pro-
duced across studies due to much less dependence on
the number of tests performed, 3) are relatively robust
against the effects of correlated tests [47,49,51-56], and
4) rather than an all-or-nothing conclusion about
whether a study produces significant results, instead
provide a more subtle picture about the possible rele-
vance of the tested markers. The FDR procedure is per-
formed in the R statistical package.

Random permutation for different score matrix
To test the significance of the gene ranking enrichment
result for each weighting score matrix, we did 100 ran-
dom permutations for the q-value enrichment. Since
longer genes tend to have more SNPs in GWAS data, to
reduce this gene length bias, we restricted the gene
length of the random selections in each permutation
within ± 50 kb of the average length of our ranked
genes. We set the permutation p-value as the proportion
of permutation times in which there are higher q-value
proportions in randomly selected genes than in our
ranked genes in the corresponding score region. For
example, there were n genes with a score s under a spe-
cific weighting score matrix. Then, in each permutation,

n genes were selected from all human genes whose
length is ± 50 kb of the average length of the n ranked
genes. The q-values for SNPs in the randomly selected
genes were calculated based on the GWAS data. For
simplicity of comparison, we compared the number of
SNPs in each q-value range (e.g., < 0.9, < 0.8, etc.). The
proportion of the q-value number for each q-value
range in randomly selected genes was then calculated. If
the proportion was larger than our ranked alcohol genes
at the same q-value range, we counted this permutation
as a “significant permutation” for the specific score
range s and q-value range. After 100 permutations, the
proportion of “significant permutation” was set as the p-
value of our permutation result at the corresponding
score and q-value range. For the weighting score matrix
with the best performance, permutation testing was
repeated 1000 times again to check the significance.

Bioinformatics analysis of cross-species ranked gene list
The 47 top ranked genes with a score ≥ 2 were exam-
ined for enriched GO terms using the WebGestalt
online tool (version 2) [32]. This tool examines the
over-representation of genes of interest in GO terms
based on the hypergeometric test followed by the Benja-
mini-Hochberg (1995) adjustment of p-values [50]. We
then used the ToppFun online tool [57], which is an
integrated over-representation analysis tool, to interro-
gate databases for biological pathways, mouse pheno-
types, and PubMed citations.

Additional material

Additional file 1: Summary of the number and proportion of q-
values, and p-value of 100 permutation results for different ranked
score and q-value range under each of the 10 weighting score
matrices.
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