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Abstract

Background: A challenge in precision medicine is the transformation of genomic data into knowledge that can be
used to stratify patients into treatment groups based on predicted clinical response. Although clinical trials remain the
only way to truly measure drug toxicities and effectiveness, as a scientific community we lack the resources to clinically
assess all drugs presently under development. Therefore, an effective preclinical model system that enables prediction
of anticancer drug response could significantly speed the broader adoption of personalized medicine.

Results: Three large-scale pharmacogenomic studies have screened anticancer compounds in greater than 1000
distinct human cancer cell lines. We combined these datasets to generate and validate multi-omic predictors of drug
response. We compared drug response signatures built using a penalized linear regression model and two non-linear
machine learning techniques, random forest and support vector machine. The precision and robustness of each drug
response signature was assessed using cross-validation across three independent datasets. Fifteen drugs were
common among the datasets. We validated prediction signatures for eleven out of fifteen tested drugs (17-AAG,
AZD0530, AZD6244, Erlotinib, Lapatinib, Nultin-3, Paclitaxel, PD0325901, PD0332991, PF02341066, and PLX4720).

Conclusions: Multi-omic predictors of drug response can be generated and validated for many drugs. Specifically, the
random forest algorithm generated more precise and robust prediction signatures when compared to support vector
machines and the more commonly used elastic net regression. The resulting drug response signatures can be used to
stratify patients into treatment groups based on their individual tumor biology, with two major benefits: speeding the
process of bringing preclinical drugs to market, and the repurposing and repositioning of existing anticancer therapies.

Background
A major challenge in precision medicine is the transfor-
mation of multi-omic data into knowledge that enables
stratification of patients into treatment groups based on
predicted clinical response. Some progress has been
made to associate genetic lesions and expression profiles
with drug response. The link between a patient’s thera-
peutic response and somatic alterations in the cancer
genome was established by the National Cancer Institute
(NCI) using the NCI60 human tumor cell line anticancer
drug screen [1]. The analysis done by the NCI led to the
discovery that mutations in BRAF and EGFR are highly

predictive of clinical response to kinase inhibitors [2,3].
Recently, the use of imatinib to selectively target the pro-
tein product of the BCR-ABL translocation revolutio-
nized treatment of chronic myeloid leukemia [4].
Nevertheless, many cancer drugs have yet to be linked to
the biomarkers necessary for assessing the effectiveness
of the proposed therapeutic intervention.
Using multi-omic data to develop a statistical model pre-

dictive of drug response is not a trivial task. Single gene
alterations discovered by linear regression techniques are
often false-positive discoveries that mask the underlying
biological pathway dysregulation driving drug response.
There remains an urgent need to use multivariate and
non-linear statistical methods to build robust multi-omic* Correspondence: jsb42@case.edu
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predictors of drug response that incorporate information
from a myriad of biological alterations.
Although clinical trials remain the only way to truly

measure drug toxicities and effectiveness, as a scientific
community we lack the resources to clinically assess all
drugs presently under development. Therefore, there is
great enthusiasm to develop a preclinical system that
would allow for high-throughput testing of cancer cell
lines against large numbers of drug compounds in parallel.
Preclinical computational models predictive of the drug
response could be built based on genomic and drug
screening results. Drug response signatures could be con-
firmed using independent validation datasets and patient
tumor samples. We acknowledge that biological findings
in cell lines and animal model systems have not always
validated in human tumors. However, successfully vali-
dated drug response signatures have the potential to sig-
nificantly speed the personalized matching of drugs to
patient based on the patient’s unique tumor biology.
In March 2012, the results of two large-scale pharmaco-

genomic human cancer cell line screens were published in
Nature [5,6]. The Cancer Cell Line Encyclopedia (CCLE),
published by researchers at the Broad Institute, and the
Cancer Genome Project (CGP), presented by scientists at
the Sanger Institute, complement the existing NCI60
pharmacogenomic database. Analyzing these databases in
tandem potentiates the discovery of powerful, indepen-
dently validated biomarkers of drug response. In this
study, we used the NCI60, CCLE, and CGP pharmacoge-
nomic datasets and evaluated the effectiveness of different
computational approaches in deriving multi-omic signa-
tures predictive of drug response. To our knowledge, this
is the first time that all three datasets have been analyzed
in a single study. A previous study attempted to develop
genomic predictors of drug response using only gene
expression data from the CCLE and CGP datasets [7].
Here we present an integrative analysis of high-throughput
genomic and transcriptomic data; the resulting multi-omic
signatures of therapeutic drug response have been vali-
dated across independent datasets. Using non-linear
machine learning techniques, we generated robust multi-
omic signatures that predict cellular response to 17-AAG,
AZD0530, AZD6244, Erlotinib, Lapatinib, Nultin-3, Pacli-
taxel, PD0325901, PD0332991, PF02341066, and PLX4720.

Materials
To develop multi-omic predictors of anticancer therapeu-
tic response we curated data from the CCLE, CGP, and
NCI60 databases. The resulting datasets consisted of the
gene expression (Affymetrix U133A and Affymetrix
U133A plus 2.0), copy number variation (Affymetrix
SNP6.0), and mutational status (targeted and whole
exome sequencing) of 1299 distinct human cancer cell
lines representing 35 cancer types. Our curated data also

included the sensitivity of the cell lines to treatment with
fifteen drugs common across the CGP and CCLE data-
bases (see Table 1). This publicly available data can be
downloaded at http://broadinstitute.org/ccle (CCLE),
http://cancerrxgene.org (CGP), and http://discover.nci.nih.
gov/cellminer/ (NCI60).

Drug sensitivity
Cellular drug sensitivity was measured as the concentra-
tion of drug, in micromolar units (µM), needed to inhibit
50% of cellular growth (IC50). The drug compounds were
robotically added to cell cultures and after 72 hours cell
viability was assessed by measuring the ATP content of
the assay [further details can be found in the supplemen-
tary methods of 5, 6]. In our analysis, models were trained
using the 10% most sensitive and resistant cell lines (low-
est and highest IC50) to each drug of interest. The utiliza-
tion of the cell lines at the limits of drug response
increased the likelihood of identifying the multi-omic fea-
tures that drive drug response.

Gene expression
Raw gene expression CEL files were normalized using
fRMA [8] and R Bioconductor [9] chip packages
(‘hthgu133a’ for CGP and NCI60; ‘hgu133plus’ for CCLE).
Probesets not common across the datasets were discarded.
Batch effects within and between the CCLE, CGP, and
NCI60 datasets were removed using the ComBat function
from the R ‘sva’ package [10]. Finally, for each Entrez gene
ID the R package ‘jetset’ [11] was used to select the best
probeset for each gene such that each gene is represented
by one probe (12,151 genes).

Copy number variation
Copy number segments for 426 cancer genes were pre-
dicted using the PICNIC algorithm [12]. The raw CNV
values were converted into five categories: amplification
(copy number of eight or more), partial amplification
(copy number between three and seven), normal (copy
number of two), partial deletion (copy number of one),
and full deletion (copy number of zero).

Mutational status
The mutational status of sixty-four commonly mutated
cancer genes was assessed. A gene was defined as mutated
if a coding sequence variant was present. Additionally, for
cell lines in the CGP and CCLE databases the presence or
absence of commonly rearranged cancer genes was
determined.

Methods
The approach used to build multi-omic signatures predic-
tive of drug response is illustrated in Figure 1. The drug
response signatures were generated using a two-step
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procedure consisting of statistical feature selection, to
reduce the complexity of the datasets, followed by a classi-
fication algorithm, to weight each feature’s contribution to
the overall prediction. The predictive models were gener-
ated using CGP data as input and subjected to ten-fold
cross-validation with ten repetitions per fold. The outputs
of the process were weighted multi-omic drug response
signatures. A signature size of thirty has previously been
reported as an optimal balance between clinical relevance

and genomic complexity [13,14], therefore we limited our
final predictive signatures to the top thirty features. The
final signatures were then tested for accuracy and over-
fitting using the independent CCLE and NCI60 datasets.

Feature selection
The feature selection inputs were as follows:

1. A matrix of features X ∈ P N, p , where N was the
total number of cell lines in the CGP dataset and p
was the number of multi-omic features (gene expres-
sion, CNV, and mutation).
2. A vector of drug sensitivities, Y ∈ P N, 1 , where N
was the number of cell lines treated with the drug of
interest and the vector values were the corresponding
cellular drug sensitivities (refer to section “Materials:
Drug sensitivity”).

For each drug the Wilcoxon Sum Rank Test (for contin-
uous variables) was used to select genes whose expression
was significantly differentially expressed between the 10%
most sensitive and resistant cell lines (lowest and highest
IC50). The Fisher’s Exact Test (for categorical variables)
was used for each drug to select genes whose mutational
status and/or CNVs significantly differed between sensitive
and resistant cell lines. The resulting machine learning
input sets for each drug were comprised of the 1000 most
differentially expressed features (as determined by Wil-
coxon and Fischer’s tests). The feature selection was com-
pleted using a custom script implemented in SAS.

Machine learning prediction
We assessed the performance of two machine learning
methods, random forest and support vector machine

Table 1 Common drugs in the Cancer Genome Project (CGP) and Cancer Cell Line Encyclopedia (CCLE) datasets

Compound Target(s) Class Organization

17-AAG* HSP90 Targeted other Bristol-Myers Squibb

AZD0530 Src, Abl, EGFR Kinase Inhibitor AstraZeneca

AZD6244* MEK Kinase Inhibitor AstraZeneca

Crizotinib* c-MET, ALK Kinase Inhibitor Pfizer

Erlotinib* EGFR Kinase Inhibitor Genentech

Lapatinib* EGFR, HER2 Kinase Inhibitor GlaxoSmithKline

Nilotinib* Abl/Bcr-Abl Kinase Inhibitor Novartis

Nutlin-3* MDM2 Targeted other Roche

NVP-TAE684* ALK Kinase Inhibitor Novartis

Paclitaxel* Beta-Tubulin Cytotoxic Bristol-Myers Squibb

PD-0325901 MEK Kinase Inhibitor Pfizer

PD-0332991 CDK4/6 Kinase Inhibitor Pfizer

PHA-665752 c-MET Kinase Inhibitor Pfizer

PLX4720 RAF Kinase Inhibitor Plexxikon

Sorafenib* FLT3, c-KIT, PDGFR, RET, Raf kinases, VEGFR, KDR, FLT4 Kinase Inhibitor Bayer

* Indicates compound found in CGP, CCLE and NCI60 datasets

Figure 1 Experimental approach included subjecting the Cancer
Genome Project (CGP) training data to statistical feature
selection and training each machine learning algorithm with the
resulting feature subset. The resulting genomic predictors of drug
response to 15 anticancer drugs of interest were validated on
independent Cancer Cell Line Encyclopedia (CCLE) and National
Cancer Institute (NCI60) datasets.
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(SVM), in generating accurate and precise multi-omic
signatures predictive of drug response using the input
sets for each drug comprised of the 1000 most differen-
tially expressed features. We compared the performance
of these models to the accuracy and precision of the
drug response signature generated using elastic net
regression, a type of penalized linear regression.
The random forest model was implemented in R using

the ‘RandomForestSRC’ package [15,16]. We evaluated
several combinations of forest size (ntree), number of
features selected at each node (mtry), and node size
(nodesize). The parameters resulting in the highest pre-
diction accuracy were ntree = 2000, mtry = feature set
size/3, and nodesize = 1. For each tree, the prediction
error on the out-of-bag data was recorded. For each fea-
ture x the out-of-bag cases were randomly permuted
and the prediction error was recorded. The variable of
importance for each feature was defined as the differ-
ence between the perturbed and unperturbed error rate
averaged over all trees.
A support vector machine was implemented using the

‘libsvm’ R package [17]. The SVM was used was a type
C classification machine using a radial basis kernel. Fea-
tures were ranked based on their weight magnitude
(ω2)–a measure of class predictive ability.
The ‘glmnet’ R package was used to implement elastic

net regression [18]. We selected the same optimal regu-
larization parameters used in the primary CGP and
CCLE publications: a ε (0.2, 1.0) and l = eg, where g ε
(-6, 5)–which minimized the root mean squared error
using ten-fold cross-validation [5-7].

Results
We have evaluated the effectiveness of three computa-
tional approaches for deriving clinically relevant multi-
omic signatures predictive of drug response. In our study,
we compared elastic net regression, a commonly used lin-
ear method; support vector machine; and random forest,
an effective ensemble method.
Signatures consisting of thirty multi-omic features were

generated using the CGP pharmacogenomic database as a
training set. The performance of these signatures in pre-
dicting drug response was assessed as precision. Precision
was calculated as the ratio of true classifications of cellular
drug sensitivity to all positive classification results. As illu-
strated in Figure 2, we observed significant and clinically
relevant signature performance, precision greater than
0.80, for twelve out of fifteen drugs. The random forest
approach yielded the most precise results for ten out of
the twelve prediction signatures generated (17-AAG,
AZD6244, Erlotinib, Lapatinib, Nultin-3, Paclitaxel,
PD0325901, PD0332991, PLX4720, Sorafenib). The sup-
port vector machine approach yielded the most precise
results for two out of the twelve prediction signatures

generated (AZD0530 and PF02341066). Elastic net regres-
sion failed to yield a top performing prediction signature
for any of the fifteen drugs evaluated.
Independent validation of our generated signatures was

performed using the CCLE and NCI60 datasets. As illu-
strated in Figure 3, eleven of the twelve drug response sig-
natures developed using the CGP dataset successfully
predicted, with a precision greater than 0.80, drug
response in the CCLE dataset (17-AAG, AZD0530,
AZD6244, Erlotinib, Lapatinib, Nultin-3, Paclitaxel,
PD0325901, PD0332991, PF02341066, and PLX4720).
Using the NCI60 dataset we were able to predict drug
response, with a precision greater than 0.80, for seven out
of eight signatures for drugs that are common across the
CGP and NCI60 databases (17-AAG, AZD6244, Erlotinib,
Lapatinib, Nultin-3, Paclitaxel, and PF02341066).

Figure 2 Mean prediction performance of multi-omic drug
response signatures generated using elastic net regression, a
support vector machine, or random forest on the Cancer
Genome Project (CGP) data. Prediction performances (precision)
are quantified as the proportion of true positive drug sensitive
classifications to all positive classifications. Error bars represent the
standard deviation of the precisions calculated during ten
repetitions of ten-fold cross validation.

Figure 3 Mean prediction performance of multi-omic drug
response signatures generated using elastic net regression, a
support vector machine, or random forest on the Cancer
Genome Project (CGP) data and tested/validated on the Cancer
Cell Line Encyclopedia (CCLE) data.
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Discussion
Significant computational effort has been expended in the
past ten years to build robust and clinically relevant pre-
dictors of drug response. Preclinical efforts have previously
been limited by the lack of publically available data from
which to build prediction sets. The publication of the CGP
and CCLE pharmacogenomics datasets in March of 2012
made large-scale integrated analysis of multi-omic and
drug response data possible [5,6]. To our knowledge, the
genomic, transcriptomic, and drug profiling data con-
tained in the CGP, CCLE, and NCI60 databases has not
previously been analyzed in concert. We have combined
these three datasets to generate and independently validate
genomic correlates of anticancer drug response.
The purpose of our study was twofold: to show that

precise and robust predictors of drug response could be
built and to explore the use of multivariate linear and
non-linear statistical methods in building the predictors.
Previous studies have relied heavily upon commonly used
penalized linear regression models in developing predic-
tive genomic signatures, likely because of the challenges
inherent to machine learning techniques[5-7,19]. While
machine learning algorithms such as random forest and
support vector machine can be more computationally
intense and difficult to interpret, our work shows that the
signatures derived there from have superior prediction
power and robustness [15,20-23]. Non-linear machine
learning algorithms are more effective in generating pre-
diction signatures, as opposed to linear regression,
because they make no distributional assumptions about
the predictor variables and allow all features, including
those with individually weak effects, to contribute to the
model fit.
We generated multi-omic predictors of drug response to

fifteen drugs of interest. During the signature-generation
phase we created and validated predictive signatures using
the CGP dataset (Figure 2). Using elastic net regression,
eight of the fifteen signatures successfully predicted drug
response with a precision greater than 0.80 (17-AAG,
AZD0530, AZD6244, Erlotinib, Lapatinib, Nultin-3,
PD0325901, PD0332991). Using a support vector machine,
nine of the fifteen signatures successfully predicted drug
response with a precision greater than 0.80 (17-AAG,
AZD0530, AZD6244, Erlotinib, Lapatinib, Paclitaxel,
PD0325901, PD0332991, PF02341066). The random forest
algorithm was the most powerful approach. Using random
forest, twelve of the fifteen signatures successfully pre-
dicted drug response with a precision greater than 0.80
(17-AAG, AZD0530, AZD6244, Erlotinib, Lapatinib, Nul-
tin-3, Paclitaxel, PD0325901, PD0332991, PF02341066,
PLX4720, Sorafenib).
We were unable to generate predictive signatures for

three of the fifteen drugs of interest: Nilotinib, NVP-
TAE684, and PHA665752 (Figure 2). NVP-TAE684 and

Nilotinib target the protein products of gene fusions,
NPM-ALK and BCR-ABL respectively. These gene fusions
were not well represented in our datasets, making signa-
ture generation difficult. The low number of cell lines in
the datasets sensitive to PHA665752 contributed to the
difficulty of generating a predictive signature with good
precision for this drug. While a signature could not be
generated for PHA665752 reaching our precision cutoff of
0.80, the random forest and support vector machine signa-
tures, with precisions of 0.76 and 0.78, greatly outper-
formed elastic net regression, which achieved a precision
of 0.58. The performance of the non-linear algorithms was
markedly superior to that of the linear regression algo-
rithm when N, the number of cell lines sensitive to the
drug of interest, was very small in comparison to p, the
total number of multi-omic features.
The predictive performance of the multi-omic signatures

was tested against the CCLE and NCI60 datasets for
robustness (Figure 3). Only 50% of the signatures gener-
ated using elastic net regression and support vector
machine could be validated on independent datasets. In
comparison, 75% of the signatures generated using ran-
dom forest were validated on independent datasets. Four
out of the eight signatures developed using elastic net
regression retained predictive precision greater than 0.80
when tested on the CCLE dataset (17-AAG, Lapatinib,
PD0325901, PD0332991). Five out of the nine signatures
developed using support vector machine retained predic-
tive precision greater than 0.80 when tested on the CCLE
dataset (17-AAG, AZD0530, Lapatinib, PD0332991,
PF02341066). Random forest yielded more, and more
robust predictive signatures, with nine out of the twelve
signatures generated remaining predictive when tested
against the CCLE dataset (17-AAG, AZD6244, Erlotinib,
Lapatinib, Nultin-3, Paclitaxel, PD0325901, PD0332991,
PLX4720). Response to the drug Sorafenib could not be
independently validated using any of the generated signa-
tures. Sorafenib is a multi-kinase inhibitor and it is likely
that limiting our signatures to thirty features each did not
allow enough genomic complexity to predict response to
this drug.

Random forest signatures
The random forest algorithm identified high expression of
NQO1 as the single most important and robust predictor
of a cell’s sensitivity to 17-AAG, an HSP90 inhibitor.
Oncogenic proteins such as Raf-1 and p53 are kept in an
apoptosis resistant state by direct association with HSP90;
heat shock protein inhibitors such as 17-AAG break the
direct association between HSP90 and apoptotic proteins.
NQO1 is a member of the NAD(P)H dehydrogenase qui-
none family and produces the highly potent and stable
intermediate 17-AAGH2 when the compound 17-AAG is
metabolized [24]. High expression of NQO1 has been
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previously reported in biological studies as a biomarker of
sensitivity to 17-AAG [5-7,25].
The predictive signature of response to PD-0325901

generated by random forest confirmed several previously
identified biomarkers and identified several novel biomar-
kers. PD-0325901, a MEK inhibitor, directly affects MAPK
signaling. Given the large number of genes involved in the
MAPK pathway, it is not surprising that the non-linear
random forest approach best captured the many interact-
ing genes that predict PD-0325901 response. The random
forest approach confirmed previous knowledge indicating
that high expression of SPRY2, LGALS3, and PHLDA1
predict sensitivity to PD-0325901: SPRY2 suppresses cell
growth and differentiation by inhibiting the MAPK path-
way [26]; LGALS3 modulates cell-cell and cell-matrix
interactions [27]; and PHLDA1 is known to play an impor-
tant role regulating anti-apoptotic effects [28]. The ran-
dom forest approach confirmed this knowledge by highly
weighting these genes in the predictive signature. Our
study offers the novel finding that expression of GSN,
PHF17, and ZFP30 is involved in conferring cellular sensi-
tivity to PD-0325901: GSN is involved in the assembly and
disassembly of actin filaments needed for cellular replica-
tion [29]; PHF17 is a known tumor suppressor and pro-
motes apoptosis [30]; and ZFP30 is thought to be involved
in regulating transcription.
The random forest algorithm was uniquely successful in

generating predictive signatures for cytotoxic drugs, a
result that was not achieved using linear regression[7]. In
the case of the broadly acting taxane drug Paclitaxel, the
random forest generated signature was precise and robust.
Paclitaxel sensitivity is predicted by up regulation of and
amplification in the genes ANXA1, SSRP1, PAFAH1B2,
and PSMG3: ANXA1 inhibits the activation of NF-kB by
binding to p65 [31]; SSRP1 forms the chromatin transcrip-
tion elongation factor FACT which is crucial to the antic-
ancer mechanism of DNA damaging drugs [32]; and
PSMG3 is a proteasome assembly chaperone [33].

A case study: triple negative breast cancer
Triple negative breast cancer (TNBC) is defined by the
absence of detectable estrogen and progesterone receptors
and the lack of amplification in the human epidermal
growth factor receptor 2 gene [34]. Triple negative breast
cancer accounts for 15-20% of all breast cancers, is gener-
ally more aggressive, and patients have decreased overall
survival [35]. TNBC does not represent a single type of
breast cancer, but rather a heterogeneous group of tumors
with distinct molecular subtypes. The triple negative sub-
groups respond differentially to drug therapy. The current
standard of care for TNBC is treatment with taxanes and
other cytotoxic compounds. While overall response to tax-
ane treatment is 28%, some TNBC groups such as the
luminal androgen receptor subtype have a response to

taxane drugs as low as 0-10% [34]. The primary clinical
problem for TNBCs is the lack of targeted therapies and a
standard by which to stratify patients into the available
treatments. There are currently no triple negative breast
cancer drugs in phase III clinical trials, highlighting the
need to identify research, repositioned, and repurposed
drug compounds to treat TNBC patients [36].
We applied our random forest drug response prediction

signature, generated using Cancer Genome Project (CGP)
data, to TNBC cell lines in the Cancer Cell Line Encyclo-
pedia (CCLE). We predicted that 32% of the TNBC cell
lines would be sensitive to treatment with Paclitaxel.
Seven out of twenty-five (28%) TNBC cell lines were true
positives for sensitivity to treatment with the taxane drug
Paclitaxel. This result is consistent with clinical results
that indicate 28% of TNBC tumors respond to treatment
with taxane drugs [34]. Additionally, we correctly pre-
dicted that a subset of triple negative breast cancer cell
lines would be sensitive to treatment with 17-AAG. The
group of TNBC cell lines with predicted and true sensitiv-
ity to 17-AAG belongs to the luminal androgen receptor
subtype, a group that resists traditional treatment. As pre-
dicted there was a positive correlation between NQO1
expression and TNBC cellular sensitivity to 17-AAG
(Pearson correlation coefficient: 0.61). The random forest
generated prediction signature also correctly predicted
that 50% of triple negative breast cancer cell lines would
be sensitive to the MEK inhibitor PD-0325901. The sensi-
tive cell lines roughly correspond to the basal triple nega-
tive breast cancer subtype.
TNBC remains a challenging disease; here we have iden-

tified two promising research compounds for the treat-
ment of TNBC. Preclinical identification of promising
drug compounds, such as used in the approach described
in this study, offer great promise to improve treatment of
TNBC.

Conclusions
Using the random forest algorithm and support vector
machine, we were able to generate and validate robust
multi-omic signatures that predict drug response to 17-
AAG, AZD0530, AZD6244, Erlotinib, Lapatinib, Nultin-3,
Paclitaxel, PD0325901, PD0332991, PF02341066, and
PLX4720. The non-linear machine learning techniques
random forest and support vector machine outperformed
the more commonly used elastic net regression in devel-
oping precise and robust genomic predictors. Our results
suggest that large pharmacogenomic databases can be
used to identify the genomic correlates of anticancer drug
response. The resulting classification of multi-omic predic-
tors of drug response could be used to stratify patients
into treatment groups based on their individual tumor
biology. Prediction signatures show special promise for
diseases, such as triple negative breast cancer, where there
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remains an urgent need to identify research or reposi-
tioned compounds that can be developed as targeted treat-
ment for this difficult to treat patient population.
Our research could be extended in multiple ways:

lineage specific predictors of drug response could be
explored; further tuning of machine learning parameters
could yield improved prediction results; and signature
including features of the epigenome and proteome
could improve drug response prediction.
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