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Abstract

Background: Data preprocessing is a major step in data mining. In data preprocessing, several known techniques
can be applied, or new ones developed, to improve data quality such that the mining results become more
accurate and intelligible. Bioinformatics is one area with a high demand for generation of comprehensive models
from large datasets. In this article, we propose a context-based data preprocessing approach to mine data from
molecular docking simulation results. The test cases used a fully-flexible receptor (FFR) model of Mycobacterium
tuberculosis InhA enzyme (FFR_InhA) and four different ligands.

Results: We generated an initial set of attributes as well as their respective instances. To improve this initial set, we
applied two selection strategies. The first was based on our context-based approach while the second used the
CFS (Correlation-based Feature Selection) machine learning algorithm. Additionally, we produced an extra dataset
containing features selected by combining our context strategy and the CFS algorithm. To demonstrate the
effectiveness of the proposed method, we evaluated its performance based on various predictive (RMSE, MAE,
Correlation, and Nodes) and context (Precision, Recall and FScore) measures.

Conclusions: Statistical analysis of the results shows that the proposed context-based data preprocessing approach
significantly improves predictive and context measures and outperforms the CFS algorithm. Context-based data
preprocessing improves mining results by producing superior interpretable models, which makes it well-suited for
practical applications in molecular docking simulations using FFR models.

Background

Data preprocessing is a major step in data mining.
Although time-consuming, it improves data quality so
they can be properly mined, thus producing more accu-
rate, interpretable, and applicable models. Many techni-
ques can be applied to data preprocessing [1], including
data cleaning, data integration, and data transformation.
In predictive machine learning problems, there is an
input x and an output y; the task is to learn how to map
the input to the output. Such a mapping can be defined
as a function y = g(x|0) where g(.) is the model and @ its
parameters [2].
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Although we can find numerous algorithms for pre-
diction, many of them only work by producing a predic-
tive function that indicates to which target value the
objects belong. However, in some data mining problems,
it is necessary to have a better comprehension of the
induced models. Decision trees are models well under-
stood by users. Indeed, Freitas et al. [3] support the use
of decision trees models, instead of black box algo-
rithms, to represent, graphically, patterns revealed by
data mining, for example, Support Vector Machine
(SVM) or Neural Networks models. Still according to
these authors [3], the hierarchical structure developed
can emphasize the importance of the attributes used for
prediction.

The incorporation of context-aware data preprocessing
to improve mining results is an active area of research.
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Baralis et al. [4] develop the CAS-Mine: a context-based
framework to extract generalized association rules, pro-
viding a high-level abstraction of both, user habits and
service characteristics, depending on the context. Nam et
al. [5] discuss how the context can help classify the face
image. Although these authors discuss the importance of
considering the context in data mining applications while
they develop their work according to a context-aware
definition, the context involved is intrinsically specific to
each working background. Hence, their methodologies
are not suitable to the molecular docking simulations
context explored in this work.

There are many areas of application where a compre-
hensible model is fundamental to its proper use. In bioin-
formatics, only a set of data and a set of data mining
models may not be enough. The data and the results
must represent the context in which they are embedded.
Bioinformatics is a clear example of where we believe
data preprocessing is instrumental. Our contribution is
within the context of rational drug design (RDD). The
interactions between biological macromolecules, called
receptors, and small molecules, called ligands, constitute
the fundamental principle of RDD. In-silico molecular
docking simulations, an important phase of RDD, investi-
gate the best bind pose and conformation of a ligand into
a receptor. The best ligands are tested by in-vitro and/or
in-vivo experiments. If the results are promising, a new
drug candidate can be produced [6]

A proper data preprocessing may induce decision-trees
models that are able to identify important features of the
receptor-ligand interactions from molecular docking
simulations. In the present work, we propose and apply a
predictive regression decision-tree on the context-based
preprocessed data from docking results and show that
bioinformaticians can easily understand, explore, and
apply the induced models. We apply four preprocessing
techniques. Firstly, we produce and arrange all attributes
based on the domain knowledge. Secondly, still based on
a context domain, we improve the input by selecting two
appropriate features. Thirdly, we apply a conventional
machine learning feature selection to the initial set of
attributes. Finally, we combine the feature selection gen-
erated using the first and second strategies with those
from the third strategy. We assess the results for the
model’s accuracy and interpretability. Then, we demon-
strate how a careful and value-added data preprocessing
can produce more effective models.

Methods

The molecular docking context

Interaction between drug candidates (ligands) and target
proteins (receptors), through molecular docking simula-
tions, is the computational basis of RDD. Given a receptor,
molecular docking simulations sample a large number of
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orientations and conformations of a ligand inside its bid-
ing site. The simulations also evaluate the Free Energy of
Binding (FEB) and rank the orientations/conformations
according to their FEB scores[7]. The majority of molecu-
lar docking algorithms only consider the ligand as flexible,
whereas the receptor remains rigid, due to the computa-
tional cost involved in considering the receptor’s explicit
flexibility. However, biological macromolecules, like pro-
tein receptors, are intrinsically flexible in their cellular
environment. The receptor may modify its shape upon
ligand binding, moulding itself to be complementary to
the ligand [8]. This increases favourable contacts and
reduces adverse interactions, which, in turn, minimizes the
total FEB [9]. Therefore, it is important to consider the
receptor’s explicit flexibility in molecular docking
simulations.

In this work, we model the full receptor explicit flex-
ibility in the molecular docking simulations [10] using a
set of different conformations for the receptor, generated
by molecular dynamics (MD) simulations [11]. This type
of representation, named a fully-flexible receptor (FFR)
model [10], results in the need of executing large num-
bers of docking simulations and voluminous results to be
analysed. Actually, one of the current major challenges in
bioinformatics is how to handle large amounts of data
[12], or big data [13].

Data modelling and acquisition

The InhA enzyme from Mycobacterium tuberculosis
(Mtb) [14] is the target protein receptor in this work. It
contains 268 amino acid residues and 4,008 atoms. The
3D structure (PDB ID: 1ENY) of the crystal, rigid recep-
tor [14], was retrieved from the Protein Data Bank [15].
The FFR model of InhA (FFR_InhA) contains 3,100 snap-
shots from a 3.1 ns MD simulation [11]. Machado et al.
[10] performed molecular docking simulations of
FEFR_InhA against each of the four different ligands: TCL
[16], PIF [17], ETH [18] and NADH [14].

All docking results and snapshots of the FFR_InhA
model were stored into a proper repository [19]. We
developed this repository to integrate FFR models and
docking results, allowing users to query the database from
different points of view [20]. In fact, queries can traverse
relationships between receptors and ligands’ atoms and
vice-versa, including their conformations and 3D coordi-
nates. This repository enables us to produce effective
inputs to use in different data mining tasks with their cor-
responding algorithms.

Attributes arrangements

A major objective of this work is to reduce the number
of snapshots used as input in docking simulations of a
FFR model against a given ligand. In this sense, by
mining the data from the FFR model and its docking
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results, we expect to select a subset of all available
receptor conformations that are most relevant and cap-
able of indicating whether a given ligand is a promising
compound. Machado et al. [21][22] demonstrated how
data mining can address this question. Winck et al. [23]
obtained encouraging results by applying a context-
based preprocessing to data mining of biological text.
Hence, we focus our efforts on context-based data pre-
processing. In our database [19] there are many available
features. Choosing the most important ones impacts
directly the choice of the proper data mining algorithm.
Predictive data mining task is defined by the target attri-
bute [24]. In the following sections we define the target
and predictive attributes of the domain-specific knowl-
edge of this work.

Target attribute definition

One way to evaluate a molecular docking simulation
with AutoDock3.0.5 [25] is by examining the values of
the resulting free energy of binding (FEB): the most
negative FEB values generally indicate the best receptor-
ligand binding affinity. AutoDock3.0.5 predicts the
bound conformations of a ligand to a receptor. It com-
bines an algorithm of conformation search with a rapid
grid-based method of energy evaluation [25]. The Auto-
Grid module of AutoDock3.0.5 pre-calculates a 3D
energy-based grid of interactions for various atom types.
Figure 1 shows an example of the grid box used in this
work.

We adopt the FEB as our target attribute because it
discriminates docking results. There is no consensus
about what is the reasonable range of FEB values. Each
ligand has to be considered and evaluated individually.
Analysis of FEB values from the docking simulations of
the FFR_InhA with the four ligands produced different
ranges of minimum, maximum and average FEB values
(Table 1).

Analysis of Table 1 shows that the difference between
the lowest and highest values is very subtle. Although
we have an absolute difference between these extreme
values (for instance, for ETH it is -2.95 kcal/mol), there
are many instances where the decimal value varies
sometimes a difference between two FEB values, for
instance for ETH, 6.71 and 6.03 can be significant. In
previous work, Machado et al. [26][27] using the same
four ligands, discretized the FEB values using three dif-
ferent procedures: by equal frequency, by equal width
and an original method based on the mode and stan-
dard deviation of FEB values. The authors split the FEB
into five classes: Excellent, Good, Regular, Bad, and
Very Bad. This preprocessing step generated the input
data upon which the J48 decision tree algorithm was
executed. The resulting performance’s measures showed
that discretization by equal frequency is not satisfactory.
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Figure 1 3D-Grid considering the InhA receptor and the PIF
ligand. This 3D-Grid has 60.0 A of size in axes x, y and z The

distance between each point is 0.375 A.

That by equal width had good evaluation for two of the
four ligands only [27]. In these cases, J48 did not gener-
ate legible trees. Discretization by the mode and stan-
dard deviation, however, had better performance’s
measures for two ligands and produced more legible
decision trees for all four ligands[27]. Although the J48
algorithm produced encouraging results, we found it
challenging to discretize FEB values whose differences
were particularly small. For instance, it was difficult to
decide if a FEB value of -8.10 kcal/mol is a Good or
Regular FEB since the difference to the next FEB value
was -0.10 kcal/mol only. Because of the significance of
the decimal values we may have an important loss of
information when applying this discretization to FEB
values. Therefore, the FEB value is taken as real values,
which implies the use of a regression predictive task of
data mining.

Table 1 Range of FEB (Kcal/mol) values to each ligand
considered.

Ligand Min FEB Max FEB Avg FEB

NADH -20.61 -0.02 -9.23 £ 454
PIF -11.22 -0.01 -9.09 + 163
TCL -10.01 -0.73 -8.17 £1.28
ETH -822 -5.27 -637 £ 034
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Predictive attributes definition

According to Jeffrey [28] and da Silveira et al. [29]
meaningful contact between two atoms can be estab-
lished on a distance as large as 4.0 A. In molecular
docking, the FEB value is dependent on the shortest dis-
tance between atoms of the receptor’s residues and
ligands. This is because receptor-ligand atoms’ pairs
within 4.0 A engage in favourable hydrogen bonds (HB)
and hydrophobic contacts (HP) [28]. Hence, for each
receptor (R) residue, we calculate the Euclidean distance
(ED) between their atoms and the atoms of the ligand
(L). We define min(Distp ;) as the predictive attribute
representing the shortest distance between the ligand
and the receptor’s residues. Thus, min(Disty ;) with a
4.0 A threshold indicates the presence of receptor-ligand
favourable contacts (HBs and HPs). Only min(Disty ;) is
recovered from the repository [19]. If we used all recep-
tor-ligand distances the input file would have an enor-
mous amount of attributes, for example, for the PIF
ligand which has 24 atoms, the entry would have more
than 96,000 attributes! This number of predictive attri-
butes would generate model trees with huge amounts of
nodes, and, therefore, would not be interpretable. Each
of the 3,100 snapshots of the FFR_InhA will have 268
attributes. We repeat the same procedure for all four
ligands. In the end, we have one preprocessed input for
each of the four ligands.

Data preprocessing strategies

Our database does store the FFR_InhA which contains
3,100 snapshots (Su), each with 4,008 atoms (AtR). It
totalizes Sn x AtR = 12, 242, 800 receptor coordinates
(CoordR). Because each docking simulation is made of
10 runs, we obtain 31,000 docking results for each ligand.
However, some docking simulations runs did not con-
verge or had positive FEB values. It occurs when the
number of runs and the number of cycles defined as
parameter to the algorithm are not enough to find a
good position to bind the ligand into the receptor. The
docking simulations were performed using the Simulated
Annealing (SA) algorithm, which makes its conformation
exploration using the Monte Carlo approach. Since in
each step of execution a random movement is applied
inside the binding site, sometimes the ligand keeps in a
non-favourable position during the number of runs
established. If it happens during many runs, the docking
result does not converge, that is, it does not present any
interaction position/energy in the end of the execution of
a given experiment. We considered these data as outliers
and did not include them in the preprocessing step. We
also defined the parameter ValDoc as the total number of
valid docking simulations per ligand. Since AtLig is the
number of atoms of each ligand, the sum of the product
AtLig x ValDoc for all four ligands determines the total
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number of ligand coordinates (LigCoord). In summary,
we have:

« CoordR = 3, 100 x 4, 008 = 12, 424, 800 records

o LigCoordnapy = 52 x 11, 284 = 586, 768 records

o LigCoordrc; = 18 x 28, 370 = 510, 660 records

+ LigCoordp;r = 24 x 30, 420 = 730, 080 records

o LigCoordery = 13 x 30, 430 = 395, 590 records

+ LigCoord = 586, 768 + 510, 660 + 730, 080 + 395,
590 = 2, 223, 098 records

Data generation

To generate an initial dataset we need to combine the
12,424,098 CoordR and the 2,223,098 LigCoord, calculate
their interactions, and find their respective min(Disty ;).
For that, we developed the Dataset algorithm. It exe-
cutes the first preprocessing step by handling the input
data and by producing the best receptor-ligand interac-
tions stored in an output file: the [Input] matrix. [[nput]
contains ValDoc lines and 269 columns. The first 268
columns contain the 268 receptor residues min(Disty ).
To generate a proper dataset for data mining, we aggre-
gated a target attribute in the last column, which is the
corresponding FEB value. It is important to emphasize
that, at this stage, min(Distg ;) can have any positive
value.

- Dataset Algorithm -

Let R be a receptor

Let L be a 1igand

Let t be a snapshot of R

Let r be a residue of R

Let a be an atom in ¢ snapshot

Let [ be an atom in L

Let Dist be the distance between L and R
atoms in ¢

Let DistanceMatrix be a matrix where each
line corresponds to a residuer and each
cell corresponds to the distance between a
and /

Let Result be a matrix that stores for each t
snapshot, all minimum distances between a
and [

Let Input be a matrix containing Result and,
for each t, its respective FEB value

FOR eacht in Total_Snapshotsg

[Result] « «—null
FOR each r in Total_Residuesy
[DistanceMatrix« ] <— null
FOR eacha inTotal Atoms_Residue_Snapshoty,
FOR eachl inTotal_Atoms_Ligand;

DiStRi,Li <~ \/(XR — XL)Z + (YR — }/L)z + (ZR — ZL)Z
Distpy 11 <—ED (R, L)
[DistanceMatrix,;] <— Distr, 1,
ENDFOR
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ENDFOR
[Result,,] < min ( [DistanceMatrix, -] )
ENDFOR
[Input, -] < [Result,- +FEB;]
ENDFOR

Dataset improvement
The initial dataset generated by the Dataset Algorithm
contains 268 predictive attributes and a target attribute.
To help improve the models induced by the data mining
task, we must reduce further the amount of features.
Jeffrey [28] states that the largest distance value that
allows a meaningful contact between receptor and
ligand atoms is 4.0 A. The feature selection strategy in
Dataset Algorithm includes distances higher than 4.0 A.
This means that the corresponding receptor residue
does not establish a favourable contact with any of the
ligand atoms [29]. If there is not a contact in any dock-
ing results, it is improbable that this attribute can ade-
quately predict the FEB value. Therefore, we removed
all attributes (residues) with shortest distances above the
4.0 A threshold. Context-FS Algorithm generates a new
input from the [/nput] matrix output produced by Data-
set Algorithm. To compare our context-based feature
selection with a well-known machine learning feature
selection algorithm, we generated one more dataset
seeking to improve the initial one produced by the
Dataset Algorithm. We believe that a subset of represen-
tative attributes can improve further the mining results.
- Context-FS Algorithm -
Let R be a receptor
Let t be a snapshot of R
Let r be a residue of R
Let Input be a produced by the Dataset
Algorithm
Let InputFS be a result after our context-
based feature selection
FOR eachr in Total_Residuesy
IF min( [Input:,] )< 4
FOR eacht in Input
[InputFS,,) < [Input,,]
ENDFOR
ENDIF
ENDFOR
FOR eacht in InputFS
[InputFS, -1 < [Input,,.]
ENDFOR
Only a limited number of the existing feature selection
algorithms can work effectively on regression predictive
tasks. Among these, the Correlation-based Feature Selec-
tion (CFS) [30] algorithm implemented in Weka [24] can
perform feature selection on our datasets. Therefore, we
applied CFS to each input generated by Dataset
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Algorithm, with a different input for each of the four
ligands. CFS is based on a filter approach that ranks fea-
tures according to a correlation-based heuristic evaluation
function 1. It looks for a subset that contains features
uncorrelated with each other, but highly correlated with
the target attribute.

~ kbarr g
) Jer k(e = 1)1y

where: Mg is a heuristic of a subset S that contains k
features; barr. is the mean feature-target correlation
(fe S) and Ty is the average feature-feature inter-corre-
lation. Equation 1 forms the core of CSF [30]. Table 2
shows the number of attributes selected after applying
our feature selection methodology to the original dataset.
Additionally, we generated one more dataset (Table 2,
fourth column) which combines the features selected by
the Context-FS Algorithm with those selected by CFS
[30].

M (1)

Mining and evaluation the preprocessed data

Regression is a data mining task suitable to problems for
which the attribute to be predicted is continuous. Since
our target attribute is numeric, regression is the techni-
que applied to the mining experiments in this study. Our
models must be understandable and must also represent
well the context in which they are inserted. Decision
trees are algorithms that cover these needs and also can
be applied to both classification and regression problems.
The results are regression or classification models
arranged in a tree structure. Decision trees can be applied
to predict both continuous and discrete values. For con-
tinuous values, there are two main types of trees: regres-
sion trees and model trees. In regression trees, each leaf
node stores a continuous-valued prediction, which is the
average of the target attribute for the training tuples. In
model trees, each leaf stores a regression model called
Linear Model (LM), which is a multivariate linear equa-
tion for the target attribute [1]. Our goal is to induce
models that indicate residues distances to predict a given
FEB value. We expect our model to help us discover
whether a snapshot, when docked to a given ligand, will

Table 2 Number of attributes selected after applying
feature selection approaches.

Ligand Context-FS Algorithm CFS Context-FS Algorithm U CFS

NADH 84 17 93
TCL 106 14 114
PIF 104 16 108
ETH 105 6 (AR
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lead to favourable estimated FEB values. For this, we use
the M5P [31] machine learning model tree algorithm.

Evaluation of the induced models

There are several measures to verify if the induced mod-
els generated are acceptable numerical predictions. They
are called predictive measures. In the case of model tree
algorithms, the most widespread measures are: root
mean-squared error (RMSE, equation 2), mean absolute
error (MAE, equation 3), and correlation coefficient [24].
Smaller values of RMSE and MAE are indicators of better
models. All of these measures make use of the predicted
values p; ... p, and the actual values a; . . . a,,.

n

RMSE:\/(pl_p“)2+"'+(p”_a")2 @)

— |(pl_pa)+"'+|(pn_an)| (3)

n

MAE

The correlation coefficient (Equation 4) measures the
statistical correlation between a and p. The values range
from 1, for perfectly correlated results, to 0, when there
is no correlation, and to -1, for an inverse perfect corre-
lation. We look for perfectly correlated results or corre-
lation coefficients closer to 1.

. Spa

Correlation = 4
VSpSa @)
_ 2 ilpi=p)(ai —a) 5, - il —p)*,

Where g
A n—1 n—1

=2

and g, = 2 ilai —1a) , being that 4 and p are the corre-
n—

sponding 4 and p averages.

In addition to these measures, some investigations also
make use of the model interpretability metric, which is
the number of nodes in the model tree. The model tree
with the smallest amount of nodes generates the best
interpretable models [32].

Evaluation based on the context

The measures shown in the previous section were used
during the evaluation of the models generated. However,
as we are interested in the usefulness of the induced
models, we propose a new context-based measure. We
also analyze the induced model trees and their contents.
Figure 2 shows a model tree generated upon application
of our context-based preprocessing (Context-FS Algo-
rithm) to NADH. This model contains five non-leaf
nodes, each representing a selected amino acid residue,
and six LMs. Equation 5 depicts the sixth LM (LM&6)
composed of a selected number of predictive attributes
(receptor residues) weighted by their effect in the target
attribute (FEB) plus a constant value.

Page 6 of 9

LM3

LM4

Figure 2 Model Tree generated by the M5P Algorithm.

—0,0009 x SER12 +0,9405 x PHE22
+0,0013 x THR38 + 0,0035 x ASP63
+0,0006 x HIE92 + 0,002 x THR100
—0,5005 x GLY101 — 0,0004 x ALA123
—0,0015 x ASP147 +0,0024 x THR161 (5)
+0,0017 x LEU167 + 1,094 x GLY191
+0,0037 x PRO192 + 0,0015 x ILE193

+0, 0003 x ILE201

—20, 6455

FEB =

We evaluate the models taking into account the receptor
residues present in both the non-leaf nodes and the LMs,
bearing in mind that the docking software calculates the
FEB value only for the residues within the grid box around
the receptor binding site (Figure 1). Consequently, if we
are inducing model trees to predict FEB values, models
that consider residues located outside the grid box have
no direct significance. Usually, a specialist defines which
residues belong to the receptor active site. These residues
shape the active site for the complementary ligand bind-
ing. For InhA, the specialist selected 52 residues, here
denoted by ESR. Subsequently, by inspecting each model,
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we identified which model’s residues (MR) appear in the
tree or the LMs (Figure 2 and Equation 5). Now we are
able to evaluate MR and compare it with ESR by calculat-
ing the Precision (Equation 6), Recall (Equation 7) and
F-score (Equation 8) measures [1].

. |[{Relevant}| N |{Retrieved}|
Precision = , (6)
|{Retrieved}|

|[{Relevantes}| N |{Retrieved}|

R =
ecall |[{Relevant}|

(7)

recall x precision

(8)

F — score =
(recall + precision)/2

In the context of this analysis:

« |{Relevant}| n |{Retrieved}| can be defined as ESR N MR
+ |{Relevant}| can be defined as ESR

« {Retrieved}| can be defined as MR

Results

We evaluated the models by means of the predictive and
context measures presented. The measures were applied
separately to each of the four distinct ligands; NADH,
PIF, TCL, and ETH. For each one of them, we observed
the four data preprocessing strategies:

1. The results obtained by the initial dataset, generated
by Dataset Algorithm;

2. The results obtained by the context-based feature
selection, generated by Context-FS Algorithm;

3. The results obtained by the feature selection gener-
ated by CFS [30];

4. The results obtained by combining both feature
selection generated by Context-FS Algorithm and CFS
(Table 2 fourth column).

The initial dataset was the first and, possibly, the most
important context-based data preprocessing. Without the
previous knowledge about the context, it would not be
possible to generate an input that produces interpretable
models as we expected. Based on the fact that the initial
dataset was constructed considering minimum distances
(min(Distg 1)), our hypothesis is that the context-based
data preprocessing we proposed, including feature selec-
tion, produces better results than using a worthy feature
selection approach, where the context is not observed.
Hence, we expected that the results from the third strat-
egy would not be better than the others. On the other
hand, we expected the context-based feature selection
(second strategy) to give better results than the others.
The second strategy was applied considering both, the
context already employed in the initial dataset and con-
text to select appropriate features. To evaluate the results
in terms of their statistical significance, we applied the
Friedman Test [33] with a significance level of o = 0.05.
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For the context measures (Table 3), we evaluated
whether strategy 2 was significantly better than the
others. In this case, we could assert that it was true since
p = 0.014. We infer that our feature selection approach
improves the initial results. Therefore, as we are interested
in the quality of the induced models, our context-based
measure can be considered as the most appropriate.

In Table 3 we evaluate whether strategy 3 is signifi-
cantly worse than the others. We got p = 0.040 for
MAE and p = 0.054 for RMSE as significance levels,
indicating that probably strategy 3 is really worse than
strategies 1, 2 and 4. However many effort is needed to
assess it. With respect of context measures (Table 4),
we evaluate whether strategy 2 is significantly better
than the other ones. In this case, we can assert it is true
because we got p = 0.014. We infer that our feature
selection approach improves the initial results. In doing
so, once we are interested in the quality of the induced
models, our context-based measure can be considered
as the most appropriate.

It is noticeable in Tables 3 and 4 that the results are
different for each ligand, despite employing the same
strategy in the preprocessing. This is so because differ-
ent ligands have different sizes, as well as different
molecular interaction properties. They bind in different
regions of the receptor’s binding site. As a result, the
target attribute FEB has different ranges of values for
the distinct ligands (Table 1) and that is why the models
are induced for individual ligands. Although they are not
interchangeable, we expect them to be used to select
ligands that belong to a similar class (high molecular
similarity).

Table 3 Model evaluation predictive measures.

Ligand Preprocessing Evaluation
Strategy
Nodes Correlation MAE RMSE
NADH 1 15 0.9536 1.0030 1.3660
2 5 09512 1.0189 1.4000
3 6 0.9483 1.0578 14396
4 9 09513 1.0211 1.3992
PIF 1 22 0.9685 0.3077 04071
2 19 0.9692 03053 0.4022
3 22 0.9653 03237 04264
4 19 0.9686 0.3067 0.4060
TCL 1 12 0.9700 0.2396 0.3108
2 19 0.9708 0.2364 0.3068
3 15 0.9667 02508 03273
4 24 09708 0.2369 03069
ETH 1 18 0.6086 02106 0.2665
2 15 0.5999 0.2123 0.2687
3 16 0.5566 0.2212 0.2790
4 17 0.6047 02118 0.2675




Winck et al. BMC Genomics 2013, 14(Suppl 6):56
http://www.biomedcentral.com/1471-2164/14/56/S6

Table 4 Model evaluation context measures

Ligand  Preprocessing Strategy Evaluation
Precision  Recall F-score
NADH 1 0.1176 0.0385 0.0580
2 04375 01346 0.2059
3 03636 00769  0.1270
4 0.1875 0.0576 0.0882
PIF 1 02143 0.1731 0.1915
2 0.5294 0.3462 04186
3 04667 0.1346 0.2090
4 04571 03076 03678
TCL 1 0.1282 00962  0.1099
2 04412 02885  0.3488
3 04286 0.1154 0.1818
4 0.3928 02115 0.2750
ETH 1 0.3939 0.2500 0.3059
2 04375 0.2692 03333
3 0.1250 00192 00333
4 04516 02692 03373

Conclusions

Data preprocessing is a significant step in data mining. In
data preprocessing, different techniques are applied to
improve data quality such that the mining results are
more accurate and better interpretable. There are many
techniques available to preprocess data, mainly for model
quality measures. However, some applications, like bioin-
formatics, often demand well-suited models. Hence, when
the data mining process is based on the context involved,
a context-based preprocessing can improve the quality of
the induced models.

In this article, we presented a case of mining data from
flexible receptor molecular docking simulations results.
Here the goal was to identify features that could character-
ize the best fit of ligands into a given receptor. Our experi-
ments were conducted considering the InhA receptor
from the M. Tuberculosis and four distinct ligands:
NADH, PIF, TCL, and ETH. We showed that an appropri-
ate context-based data preprocessing could provide
improved results.

We concentrated on four main preprocessing steps
which: 1) consider the context to choose an initial set of
attributes and the proper instances for each ligand input
file; 2) perform feature selection on the initial dataset, tak-
ing into account the characteristics of the docking results
from each ligand; 3) perform feature selection, for each
ligand, based on the CFS machine learning algorithm; and
4) combine features selected by our context-based
approach (Context-FS Algorithm) and those selected by
the CES algorithm. We hypothesized that mining the pre-
processed data would provide better results, with respect
to the original dataset, by using the second strategy.
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We performed mining experiments using the M5P
model tree algorithm implemented in Weka. The values of
the RMSE error measure, as well as a context-based metric
that considers the tree interpretability, suggested that we
can obtain better results when using our feature selection
approach (second strategy). Statistical analysis of the
results, with the Friedman test, showed that our context-
based approach significantly improves predictive measures
while CFS worsens context measures. We concluded that
data preprocessing, which considers the context involved,
can improve the mining results and produce better inter-
pretable models. As future studies, we plan to use the
induced models, generated using the second strategy, to
select the most promising subset of snapshots, out of a
very large ensemble, for a given ligand.
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