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Abstract

Background: Investigations into novel biomarkers using omics techniques generate large amounts of data. Due to
their size and numbers of attributes, these data are suitable for analysis with machine learning methods. A key
component of typical machine learning pipelines for omics data is feature selection, which is used to reduce the
raw high-dimensional data into a tractable number of features. Feature selection needs to balance the objective of
using as few features as possible, while maintaining high predictive power. This balance is crucial when the goal of
data analysis is the identification of highly accurate but small panels of biomarkers with potential clinical utility. In
this paper we propose a heuristic for the selection of very small feature subsets, via an iterative feature elimination
process that is guided by rule-based machine learning, called RGIFE (Rule-guided Iterative Feature Elimination). We
use this heuristic to identify putative biomarkers of osteoarthritis (OA), articular cartilage degradation and synovial
inflammation, using both proteomic and transcriptomic datasets.

Results and discussion: Our RGIFE heuristic increased the classification accuracies achieved for all datasets when
no feature selection is used, and performed well in a comparison with other feature selection methods. Using this
method the datasets were reduced to a smaller number of genes or proteins, including those known to be
relevant to OA, cartilage degradation and joint inflammation. The results have shown the RGIFE feature reduction
method to be suitable for analysing both proteomic and transcriptomics data. Methods that generate large ‘omics’
datasets are increasingly being used in the area of rheumatology.

Conclusions: Feature reduction methods are advantageous for the analysis of omics data in the field of
rheumatology, as the applications of such techniques are likely to result in improvements in diagnosis, treatment
and drug discovery.

Background
The ‘omics’ (genomics, epigenomics, transcriptomics,
proteomics, metabolomics and lipidomics) are making
significant contributions to the study of chronic dis-
eases, especially the identification of novel biomarkers.
A biomarker is defined as a characteristic that may be
objectively measured and evaluated as an indicator of

normal biologic processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention
[1]. Biomarkers are actively investigated in the areas of
clinical rheumatology, orthopaedics and sports medicine.
Osteoarthritis (OA) is a degenerative joint disease that
affects the entire joint structure [2]. It is characterised by
progressive degeneration of cartilage, menisci, ligaments
and subchondral bone [3,4]. Synovial inflammation
(synovitis) is a major contributor to disease progression
[5-7] and is responsible for the increased production of
catabolic and pro-inflammatory mediators that alter the
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balance of cartilage matrix degradation and repair, lead-
ing to excess production of the proteolytic enzymes
responsible for cartilage breakdown [6]. OA is currently
diagnosed by radiography, once clinical signs of pain and
loss of mobility have already appeared, and therefore bio-
markers that could identify early signs of OA would sig-
nificantly aid in diagnosis [8]. Current research is aimed
at identifying panels of clinically useful biochemical and
imaging markers into single diagnostic algorithms that
can be used for diagnostic and prognostic applications
and for testing the efficacy of new drugs [9]. Applying
‘omics’ results in the generation of large datasets that are
suitable for bioinformatic analysis using machine learn-
ing, to extract important information [10].
Bioinformatics tools play an important role in the ana-

lysis of data from omics technologies, such as microar-
rays, next generation sequencing and mass spectrometry
(MS), and as a result a wide range of methods have been
developed [11,12]. Such methods include supervised
machine learning (ML) techniques, which are used to
build classification models. Models are used to automati-
cally label samples of unknown class by using a training
set of known labelled samples. There are many different
types of ML methods, some of which can be used to
identify putative biomarkers from data by observing the
attributes (genes or proteins) used to build the models.
Rule-based methods are an example of this, as it is possi-
ble to read the rules generated to form the model [13].
BioHEL is a rule based machine learning method which

has been used for sample classification in highly dimen-
sional datasets because of its fine-grained embedded fea-
ture selection [14]. It has been successfully applied to
accurately classify many different types of biological data
[15-18]. Rule-based methods construct rule sets that con-
tain at least one rule for each sample group, based on the
values associated with the attributes, for example the
expression value of the genes. An example of a rule set is
shown in Figure 1. ML can also be used to identify possible
biomarkers in the form of feature selection (FS), a method
of data reduction. FS techniques identify a subset of attri-
butes, for example genes or proteins, which could be used

to build a more successful model, compared to using the
whole dataset.
Supervised FS methods analyse data with known class

labels, with the aim to remove irrelevant or redundant fea-
tures. Using FS techniques can improve model perfor-
mance, increase classification accuracy, and provide a
clearer understanding of attributes, which are useful for
generating an effective classification model. Their key
challenge is to avoid a loss of information by dropping fea-
tures that contain crucial information for the data being
analysed. The application of FS methods is particularly
relevant for transcriptomic datasets that often have very
large numbers of attributes, in relation to the number of
samples. There are three main forms of feature selection:
filter, wrapper and embedded methods [19]. Filter meth-
ods, such as correlation-based feature selection [20], are
used to estimate the effectiveness of a reduction in attri-
butes. Wrapper methods, including Genetic Algorithms
[21], use classifiers to determine if the subset of attributes
gives successful classifications. The third method,
embedded, includes feature reduction within the process
of classification and uses such machine learning techni-
ques as Naïve Bayes [22] and Support Vector Machines
(SVM) [23,24].
The aim of this study was to develop an FS heuristic

specialized on identifying very reduced sets of variables
built on top of the BioHEL rule-based ML method, in
order to increase the accuracy of classification models and
to identify putative biomarkers. This heuristic performs an
iterative feature elimination process that is guided (in
choosing which features to eliminate first) by an analysis
of the rule sets generated by BioHEL. This guiding process
avoids numerous iterations of blind trial-and-error
attempts at removing features from the dataset, and
quickly finds, in most datasets, very reduced subsets of fea-
tures. We call this method RGIFE (Rule-guided Iterative
Feature Elimination).
Other work in this area has involved iterative processes

for feature reduction, however these have been based on
different methods [23]. One example of such a process for
feature reduction is Support Vector Machines Recursive

Figure 1 Example of a rule set generated by BioHEL. Rule sets are generated by BioHEL to classify samples. The combination of rules in the
rules sets are used to assign samples to their respective treatment groups. Each rule contains one or more gene and an expression value which
each gene should either be above or below, depending on the rule. At the end of each line is the group to which each rule relates. For
example, the 1st rule of the rule set shown classifies all samples as belonging to the OA class if the value of the gene attribute 207211_at is
greater than 100.
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Feature Elimination (SVM RFE), which is a form of back-
ward feature elimination. SVM RFE has three main steps.
Firstly it trains the SVM classifier, followed by computing
a specific ranking criterion for all features. This criterion is
based on the weights of a linear SVM. The features are
ranked based on this value and the feature(s) with the
smallest ranking criterion are removed. These steps are
then repeated in an iterative process, resulting in a
reduced number of features.
The RGIFE method is tested on several proteomics and

transcriptomics OA datasets to demonstrate its suitability
for multiple data types. Its performance is compared to
several combinations of feature selection and classification
algorithms. The results show that RGIFE improves Bio-
HEL’s performance in all datasets, is able to identify very
reduced sets of variables in most of them and shows com-
petitive performance to other methods from the literature.

Methods
Proteomics and transcriptomics datasets
A proteomics dataset was selected, which had been pre-
viously analysed by BioHEL to identify putative biomar-
kers [25]. The proteomics dataset analysed here consisted
of 23 samples analysed by mass spectrometry to identify
the proteins present in each sample [26]. The dataset
included six samples treated with the pro-inflammatory
cytokine interleukin-1 beta (IL-1b), to simulate OA in cul-
ture, and five samples treated with IL-1b followed by car-
profen, which is a non-steroidal anti-inflammatory drug
(NSAID) used to treat OA. Also included in the study
were six control samples and six samples treated with only
carprofen. Mascot was applied, using the Uniprot data-
base, to determine proteins present in the samples. From
this two datasets were generated. The first included an
emPAI quantitation value assigned to each protein present
and alternatively, the second provided each protein with
a ProteinProphet probability [27,28]. This probability is a
measure of how likely it is each protein is present in a
sample.
To assess the method developed on transcriptomics

data, datasets were identified from ArrayExpress
[21,23-29] and NCBI GEO [30] by searching for the term
‘Osteoarthritis’. Of the datasets that this search term
returned, those that had more than five samples per group
(disease or treatment group) were analysed. This resulted
in five datasets (Table 1) that vary in size, but which all
contain many more attributes than the proteomics dataset.
The sample numbers also vary between 25 samples over
5 classes to 48 samples over 3 classes. These datasets were
classified using BioHEL and other machine learning meth-
ods, as the canine proteomic dataset was, reported in a
recent paper by Swan et al., [25].
All datasets were partitioned into training and test sets

following the leave-one-out cross-validation methodology.

The Rule-guided Iterative Feature Elimination heuristic
With the goal of identifying very reduced and highly
accurate sets of variables we propose a feature selection
heuristic built on top of the BioHEL rule-based machine
learning method and based on the iterative feature elim-
ination (IFE) principle. The basic IFE method would
pick an attribute, remove it from the dataset and train a
classifier (a rule set) with the remaining attributes. If the
prediction capacity of the new model is equal or better
than with the whole set of attributes (or the previous
model), the attribute is eliminated. Otherwise it is
inserted back into the dataset. The basic IFE process
becomes extremely computationally demanding in high
dimensional datasets, such as the case of omics data.
Therefore, in order to make such IFE heuristic feasible
it needs to be improved in several directions.
The main change is that, rather than picking attributes

to be removed at random, we will pick them based on
their relevance, estimated from the rule sets generated by
BioHEL from the whole set. Then, the first attribute(s) to
be picked for elimination are those at the bottom of
BioHEL’s ranking.
The second change is remove attributes in blocks,

rather than one by one. At the start of the heuristic the
block size is set up to a very large number, 25% of the
problem’s attributes. If a block cannot be removed
because it would decrease the prediction capacity of the
classification model then the next block (following the
ranking of attributes) is tested. The block size is reduced
to be 25% of the previous block size whenever (a) all
attributes have been tested or (b) five consecutive
unsuccessful trials have been attempted.
As a final change the acceptance criteria of a trial is

relaxed in certain scenarios: whenever five consecutive
unsuccessful trials have been performed, before reducing
the block size the heuristic checks if one of these trials suf-
fered an accuracy drop corresponding to just one sample.
If so, this trial is accepted.
The iterative process then finishes when the attributes

are being removed one at a time and either the removal
of all attributes left in the dataset had been tested or five
iterations in a row resulted in a drop in the percentage
classification accuracy equivalent to more than one sam-
ple. The overall workflow of the heuristic is represented
in Figure 2.

Experimental design
For the experiments of this paper our aim is to show that
the RGIFE heuristic is both able to find feature subsets
that are both (a) small and (b) highly accurate. To this aim
we have designed a series of experiments that firstly com-
pares the heuristic with other FS methods, and then com-
pares the accuracy obtained by BioHEL with the reduced
feature subsets with other machine learning methods.
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The feature selection techniques used were Correlation-
based (CFS), SVM RFE, Random Forest, Naïve Bayes and
Chi Squared, some of which are feature selection methods
based on the machine learning methods used. All methods
used were those implemented in the machine learning
software, WEKA [31]. For those methods that ranked their
selected attributes, rather than identifying a small selection

of attributes, the top 10 features were used. The machine
leaning methods included in the comparison are Naïve
Bayes, Support Vector Machines (SVM), k-nearest neigh-
bour (IBk), JRip (rule-based), J48 and Random Forest (RF),
also using WEKA implementations [31].
For all classifications performed, the true positive rate

(TPR/sensitivity) and true negative rate (TNR/specificity)

Table 1 Descriptions of datasets analysed, including both proteomic and transcriptomic. Those prefixed ‘GSE’ were
from NCBI GEO and those prefixed ‘E-GEOD’ were from ArrayExpress

Dataset No. of
samples

No. of
genes

No. of
classes

Description

Proteomics datasets:

emPAI canine 23 178 4 Articular cartilage dataset treated with IL-1b to stimulate inflammation. Some samples were also
treated with carprofen, a non-steroidal anti-inflammatory drug. Other samples were treated
with carprofen only or nothing, as a control. The emPAI dataset includes emPAI label-free
quantitation to compare protein quantities across samples, for the proteins with Mascot scores
above 30. The ProteinProphet dataset includes a probability for each protein identified in each
sample indicating how likely it is to be present in the sample.

ProteinProphet
canine

23 1322 4

Transcriptomics datasets:

GSE36700 25 54675 5 Comparison between gene expression in synovial biopsies from patients with OA, RA, Systemic
Lupus Erythematosus (SLE), seronegative arthritis (SA), and microcrystalline arthritis (MIC) [48]

GSE3698 48 17048 3 Comparison between OA, RA & Pigmented villonodular synovitis (VS), a rare group of lesions
with morphological features suggesting an inflammatory as well as a neoplastic nature. All
three diseases result in a progressive destruction of affected joints and remain a diagnostic
difficulty because of nonspecific symptoms. Tissue samples obtained from knee surgery [49]

E-GEOD-12021 31 22284 3 Gene expression variances were tested in synovial membrane samples of RA patients, OA
patients, and normal controls [50]

E-GEOD-29746 31 44397 3 Comparison of gene expression between two pathological groups of human synovial
fibroblasts (SF) from RA and OA synovial tissues with normal SF from healthy individuals [51]

E-GEOD-27390 19 54675 2 Gene expression profiling of bone marrow-derived mononuclear cells from patients with RA vs.
OA [52]

Figure 2 Workflow of the RGIFE heuristic, where, each iteration, genes are removed and only returned if their removal lowers the classification
accuracy. (Leave-one-out cross validation was used to assess the classification abilities of the models built).
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were calculated. The TPR is the measure of the propor-
tion of correctly classified samples and multiplying it by
100 gives the percentage classification accuracy. TPR is
calculated by:

TPR =
True positives

True positives + False negatives
(1)

In contrast, the TNR is a measure of the proportion of
negatives that are correctly classified. TNR is calculated by:

TNR =
True negatives

True negatives + False positives
(2)

The combinations of methods were compared in two
ways. Firstly, the classification accuracies were compared,
to determine which ones gave the highest accuracy. Then,
the attributes selected by the FS techniques, were analysed
using DAVID bioinformatics resource to identify the
genes or proteins in each reduced dataset, from their
microarray identifiers [32]. The genes and proteins
included in the BioHEL reduced datasets were assessed by
literature searches with PubMed, to determine any known
relevance of the attributes to OA and any other disease or
treatment classes included in the datasets.

Results
The RGIFE heuristic increased the classification accuracy
achieved for both proteomics and transcriptomics data
By applying the RGIFE FS heuristic to the canine pro-
teomics dataset, the classification accuracies achieved
were considerably higher compared to the accuracy
achieved without any feature selection (Table 2). This
result is robust to choice of protein quantification
(emPAI or ProteinProphet). In previous work [25] we
showed that BioHEL performed favourably as compared
with other classification techniques, best performing
with ProteinProphet probabilities (classification accuracy
of 73.9%), but out-performed by JRip with emPAI values
(classification accuracy of 78.3%). Thus our new feature
reduction method, with TPR and TNR of 96% and 99%
respectively, has considerably outperformed all other
methods for classification accuracy on this dataset.
All five transcriptomics datasets were analysed using

the seven ML methods and BioHEL+RGIFE (Table 3).
For three of the five transcriptomics datasets, BioHEL with-
out feature reduction gave a classification that was higher

or equal to the other methods. For the other two datasets,
GSE36700 and E-GEOD-29746, the best methods were IBk
and SVM. The application of RGIFE increased the classifi-
cation of all five datasets, except for E-GEOD-27290,
which was already at 100%. After the feature reduction,
only one dataset, E-GEOD-27946, was classified better
using an alternative method, SVM.

RGIFE compares favourably with other feature reduction
methods
The comparison shown above could be construed as
unfair, as it is comparing a classification using the attri-
butes identified by a feature selection method with classifi-
cations using the whole dataset. Therefore, it is plausible
that application of other feature selection methods could
provide improvements comparable to the RGIFE techni-
que. To test this, we have analysed both the proteomics
and the transcriptomics datasets using all combinations of
the FS and classification method methods. Detailed results
are given in Supplementary Tables 1-7 (addition file 1).
For the proteomics dataset, RGIFE is the best feature

reduction method, both with emPAI and ProteinProphet
values. Using emPAI values (Supplementary Table 1,
addition file 1), the highest accuracy was achieved by Bio-
HEL for both FS and classification (TPR 96%; TNR 99%).
This is compared to the highest achieved prior to FS, of
78.3%, using JRip, a rule-based classifier. Using Protein-
Prophet values (Supplementary Table 2, addition file 1),
the accuracy rose from the highest accuracy of 73.9%
using BioHEL to 95.7% after application of FS. The two
FS and classification method combinations that gave this
highest classification are: RGIFE with IBk (TPR 96%;
TNR 99%) and Naïve Bayes for both FS and classification
(TPR 96%; TNR 98%). The combination of RGIFE+Bio-
HEL compares reasonably favourably with these scores
(TPR 91%; TNR 97%).
The five transcriptomics datasets were also analysed

using the different FS and classification method combi-
nations, with mixed results. For GSE3698 (Supplemen-
tary Table 3, addition file 1), classification accuracies of
100% were achieved using RGIFE+BioHEL, as well as
with a combination of SVM RFE FS with either SVM or
IBk. For GSE36700 (Supplementary Table 4, addition
file 1), SVM RFE FS again gave the highest accuracy of
100%, when used with NB, SVM or IBk. For this dataset,
RGIFE misclassified only one of the 25 samples. Only
one sample was also misclassified when RGIFE was
applied to E-GEOD-12021 (Supplementary Table 5,
addition file 1), and again SVM RFE combined with NB,
SVM or IBk gave the highest accuracy of 100%. For
dataset E-GEOD-27390 (Supplementary Table 6, addi-
tion file 1), a number of FS and classification methods
resulted in classifications of 100% accuracy. This
included the combination of RGIFE with either BioHEL

Table 2 Classification accuracies achieved using BioHEL
with and without also using the RGIFE heuristic

Classifier BioHEL, no feature reduction RGIFE+BioHEL

TPR TNR TPR TNR

ProteinProphet 0.74 0.90 0.91 0.97

emPAI 0.57 0.81 0.96 0.99
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or RF. The FS methods CFS and RF also resulted in
classifications of 100% when used with various classifica-
tion methods. Dataset E-GEOD-29746 (Supplementary
Table 7, addition file 1) was generally less well classified
by the various methods, with only two FS and classifica-
tion method combinations resulting in classifications of
100% accuracy. These were SVM RFE with SVM and RF
for FS with RF. Thus for these datasets, no single method
stands out as being best.
For each combination of classifier and dataset, the best

and worse methods were recorded, considering both the
TPRs and TNRs. Tables 6 and 7 compare the six FS meth-
ods; they show that the method that most frequently

resulted in the highest accuracy was SVM RFE, however it
also frequently resulted in the lowest TPR and TNR as
well, showing it to be very unstable. The comparison
showed RGIFE to be the second best for the highest accu-
racy, and the second worst for the lowest accuracy, show-
ing it to be the most stable across the datasets tested.

Feature reduction identifies inflammation-associated
proteins, which have been associated previously with
cartilage matrix degradation
RGIFE identified ten proteins: six using the ProteinPro-
phet quantification and five using emPAI values, with
one protein (MMP-3) in common (Table 4). Six of these

Table 3 TPR and TNR achieved by BioHEL compared to the other best methods for the five transcriptomics datasets,
using leave-one-out cross validation

NaiveBayes SVM IBk Jrip J48 RandomForest BioHEL RGIFE+ BioHEL

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

GSE36700 0.24 0.67 0.28 0.72 0.84 0.97 0.48 0.66 0.24 0.62 0.44 0.83 0.76 0.91 0.96 0.98

GSE3698 0.58 0.73 0.39 0.60 0.67 0.79 0.67 0.78 0.75 0.84 0.54 0.72 0.73 0.83 1.00 1.00

E-GEOD-12021 0.84 0.91 0.39 0.61 0.71 0.83 0.58 0.73 0.58 0.74 0.77 0.87 0.87 0.93 0.97 0.98

E-GEOD-29746 0.48 0.63 0.48 0.68 0.65 0.79 0.61 0.76 0.42 0.59 0.55 0.71 0.77 0.87 0.84 0.90

E-GEOD-27390 1.00 1.00 1.00 1.00 0.95 0.95 0.90 0.89 0.90 0.91 0.84 0.86 1.00 1.00 1.00 1.00

Table 4 The proteins included in the reduced datasets identified by RGIFE for the canine proteomics emPAI and
ProteinProphet data

Protein
ID

Protein name Identified from
emPAI or
ProteinProphet

Protein description Known link to cartilage inflammation or
OA

MMP-3 matrix-metalloproteinase 3 ProteinProphet
and emPAI

MMP-3 is a proteolytic enzyme known to
degrade components of the ECM, including
collagens and cartilage proteoglycans [53].

Found to be down-regulated in late OA [33].

IL-8 interleukin-8 ProteinProphet IL-8 is a chemotactic factor that attracts
neutrophils, basophils, and T-cells, but not
monocytes. It is also involved in neutrophil
activation. It is released from several cell
types in response to an inflammatory
stimulus [54].

IL-8 is the major chemotactic factor released
in response to proinflammatory cytokines in
synovial tissues from RA and OA affected
joints [34].

TSP1 thrombospondin-1 ProteinProphet Adhesive glycoprotein that mediates cell-to-
cell and cell-to-matrix interactions [55].

Levels of TSP1 are increased after the onset
of OA [35]

APOE apolipoprotein E ProteinProphet APOE mediates the binding, internalization,
and catabolism of lipoprotein particles [56].

No known link.

HPLN1 hyaluronan and
proteoglycan link protein 1

ProteinProphet Stabilizes the aggregates of proteoglycan
monomers with hyaluronic acid in the
extracellular cartilage matrix [57].

HPLN1 has been associated with OA and
osteophyte formation [36].

TPIS triosephosphate isomerase ProteinProphet Catalyses the reaction D-glyceraldehyde 3-
phosphate = glycerone phosphate [58].

No known link.

CLUS clusterin emPAI A glycoprotein that functions as extracellular
chaperone that prevents aggregation of
non-native proteins, which is involved in
many diverse biological functions [59].

Higher levels of clusterin have been
observed in synovial fluid of advanced
primary knee and hip OA patients [37].

FETUA alpha-2-HS-glycoprotein/
fetuin-A

emPAI Promotes endocytosis, possesses opsonic
properties and influences the mineral phase
of bone [60].

FETUA levels have been found to decrease
as the severity of knee OA increases [38].

POLG Genome polyprotein emPAI Bacterial protein. No known link.

ATPX ATP synthase subunit b’ emPAI Bacterial protein. No known link.
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proteins found have been previously associated with car-
tilage inflammation and OA: MMP-3 [33], IL-8 [34],
thrombospondin-1 [35], hyaluronan and proteoglycan
link protein 1 [36], clusterin [37] and fetuin-A [38].

The reduced datasets generated from the transcriptomics
datasets vary in size and utility
All the transcriptomics datasets were vastly reduced in
the number of genes using BioHEL reduction. Table 5
shows the number of genes in each dataset both before
and after application of RGIFE. The numbers of genes
the datasets were reduced to varied: four out of five
were between five and twenty-four genes (a reasonable
number). However, E-GEOD-29746 gave 669 genes (out
of the original 44397 genes), a much larger number.
The genes present in all the reduced subsets identified by

RGIFE are listed in Supplementary Tables 8 – 11 (addition
file 1), except for E-GEOD-29746, due to the large number
of genes included. Of the genes included in the GSE36700
reduced dataset, two genes, RSAD2 and CXCL9, were
found to be associated with RA, one of the disease groups
included in the datasets [39,40]. In the GSE3698 reduced
dataset, four genes are clearly relevant to the diseases ana-
lysed with this dataset. These genes are FN1, DDR2,
MMP-9 and NOTCH3, all of which have been associated
with either OA or RA [41-44]. Dataset E-GEOD-12021
was reduced to only five genes. Included in this small sub-
set of genes was CXCL13, which has previously been sug-
gested as a possible biomarker for RA [45]. None of the
genes in the E-GEOD-27390 reduced dataset were found
to be specifically related to OA or RA, the two disease
classes included in the dataset. However, there were a
number of genes whose functions are currently unknown.

Discussion
Comparison of classification accuracies achieved by
feature selection methods
From the results shown, it can be seen that there is not
one FS and classification method combination that is best
for all datasets. For the proteomics data, the RGIFE+
BioHEL combination compared very well with other
methods. For all five of the transcriptomics datasets, at
least one combination gave a classification accuracy of
100%. However, there was a lot of variation both in the
accuracies of the classifications for each dataset, using the

different methods, and the classifications performed by
each method across the different datasets.
RGIFE gave the equal highest accuracies for two of the

five transcriptomics datasets and was close to the high-
est accuracies for another two datasets. However, for
dataset E-GEOD-29746 (the dataset where the heuristic
was not very effective at identifying a very reduced set
of features), other methods were better.

Proteins identified from the proteomics dataset by RGIFE
Using the two different values for the proteins, emPAI and
ProteinProphet, did result in different proteins being
selected, however MMP-3 was included in both. This is
because emPAI is a measure of relative protein quantita-
tion and ProteinProphet gives a probability based on how
likely it is a protein is present in a sample. Therefore,
whilst these measures are related, they are not the same.
Included in the proteomics emPAI-reduced dataset are

two bacterial proteins, Genome polyprotein (POLG) and
ATP synthase subunit b’ (ATPX). These proteins have fairly
low Mascot scores, indicating a lack of confidence in this
identification and so, based on this, it may be suitable to
increase the Mascot score threshold to reduce the likelihood
of false positives. Also, POLG was found in only three sam-
ples and ATPX was present in only one sample. Through
analysis of the rules generated by BioHEL it is also clear that
these proteins were used to distinguish between the control
and carprofen-only treated samples, indicating that carpro-
fen treatment has no detectable direct physiological effect.
Supplementary tables 12 and 13 (addition file 1) show

the proteins selected by the other feature selection meth-
ods tested. All the proteins identified by RGIFE for the
MS dataset, using ProteinProphet probabilities, were also
identified by at least one of the other FS techniques tested.
For the emPAI values dataset, two of the five proteins,
CLUS & MMP-3, were identified by other FS methods.
These proteins have previously been identified in OA
[33,46]. For the dataset using emPAI values, other meth-
ods did also select bacterial proteins.

BioHEL reduction method applied to transcriptomics
datasets
The genes identified by RGIFE were also compared to
the genes selected by the other FS techniques used. Sup-
plemental tables 14-17 (addition file 1) list the genes

Table 5 The number of genes present in each dataset before and after feature reduction with RGIFE

Dataset Whole dataset No. of genes identifiers Reduced datasets No. of genes identifiers

GSE36700 54675 24

GSE3698 17048 19

E-GEOD-12021 22284 5

E-GEOD-29746 44397 669

E-GEOD-27390 54675 14
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identified by each method, for comparison with the
genes included by RGIFE. For datasets E-GEOD-12021
and E-GEOD-27390 no genes selected by RGIFE were
included in the lists of genes identified by the other FS
methods. There was some overlap between the genes
selected by the other methods, however only very few.
Dataset GSE36700 had one gene, RSAD2, which was
included in the reduced dataset of another FS method.
RSAD2 has been found to be up-regulated in RA [39],
which was a disease assessed by the GSE36700 investiga-
tion. Five of the genes selected by RGIFE for this dataset
were also identified by other FS methods. When faced
with such high dimensional datasets, the results show
that the natural bias of each FS method produces very
divergent results. Perhaps this is not surprising since all
of them are heuristic.
The transcriptomics reduced-datasets were generally

larger than those of the proteomics datasets. Quite likely
this is due to proteomics datasets having far fewer fea-
tures than transcriptomics ones, and the features pre-
sent are less noisy [19].

Conclusions
The RGIFE feature-reduction method has been shown to
be suitable for the analysis of both transcriptomics and
proteomics data. The classification accuracies achieved by
this method in combination with the BioHEL rule-based
machine learning method were better than other machine
learning methods used (without FS) for all datasets and
better or equal for the majority of datasets with feature
selection also applied.
The feature reduction method resulted in the selection of

a subset of genes for all datasets, some of which had clear
links to the diseases related to the datasets. A number of
genes were identified that may be suitable as possible bio-
markers, however they require further individual analysis
to determine their relevance and suitability.
Given that this is a generic supervised machine-learning

technique, this method should also be suitable for analysis
of other forms of complex data, including data from other
omics areas, such as metabolomics and lipidomics, how-
ever testing in this area is still required.

Some cytokines and chemokines in the joint, such as IL8
(see table 6), have increased activity during OA, [47] which
drive the increased production and secretion of matrix
degrading enzymes such as matrix metalloproteinases
(MMPs) (i.e. MMP-3, see table 7) that mediate the
destruction of articular cartilage. Therefore, the feature-
reduction methods used in this study identified biologi-
cally relevant proteins.
In summary, to our knowledge bioinformatics fea-

ture-reduction tools have never been applied to ‘omics’
data in the area of rheumatology. However, as more
and more investigators are applying ‘omics’ techniques
to tissues and cells from arthritic joints, feature-reduc-
tion methods such as this are likely to make a signifi-
cant contribution to basic and clinical research in this
area, especially the stratification of patients based on
data from molecular markers of joint inflammation.
Despite the growing burden of arthritic diseases, many
pharmaceutical companies have abandoned the devel-
opment of disease modifying OA drugs (DMOADs)
because OA is a heterogeneous disease with a variety
of phenotypes and pathophysiological drivers. Identifi-
cation of novel biomarkers and further validation of
existing “experimental” markers are likely to facilitate
OA drug development. Bioinformatic studies of cur-
rently available data from in vitro cartilage models, ani-
mal models and OA patients will consolidate existing
knowledge of markers of disease progression and reveal
new targets that may be invaluable for DMOAD develop-
ment. The inevitable growth of public and private datasets
derived from large cohort studies of joint inflammation
will provide further opportunities for applying feature
reduction techniques for biomarker identification and vali-
dation. This should provide a paradigm shift in the diag-
nosis and treatment of arthritis, facilitating new drug
discovery and improving the range of effective therapy
options for chronic joint diseases.
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Method No. of times the method results in the highest TPR No. of times the method results in the lowest TPR

CFS 3 15
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