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Abstract

Background: Chaining is a major problem in constructing gene families.

Results: We define a new kind of cluster on graphs with strong and weak edges: soft cliques with backbones
(SCWiB). This differs from other definitions in how it controls the “chaining effect”, by ensuring clusters satisfy a
tolerant edge density criterion that takes into account cluster size. We implement algorithms for decomposing a
graph of similarities into SCWiBs. We compare examples of output from SCWiB and the Markov Cluster Algorithm
(MCL), and also compare some curated Arabidopsis thaliana gene families with the results of automatic clustering.
We apply our method to 44 published angiosperm genomes with annotation, and discover that Amborella
trichopoda is distinct from all the others in having substantially and systematically smaller proportions of moderate-
and large-size gene families.

Conclusions: We offer several possible evolutionary explanations for this result.

Background
The automatic detection of clusters of vertices in a graph
is practiced in diverse fields from image recognition to
social networks, and is widely used in computational
biology for the study of gene families. Conceptually, a
gene family is a set of genes, in one genome or several,
that includes all descendants of a single gene in some
ancestral organism (i.e., homologous genes), and excludes
genes descended from other ancestral genes (i.e., non-
homologous genes). Operationally, lacking the historical
data to identify a gene family in these terms, it is stan-
dard practice to construct gene families on the basis of
DNA or protein sequence similarities. The assumption is
that genes in the same family will retain much more
sequence similarity than unrelated genes, though this is
more of a general tendency than a strict rule. The genes
belonging to a particular gene family may be identified

with the vertices of a graph, which has edges between
pairs of genes exceeding a threshold similarity score.
In the present work, we will focus on gene families

within a single genome. We set aside data on syntenic
correspondences between orthologs as well as functional
evidence relating genes, despite their usefulness in many
contexts, in order to achieve the first of our two goals -
the identification of the conceptual and methodological
problems in the purely graph-theoretical approach, and
the framing of a proposal to deal with them.
In plants, the creation, expansion and attrition of gene

families through mechanisms of gene duplication, notably
tandem duplication and, more spectacularly, whole gen-
ome doubling, allows rapid adaptation of populations to a
broad range of niches. This motivates the second of our
two goals in this paper - a comprehensive survey of gene
family sizes in 44 published angiosperm genomes.
In the first part of this paper, we review some of the

desiderata of clustering methods in graphs, and define a
new kind of cluster: soft cliques with backbones (SCWiB).
Though similar in some respects to methods based on
Minimum Spanning Tree, SCWiB clustering controls the
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“chaining effect” characteristic of many such methods, by
requiring that clusters satisfy a tolerant edge density criter-
ion that takes into account cluster size. We present an
exact algorithm based on the SCWiB concept that can
handle moderate amounts of data, and that can be con-
verted into a heuristic for realistic genomes.
We then compare SCWiB results with the output of

MCL [1,2], a method which is one of the most widely
used for inferring gene families. We also see how the
SCWiB families compare with the curated gene families
of Arabidopsis thaliana [3].
Finally we apply our algorithm to 44 published angios-

perm genome sequences. We compare the distribution of
gene family sizes, and find similar patterns are displayed in
the large majority of cases. We find, however, that the ear-
liest branching angiosperm, Amborella trichopoda has a
distinctly different pattern, with relatively few moderate-
or large-size families.

Results
Creating gene families on the basis of similarities is
essentially a kind of clustering. Well-known clustering
methods like k-means [4], hierarchical methods, e.g., sin-
gle- link [5], average-link [6] and complete- link, spatial
methods, e.g., PCA and self-organizing maps [7], and
graph-based methods, e.g., minimum spanning trees [8]
and cliques, have all been used. These all have advantages
and disadvantages, depending on the context. In our
study of gene families, we wanted to avoid methods that
produce large, inhomogeneous, families by “chaining”,
such as single-link, on the one hand, and methods that
are overly biased towards smaller or equal-sized families,
like clique or complete-link, on the other.
Chaining is a major problem in constructing gene

families, largely due to the multiple domain structure of
many proteins. Some domains recur in many different
families, with the result that both conceptually and opera-
tionally, there are no longer strict boundaries between
families. This problem has been treated in most depth by
Joseph and Durand [9,10]. Methods that construct clusters
by adding objects to that cluster with an element closest
to them, without accounting for the rest of the cluster, like
single-link or minimum spanning tree are particularly
prone to chaining and, in some applications, like recogni-
tion of objects in satellite imagery, this may be desirable
[11,12]. However, in the context of constructing gene
families, this amounts to the inclusion of non-homologous
genes within the same family, something to be avoided in
evolutionary analyses

Gene families as soft cliques with backbones
To ensure that a gene family is determined by strong
similarities connecting each of its members,

• we set a high similarity threshold U and require
that a cluster be connected, in the graph theoretical
sense, solely in terms of similarities exceeding U. By
itself this is similar to other graph theory criteria,
and like them it is susceptible to chaining, for mean-
ingful values of U or, alternatively, to very small
clusters, if U is too high. To control for chaining
• we also set a less stringent threshold W , and
require that the elements in the cluster form a clique,
or almost form a clique, in terms of similarities
exceeding W. We cannot require that the cluster
forms a full clique, since this is too stringent for high
values of W, and is not restrictive enough for low
values. A way of relaxing the clique criterion is
• to require the similarities in a cluster to form an S-
plex [13], where S = sN+1, the number of elements in
the cluster being N , and 0 <s < 1 is a constant. In an
S-plex, every element is of degree at least N − S.

Each cluster is thus validated on two levels, as a set of
strongly connected elements, at level U, that is not built
by chaining, due to the S-plex condition at level W.
Exact algorithm
The algorithm generates all possible SCWiBs in a graph.
The output can then be post-processed to find a compa-
tible subset of these to satisfy any one of several criteria.

Algorithm SCWiB
Parameters: thresholds 0 <W <U < 1 and tolerance

coefficient 0 <s < 1
Input: graph G(V, E) with edge-weights w(·)
Output: the list L of the possible SCWiBs in G.
Steps:

define EU= {e ∈ E|U ≤ w(e)}, EW= {e ∈ E|W ≤ w
(e) <U}
order vertices by increasing degree
while there are more vertices

select the first vertex v from the ordered list
of vertices
call ListgeneFamily(v, G, s, L1)
store L1 results in L.
remove v from G

Algorithm ListGeneFamily(v, G, s, L1)
Input: vertex v, graph G(V, E), E = EU ∪ EW
Output: the list L1 of the all the SCWiBs in G that

contain v
Steps:

let d be the degree of vertex v
maximum size m of SCWiB that can contain v
is m = d

s + 1
create a queue Q, insert the subgraph with only
one vertex v into Q
while there are more subgraphs in Q
pop out the first subgraph sg and store it into L1
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if |sg| <m,
for each vertex u ∈ V (and ∉ sg) joined with
an edge in EU to the last vertex of sg,
check if the subgraph G’(V’, E’) of G is a
SCWiB cluster, (V’ = vertices of sg ∪ {u}.
E’ is the edge set induced by V’) if yes,
insert G’ into Q.

The SCWiB algorithm presented here shows how the
clusters can be calculated naturally, despite two indepen-
dent levels of control on cluster quality. This is an exact
algorithm as it constructs all possible clusters and then
picks the largest, the next disjoint largest and so on. It
requires exponential time, since the number of possible
clusters can be exponential. As displayed it is simple, but
unnecessarily inefficient; the algorithm can be sped up
enormously by reordering the vertices after a specified
number of calls to the inner algorithm. It can also be
made more efficient by temporarily postponing the con-
struction of clusters that threaten to require excessive
time, and by a number of other devices. For use on large
genomes, it can be converted into a heuristic by replacing

the exhaustive exploration of all search paths by a large
enough sample of these paths.
Comparison with MCL
Figure 1 shows an example of a SCWiB cluster emer-
ging from an analysis of the Arabidopsis thaliana gen-
ome. It can be seen that although some of the genes are
connected to the cluster by only one or two edges of
similarity greater than U , any tendency to chaining is
controlled by the S-plex condition at level W , with
every vertex having a high degree within the cluster.
MCL [1,2] is one of the most widely used methods for

inferring gene families. Its basic principle is the iteration
of a procedure that strengthens certain heavily weighted
edges and weakens those with lesser weight. With appro-
priate parameter settings, MCL and SCWiB can produce
very similar distributions of cluster sizes. The lack of any
cluster quality criterion influencing the MCL process,
however, results in many of its clusters, including some
of the largest ones, having very few internal edges, as in
Figure 2, while the SCWiB construction explicitly prohi-
bits this.

Figure 1 SCWiB cluster containing part of the NAC transcription factor family [60]. Dots represent genes. Red edges constitute the
“backbone” with similarity greater than U , black edges indicate similarity greater than W , less than U .
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Comparison with TAIR
The most comprehensive, though very incomplete, inven-
tory of curated gene families for a plant pertains to the
Arabidopsis thaliana genome [3]. This is a collection of
gene families, found on the Arabidopsis Information
Resource (TAIR) gene family page, contributed by indivi-
dual scholars and groups, based largely on function within
the cell as well as sequence similarities. It is not an
attempt to partition the entire set of Arabidopsis genes
into clusters, and there is no requirement that the families
are disjoint. Furthermore, the functional groups are not
intended to correspond perfectly with gene families as
defined by common ancestry. Nonetheless, we compare
these families with those produced by SCWiB. We find
that many of the gene similarities in large functionally-
determined families do not meet the SCWiB criteria,
which therefore splits them into a number of subfamilies.
The same holds for the comparison of the functional
families with MCL clusters. This implies the limitations of
purely similarity-based methods for gene family detection.
Nevertheless, many functional families are in almost one-
to-one correspondence with gene families determined by
SCWiB.
In Figure 1, only part of the NAC transcription factor

family is in the cluster; other parts are in other SCWiB
clusters. This family has been diverging in the land plants
long before the emergence of the angiosperms, so that
different ancient NAC transcription factor subfamilies
are not connected at the U = 70% level that we used. Of
interest is that in an MCL analysis of this same data, with
inflation factor fixed at 1.6 to achieve the same total
number of gene families as SCWiB, this cluster is frag-
mented among five MCL families, none of them contain-
ing more than nine of the 26 genes.
The Angiosperm genomes
The emergence of new genes and new functions for
existing genes is a major aspect of evolutionary diver-
gence of species. In animals, especially the mammals, a

key mechanism for such innovation is alternative spli-
cing, which affects at least 50% of genes [14]. In plants,
however, this phenomenon is thought to be much less
important, impacting just 5-10% [15], while the creation,
expansion and attrition of gene families through
mechanisms of gene duplication, notably tandem dupli-
cation and, more spectacularly, whole genome doubling,
may spur rapid adaptation of populations to a broad
range of niches. We extracted all the data available on
angiosperm genomes in the CoGe database [16,17]. We
required genomes to be published, publicly available,
and have associated structural gene annotations. The
genomes included Amborella, soybean, Brachypodium
distachyon, Setaria, peach, cassava, Capsella rubella,
sorghum, eucalyptus, common bean, grapevine, cacao,
banana, turnip, papaya, Arabidopsis thaliana, tomato,
potato, Arabidopsis lyrata, Leavenworthia alabamica,
Sisymbrium irio, Aethionema arabicum, strawberry,
Thellungiella parvula, watermelon, sacred lotus, Utricu-
laria, Spirodela polyrhiza, date palm, pigeonpea, sweet
orange, poplar, rice, Ricinus communis, clementine,
lotus, flax, maize, cucumber, kiwifruit, Mimulus, Medi-
cago, pepper and Eutrema parvulum [18-59]. We could
not exercise any control on the quality of the sequen-
cing, the assembly, or the annotation, and we will dis-
cuss the possible consequences of this on our results in
the Conclusions.
We used the SynMap tool in CoGe to run a compari-

son of each genome with itself in order to construct a
complete set of gene duplicates. We disregarded syntenic
context (pertinent only to WGD duplicates), by setting
the minimum block length to 1. From the unfiltered
results, we eliminated duplicates with similarities less
than W = 0.6.
We decomposed the set of resulting set of duplicates

into SCWiBs with parameters U = 0.7, W = 0.6, s =
0.25. We used a local optimization criterion, finding the
largest possible SCWiB first, then re-applying the

Figure 2 Two MCL groups, inflation factor 1.6, showing chaining effect.
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method on successively small graphs that result from
removing the vertices in the previously generated clus-
ters. It should be noted that SynMap, as we used it pro-
duces a large peak of duplicate genes with similarities
from 60-64. This had little if any consequence for our
results, since almost all of these duplicates would be
eliminated by the U criterion, although they could pro-
vide support for the S-plex criterion.
Based on U = 0.7, our gene families would largely

have origins within the angiosperms, or be subfamilies
of ancient plant gene families diversifying within the
angiosperms.
Figure 3, displaying relative numbers of families of

each size, and Figure 4, with the total number of genes
in these families, show broadly similar gene family size
distribution across the angiosperms, but also show a
remarkable trend involving the Amborella trchopoda

genome. Whether we measure it according to number of
gene families of a given size, or according to the propor-
tion of genes in gene families of a given size, Amborella
has fewer gene families of moderate (starting at 8-10
members) or of large size (22-26, 27 or more), than any
of the other genomes.
As a control, we carry out an experiment on the same

set of gene pairs for each genome, but using the MCL
method. Exactly the same genes are involved. To ensure
that the number of gene families were comparable, we
used an inflation factor of 1.6 for the MCL. Figure 5
shows that distribution of MCL family sizes is more
spread out than in the SCWiB case in Figure 3. However,
the anomalous lack of large gene families of Amborella
still stands out. This pattern emerges clearly, although
the distinction is not as clear as with SCWiB. Another
genome, cucumber, also has small numbers of moderate-
sized families.

Figure 3 Proportion of gene families of various sizes. Singletons
not included. Top: entire range of sizes. Bottom: moderate and large
families. U = 0.7, W = 0.6, s = 0.25.

Figure 4 Proportion of genes in families of various sizes .
Singletons not included. Top: entire range of sizes. Bottom:
moderate and large families. U = 0.7, W = 0.6, s = 0.25.
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Discussion and conclusion
The parameters of SCWiB directly control the connect-
edness and density characteristics of the clusters; we can
predict the results of changes in each one. This contrasts
with program parameters like the inflation factor in
MCL, whose effects are largely indirect and unpredictable
at the level of individual clusters. Although SCWiB
involves three numerical factors, they enter into the algo-
rithm in a simultaneous way to assure both connected-
ness and density. SCWiB clusters can also be generated
by heuristics derived from generic search strategies such
as branch-and-bound, and we have implemented this as a
check on results from the algorithm SCWiB-derived
heuristics.
The remarkably distinct pattern apparent in the

Amborella distribution of gene family sizes will have to
be validated in future studies. Most immediate is the role
of the specific parameter values for U, W and s. Does the
pattern hold up when one or more of these are shifted?
Preliminary results, not shown here, are positive: increas-
ing s from 0.25 to 0.35 increases the number of larger
gene families (size >26) for all the genomes, but the dis-
tinction between Amborella (which only sees one family
achieving a size of 30) and the other 43, is amplified. A
systematic answer to this question will require consider-
able computing time to experiment with different values
of U and W , but without any change in methodology.
Another question is whether the pattern we observe is
somehow dependent on the SCWiB definition, We have
shown that the MCL method, which differs from SCWiB
in almost every way possible, reproduces the distinct pat-
tern of Amborella with respect to the other genomes,
with almost no large gene families and a small number of
moderate-sized one.

Another question arises because of the great heteroge-
neity of methods used over more than a decade of gen-
ome sequencing, particularly with regard to gene
annotation. Most pertinent is the attention paid to iden-
tify gene families that are in fact families of transposons.
And indeed, the annotation of the recently sequenced
Amborella genome zealously pursued the identification
and exclusion of such families from the set of bonafide
gene families. Nevertheless, while this may have ensured
a deficit of large families in the data from this genome,
it could not account for the observed deficit in families
with 8 to 27 genes.
Is the Amborella pattern phylogenetically significant?

Most of the 43 other genomes are core eudicots, but
there is a good number of Poaceae and other monocots,
as well as the basal eudicot Nelumbo, and these all share
the same pattern as the core eudicots. Sequenced gen-
omes of other land plants, like Selaginella and Pinus
taeda are not included in our analysis, and preliminary
analyses show other, inconsistent, differences in family
size distribution from the angiosperms, but no dearth of
large gene families. There is thus no evidence that
Amborella conserves some ancestral, pre-angiosperm
pattern of gene family sizes, but this will question will
require further genomic data to settle. A similar question,
whether Amborella represents a pre-core eudicot pattern
among angiosperms, will also require further data from
other early branching plants, but already we know that
Nelumbo as well as the monocots, all have the typical
pattern. Another factor may lie in the fact that Amborella
is the only genome to have escaped whole genome dupli-
cation since the origins of the angiosperms; this may also
be associated with a lesser tendency to amplify and diver-
sify gene families. Finally, the paucity of large families in
Amborella may be an acquired feature, and not a con-
served one. The current restricted ecological range of
this plant may reflect a long history of isolation, of small
populations, and little advantage to genetic innovation.
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