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Abstract

Background: Increasingly high amounts of heterogeneous and valuable controlled biomolecular annotations are
available, but far from exhaustive and scattered in many databases. Several annotation integration and prediction
approaches have been proposed, but these issues are still unsolved. We previously created a Genomic and
Proteomic Knowledge Base (GPKB) that efficiently integrates many distributed biomolecular annotation and
interaction data of several organisms, including 32,956,102 gene annotations, 273,522,470 protein annotations and
277,095 protein-protein interactions (PPIs).

Results: By comprehensively leveraging transitive relationships defined by the numerous association data
integrated in GPKB, we developed a software procedure that effectively detects and supplement consistent
biomolecular annotations not present in the integrated sources. According to some defined logic rules, it does so
only when the semantic type of data and of their relationships, as well as the cardinality of the relationships, allow
identifying molecular biology compliant annotations. Thanks to controlled consistency and quality enforced on
data integrated in GPKB, and to the procedures used to avoid error propagation during their automatic processing,
we could reliably identify many annotations, which we integrated in GPKB. They comprise 3,144 gene to pathway
and 21,942 gene to biological function annotations of many organisms, and 1,027 candidate associations between
317 genetic disorders and 782 human PPIs. Overall estimated recall and precision of our approach were 90.56 %
and 96.61 %, respectively. Co-functional evaluation of genes with known function showed high functional similarity
between genes with new detected and known annotation to the same pathway; considering also the new
detected gene functional annotations enhanced such functional similarity, which resembled the one existing
between genes known to be annotated to the same pathway. Strong evidence was also found in the literature for
the candidate associations detected between Cystic fibrosis disorder and the PPIs between the CFTR_HUMAN,
DERL1_HUMAN, RNF5_HUMAN, AHSA1_HUMAN and GOPC_HUMAN proteins, and between the CHIP_HUMAN and
HSP7C_HUMAN proteins.

Conclusions: Although identified gene annotations and PPI-genetic disorder candidate associations require
biological validation, our approach intrinsically provides their in silico evidence based on available data. Public
availability within the GPKB (http://www.bioinformatics.deib.polimi.it/GPKB/) of all identified and integrated
annotations offers a valuable resource fostering new biomedical-molecular knowledge discoveries.
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Background
Continuous improvement of biotechnologies, progress of
massive sequencing techniques and development of new
technologies for high-throughput analysis and annota-
tion of biomolecular sequences are generating a huge
amount of biomolecular data and knowledge. Yet, the
very valuable controlled biomolecular annotation data
(i.e. the controlled descriptions of known characteristics
of biomolecular entities, such as genes or proteins,
through the association of the biomolecular entities with
terms of a controlled vocabulary that describe such
characteristics) are far from exhaustive.
To extract information and knowledge from available

data, several approaches have been proposed. A litera-
ture-based knowledge discovery model has been first
proposed by Swanson to identify implicit connections
between terms that do not occur together in any scien-
tific document [1]. Corpus-derived statistical models of
semantic distance, such as Latent Semantic Analysis
(LSA), have been evaluated as methods for the discov-
ery of these implicit connections [2,3]. Other computa-
tional methods based on Singular Value Decomposition
(SVD) of gene or protein annotation matrices have
been developed to predict annotations [4,5]. Several
approaches for link prediction in networks have been
proposed [6]; mostly based on similarity algorithms
and maximum likelihood or probabilistic models, they
have been applied and evaluated mainly on social net-
works [7], but also in biology, particularly on protein-
protein interaction data [8,9]. The use of decision trees
and Bayesian networks for predicting annotations by
learning patterns from available annotation profiles has
been suggested as well [10]. Simpler yet effective logic
rule techniques, such as the one based on transitive
relationships [11], have been also proposed, in particu-
lar for their application to database relations [12]. Yet,
huge efforts keep being performed to solve this issue
and try to provide new biomolecular annotations reli-
ably identified, which can complement the available
ones and support uncovering new biomedical knowl-
edge. Towards this aim, leveraging a high quality inte-
gration of available multiple heterogeneous, but
consistent, information helps greatly.
Previously, we developed the Genomic and Proteomic

Knowledge Base (GPKB) [13], an updated public, high-
quality and consistent integration of reconciled heteroge-
neous and distributed annotation and interaction data; it
can be profitably leveraged to help unveiling new biomedi-
cal knowledge by reliably identifying and supplementing
missing annotations based on available ones. Here, we pre-
sent and discuss our work aimed at 1) developing an effi-
cient and automatic procedure to be routinely applied on
new releases of the GPKB in order to detect consistent

and trustworthy biomolecular annotations which are not
present in the available data integrated, and 2) supple-
menting and providing them publicly, together with the
available annotation and interaction data integrated in the
GPKB, in support of biomedical knowledge discovery
applications.
The data warehousing integration approach that we

applied to build the GPKB allows performing thorough
data quality and consistency checking [14], as well as
reconciliation of unsynchronized data, in order to inte-
grate only high quality consistent data [13]; both these
aspects are paramount to subsequently use the inte-
grated data for reliable comprehensive detection and
supplement of missing biomolecular annotations.
Furthermore, we drastically reduced warehousing main-
tenance overhead by using automatic procedures, which
regularly update easily the data in the GPKB, and by
adopting a novel, modular and multilevel feature-based
global data schema [13]; besides easing data warehous-
ing updates and extensions, it also ensures provenance
tracking of all the integrated data, which is paramount
for their proper subsequent processing and the interpre-
tation of processing results.
Our developed annotation identification approach is

inspired by the Swanson work [1], but founded on the
transitive relationship logic rule [11]; in fact, it leverages
the transitive relationships of heterogeneous extensive
annotation data. Thus, it does not use a predictive
model or provide predictions, but rather it detects and
supplements annotations that should exist based on the
available data. The applied concept is also close to the
Linked Open Data approach of the Semantic Web [15],
which has been recently used to link various sources of
drug data in order to answer interesting scientific and
business questions [16]. Yet, we enriched it with a set of
novel rules that strengthen our approach and ensure its
application only when the semantic type of the consid-
ered data and the semantic type and cardinality of their
relationships allow identifying molecular biology compli-
ant associations (see Methods section). This enhances
the reliability of the detected annotations, which is
further increased by the several procedures that we
defined to avoid propagation, through automatic data
processing, of errors existing in public biomolecular
data, including in those that our method uses. The
application of our approach to the high quality, consis-
tent and reconciled data integrated in the GPKB
allowed detecting and supplementing many missing
new biomolecular annotations, “transferring” them
from available ones. Validation of the transferred anno-
tations showed their high reliability, which makes them
suitable to be used for data-driven biomedical knowl-
edge discoveries.
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Results
Transitive relationship approach for biomolecular
annotations
We implemented a general and customizable software
framework to automatically detect missing biomolecular
annotations and “transfer” them from available ones by
transitive relationships based on available annotations,
as defined in the Methods section and Additional file 1.
It can be used with any biomolecular database that
stores annotation data to perform the transitive relation-
ship approach on large annotation data sets efficiently
and effectively. Furthermore, it can automatically detect
any meaningful semantic annotation, according to the
defined set of novel rules illustrated in the Transitive
relationship approach and its defined rules section of
the Methods and to additional specific data attributes
available; these last can be useful, for example, to maxi-
mize correctness and quality of the identified annota-
tions, as discussed in the Methods in the Control of
error propagation during transitive relationship auto-
matic approach section.
We focused mainly on transitive relationships with path

of length two and used the developed software framework
to detect and supplement missing new biomolecular anno-
tations, according to the numerous gene and protein
annotation and interaction data integrated in our GPKB
(Table 1). Such data define a valuable network of many
types of biomolecular entities, biomedical-molecular char-
acteristics and their relationships. Figure 1 describes, at
conceptual level, this network, which can be profitably
leveraged by the transitive relationship method in order to

discover and supplement missing annotations, transferring
them from available ones. In Figure 1, each node of the
network indicates a type of feature (i.e. biomolecular
entity, or biomedical-molecular characteristic) whose data
are in the GPKB; it represents a database table containing
all instances of that feature (e.g. all genes, or all biological
functions) in the GPKB. Similarly, each arc of the network
indicates a relationship between the two connected fea-
tures, defined by the annotation data in the GPKB; it
represents a database feature association table that con-
tains all the associations in the GPKB between the two
connected features (e.g. all gene biological function anno-
tations, or gene to protein associations), which can be of a
single or multiple semantic types. (Notice that some of
these semantic types define directed associations, while
other express symmetric ones; thus, in Figure 1 each arc is
shown undirected since it represents multiple associations
of different semantic types.)
Depending on semantics of features and their associa-

tions, and on cardinality of associations, only some feature
associations can be straightforwardly identified and trans-
ferred by transitive relationship based on available associa-
tion data; we expressed these constrains in a set of novel
rules described in the Transitive relationship approach and
its defined rules section of the Methods. Here as follows,
only as brief trivial explanatory example, we describe, in
term of biological entities and annotations, which associa-
tions can be identified and transferred by transitive rela-
tionship and which not.
If a protein P1 (e.g. human Breast cancer type 1 suscept-

ibility protein (BRCA1_HUMAN), or any of its isoforms)

Table 1 Biomolecular entities, PPIs and annotations with biomedical-molecular characteristics integrated in the
Genomic and Proteomic Knowledge Base.

# of Items
(Homo sapiens)

# of Organisms Total Annotations
(Homo sapiens)

Gene Annotations
(Homo sapiens)

Protein Annotations
(Homo sapiens)

DNA Sequences 563,760
(18,712)

12,904 -

Genes 16,199,505
(47,487)

14,221 32,956,102
(348,662)

Transcripts 8,065,827
(106,509)

406 -

Proteins 56,990,212
(97,749)

477,175 273,522,470
(744,729)

PPIs 277,095
(63,488)

1,073 - -

Enzymes 5,403 7 220,964
(3,155)

- 220,964
(3,155)

Biological Functions
(Gene Ontology Terms)

41,285 479,950 306,032,538
(1,012,297)

32,841,035
(304,911)

273,191,503
(707,386)

Biochemical Pathways 29,459 28 211,526
(64,395)

101,523
(30,207)

110,003
(34,188)

Genetic Disorders 7,853 1 13,430
(13,430)

13,430
(13,430)

-

Clinical Synopses 63 1 114
(114)

114
(114)

-
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is ANNOTATED TO a biological function B1 (e.g. Regu-
lation of transcription from RNA polymerase III promo-
ter), then also the gene G1 (e.g. human Breast cancer 1,
early onset (BRCA1)), which ENCODES the protein P1
and its isoforms, should be ANNOTATED TO the biolo-
gical function B1. If such annotation of gene G1 to the
biological function B1 is not available, but the annota-
tions of P1 to B1 and G1 to P1 are available, then the
annotation of G1 to B1 can be straightforwardly detected
as missing and transferred by transitive relationship, with
path of length two, based on available annotation data.
Whereas, if both gene G2 and protein P2 are ANNO-
TATED TO the same biological function B2, it does not
imply that gene G2 should ENCODE protein P2, given
the possible multiple cardinality of annotation of unre-
lated genes and proteins to the same biological function.
As well, if gene G2 ENCODES protein P2 and is ANNO-
TATED TO biological function B2 (as well as to many
other biological functions), it does not straightforwardly
imply that protein P2 should be ANNOTATED TO bio-
logical function B2; in fact, by alternative splicing, gene
G2 could encode multiple proteins (besides P2) with dif-
ferent biological functions. We note that this last is a
conservative rule for annotation transfer (in fact, e.g. in
the UniProt database, usually annotations are assigned to
the main protein entry, which includes all the protein

isoforms, and it is rarely clear to which protein isoform is
associated each annotation). We adopt this rule to take
well into account the underlying molecular biology and
avoid annotation automatic transfers that might generate
false positive annotations, despite losing possible correct
ones. In Figure 1, there are represented the types of gene
annotations (bold blue arcs) that we detected as missing
and transferred by transitive relationship based on the
types of protein annotations available in the GPKB (bold
red arcs). Although transitive relationships need directed
links, Figure 1 does not show directed arcs since it repre-
sents not only the annotations used for the transitive rela-
tionship method, but the entire GPKB feature network
previously mentioned, which includes all the annotations,
of various semantic types, integrated in the GPKB.
Table 2 illustrates the quantity of annotations trans-

ferred by transitive relationship, as well as of the feature
items and annotations available in the GPKB on which
the transfer is based. All annotations transferred, which
are not present in the data from the public databases
integrated in the GPKB, have been stored in the GPKB;
there, they are clearly identifiable as such based on the
value (TRANSITIVE_RELATIONSHIP) of the Inferred
attribute present in all GPKB annotation tables [13]. At
http://www.bioinformatics.deib.polimi.it/GPKB/ they can
be publicly searched, browsed and downloaded through

Figure 1 GPKB feature network and protein annotation types considered for transitive relationship based transfer of annotations.
Solid line: types of available and transferred annotations; dotted line: types of only transferred annotations; bold red lines: types of available
protein annotations considered for annotation transfer; bold blue lines: types of gene annotations transferred.
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the GPKB Web interface (Figure 2 and Figure 3). In
particular, the gene annotations transferred (236,391 in
total, 4,467 regarding Homo sapiens) were 20.68 % (2.72
% for Homo sapiens) of the same types of known gene
annotations in the GPKB on which the annotation
transfer was based (1,143,173 in total, 164,366 regarding
Homo sapiens). As expected, fewer annotations are
transferred in percentage for more studied organisms,
such as Homo sapiens. Interestingly, the transferred
gene annotations to pathways and biological functions
were respectively 3.20 % and 2.10 % of the same type of
annotations in the GPKB on which the annotation
transfer was based. Different reasons may exist because
such relevant gene annotations were not available in the
important gene annotation data sources that we inte-
grated in GPKB.
Several (19.31 %) of the transferred gene to pathway

annotations involve Reactome pathways, although such
transferred annotations concern only human genes
(since only for Homo sapiens Reactome provides protein
annotations not computationally inferred). Despite Reac-
tome provides pathway annotations for both proteins
and genes, inconsistencies and not complete correspon-
dences exist between such gene and protein annotations,
which our approach detected and (partially) completed;
we reported them to the Reactome curators, who

ensured to fix them in the next release of their data. Also
2,537 (80.69 %) gene to KEGG pathway annotations were
transferred, but for 12 organisms; most of these annota-
tions, as well as of the transferred gene to biological func-
tion annotations, regards less studied organisms. They do
not just fill gaps between databases, but represent new dis-
covered gene annotations, which are transferred thanks to
the protein similarity data integrated in the GPKB [13]
and their use by the transitive relationship method (see an
example in Figure 3 and its description in the Example of
relevant annotation transferred by transitive relationship
subsection below).
By leveraging gene associated disorder data from the

OMIM database, we also identified possible candidate
protein annotations to human genetic disorders (Table
2). To our knowledge, these annotations are not avail-
able in public databases. Furthermore, by taking advan-
tage also of protein-protein interaction (PPI) data
integrated in the GPKB from the IntAct database, we
identified interacting proteins possibly associated with
the same genetic disorder; in so doing, we detected
1,027 potential candidate associations of 317 genetic dis-
orders with 782 human PPIs. All these are to be
intended as proteins and PPIs candidate associated with
genetic disorders, which are suggested for further asso-
ciation studies.

Table 2 Annotations transferred by transitive relationship and related feature items and annotations integrated in the
GPKB on which the transfer is based.

# of Distinct
Feature A
Items

Available
(Homo s.)

# of Distinct
Feature B
Items

Available
(Homo s.)

# of Distinct
Feature C
Items

Available
(Homo s.)

# of Distinct
Feature A
/ Feature B
Annotations
Available
(Homo s.)

# of Distinct
Feature B
/ Feature C
Annotations
Available
(Homo s.)

# of Distinct
Feature A
/ Feature C
Annotations
Available
(Homo s.)

# of Distinct
Feature A
/ Feature C
Annotations
Available
Transferred
(Homo s.)

% of Distinct
Feature A
/ Feature C
Annotations
Available
Transferred
(Homo s.)

Genes:
14,848,524 (20,492)

Proteins:
11,736,361
(20,130)

Pathways:
513

12,031,396
(29,536)

104,416
(32,991)

98,316
(29,860)

3,144
(795)

3.20 %
(2.66 %)

Genes:
14,848,524 (20,492)

Proteins:
11,736,361
(20,130)

Biological
Functions: 41,285

12,031,396
(29,536)

704,382
(92,043)

1,044,857
(134,506)

21,942
(478)

2.10 %
(0.35 %)

Genes:
14,848,524 (20,492)

Proteins:
11,736,361
(20,130)

Enzymes:
5,403

12,031,396
(29,536)

200,964
(3,155)

- 211,305
(3,194)

ALL

Genes:
14,848,524 (20,492)

Proteins:
11,736,361
(20,130)

Transcripts: 8,065,827
(106,509)

12,031,396
(29,536)

80,680
(31,463)

7,644,482
(80,964)

6,793
(1,262)

0.09 %
(1.56 %)

Genes:
14,848,524 (20,492)

Proteins:
11,736,361
(20,130)

DNA Sequences:
563,760
(18,712)

12,031,396
(29,536)

163,396
(79,251)

16,107,408
(128,167)

7,690
(1,039)

0.05 %
(0.81 %)

Proteins:
11,736,361
(20,130)

Genes:
14,848,524 (20,492)

Genetic Disorders:
7,853

12,031,396
(29,536)

12,013
(12,013)

- 15,344
(15,344)

ALL

PPIs
277,095
(63,488)

Genes:
14,848,524 (20,492)

Genetic Disorders:
7,853

50,863
(9,922)

12,013
(12,013)

- 1,027
(1,027)

ALL

Percentages of annotations transferred are with respect to annotations of the same type available in the GPKB; ALL: only annotations transferred, no annotations
available in the GPKB.
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Evaluation of the transitive relationship approach for
biomolecular annotations
Differently from other proposed methods [2-10], which
are based on predictive models and provide probabilistic
predictions, the simple, yet effective, transitive relationship
approach is based on logic rules [11]. Thus, it does not
provide predictions; rather it gives discrete answers (posi-
tive/negative) in detecting and transferring those biomole-
cular annotations that should exist based on the available
data. Classical model validation methods (e.g. k-fold cross-
validation or Receiving Operator Characteristic (ROC)
curves) are suitable to validate probabilistic but not dis-
crete results [17], which are represented by a single point
in the ROC space. Accuracy of the discrete results pro-
vided by the transitive relationship approach only depends
on completeness and correctness of available data on
which the approach is applied. For this reason we applied

it on the numerous high quality reconciled data integrated
in the GPKB, which can ensure better detection and sup-
plement of missing biomolecular annotations.
To evaluate the transitive relationship approach, we

estimated its recall (i.e. true positive rate, or sensitivity)
and precision (i.e. true negative rate, or positive predicted
value); we did so by comparing the gene annotations in
the GPKB with the gene annotations that the approach
identifies that should exist and can transfer based only
on the protein annotation and protein encoding gene
data available in the GPKB. (Notice that the gene annota-
tions in the GPKB are not considered in such transitive
relationship based annotation identification; they are only
used for comparison with the identification results.)
Overall, we obtained a recall of 90.56 % (99.09 %, 48.65
%, 99.03 % and 99.97 % recall for the gene to pathway,
gene to biological function, gene to transcript and gene

Figure 2 GPKB Web interface: Search page. Through an intuitive Web interface, the user can search and retrieve any of the annotations
downloaded from multiple well known databases, or transferred by transitive relationship, which are integrated in the GPKB.
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to DNA sequence annotations, respectively). The missed
identification of some available gene annotations was
mainly due to no availability of the corresponding protein
annotations, or of data about the genes encoding the
annotated proteins. Lower recall for biological function
annotations was mainly due to the numerous of these
annotations that are available as computationally derived
only, both for genes and proteins; thus, they are available
but our method does not considered them for annotation
transfer to avoid possible automatic error propagation
(see Methods section).
As estimate of method precision, overall we found

that 96.61 % of the gene annotations that the transitive
relationship method identified were already available in
the GPKB (99.46 % gene to pathway, 75.70 % gene to
biological function, 99.24 % gene to transcript and 99.66
% gene to DNA sequence annotations, respectively). Yet,
as the available annotations are incomplete by definition,

in particular for the many less studied organisms con-
sidered, these good figures can only represent a possible
approximation of the method precision and not its cor-
rect estimate.

Assessment of transferred biomolecular annotations
As discussed in the previous section, classical validation
methods cannot be used to assess the transitive relation-
ship method results. Thus, to better evaluate their correct-
ness, we performed an overall co-functional evaluation of
all genes involved in the transferred and known gene path-
way annotations, as well as in known and transferred bio-
logical functions. In addition, we performed a supervised
in silico validation and biological interpretation of some
annotations transferred in some selected biological exam-
ples. We performed the latter one by consulting the litera-
ture and several well-known databases and by taking
advantage of the evidence, based on the available data,

Figure 3 GPKB Web interface: Search result page. The transferred new annotation of the Insulin-like growth factor 2 (somatomedin A) (IGF2)
human gene to the Insulin-like growth factor binding biological function is shown. (Notice the external links on all IDs, the “Show new transitive
relationships only“ button and the “Download“ icon.) As all annotations in the GPKB that are transferred by the transitive relationship method, it is
clearly marked with the value “TRANSITIVE_RELATIONSHIP“ of its Inferred attribute. By clicking on the icon next to it (see the arrow), the “Transitive
relationship full provenance“ window pops up and shows all the available known association data on which the transitive relationship transfer
was based. In the example shown, they are the ENCODES associations (provided by the Entrez Gene database) of the IGF2 human gene with the
proteins with AAL55889 or AAY40360 EMBL ID, which are both associated by similarity with the protein with P09565 UniProt AC that (according
to the GOA database) is annotated to the Insulin-like growth factor binding biological function with NAS (Non-traceable Author Statement)
evidence.
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that our implemented approach provides; in fact, it keeps
track and offers full characterization and provenance of all
features and their associations involved in each of the new
annotations transferred (e.g. see the “Transitive relation-
ship full provenance“ window in Figure 3).
Co-functional assessment of genes with transferred

and known pathway and biological function annota-
tions. By performing the co-functional evaluation of these
genes as described in the Methods section, we obtained
the results illustrated in Figure 4. The simple idea behind
this global co-functional evaluation is that a pathway
annotation is correctly transferred to a gene if the gene
has biological function (i.e. Gene Ontology - GO) annota-
tions similar to the GO annotations of the genes already
known to be annotated to the same pathway. The trans-
ferred pathway annotations of genes with known GO
functional annotations resulted to be 60.85 % of all gene
pathway annotations transferred. About 90.86 % of them
regards genes whose most specific (lowest common) GO
annotation shared with the genes known to be involved to

the same pathway has maximum level (MaxLgi), in the GO
hierarchy, higher than level 5, i.e. it is quite or very specific
(upper histograms in Figure 4). Also on average the shared
lowest common GO functional annotations are rather spe-
cific; in 89.22 % of the gene pathway annotations transferred
their average GO level (AvgLgi) is higher than level 3.
Most important, these percentages are very similar to

the equivalent ones obtained for the known pathway
annotations of genes known to share GO functional
annotations with other genes known to be involved in
the same pathway. For 94.31 % of them, MaxLGj is higher
than GO level 5, while for 91.31 % of them AvgLGj is
higher than GO level 3 (lower histograms in Figure 4).
Although these known gene pathway annotations, which
regard genes with known GO annotations, are a higher
percentage, out of all known pathway annotations avail-
able, with respect to the percentage of transferred gene
pathway annotations (97.02 % vs. 60.85 %), this is
expected. To a certain extent, pathway and GO func-
tional annotations are related; thus, it is expected that

Figure 4 Co-functional evaluation of genes with pathway annotation transferred by transitive relationship and with known GO
annotation. Upper histograms, MaxLgi and AvgLgi: maximum and average of the levels in the Gene Ontology (GO) hierarchy of the lowest
common known GO functional annotations shared between each gene with transferred annotation to a pathway and the genes known to be
involved in that pathway; lower histograms, MaxLGj and AvgLGj: as MaxLgi and AvgLgi respectively, but between each gene known to be
involved in a pathway with transferred gene annotation and all the other genes known to be involved in that pathway; GO level 0 pertains to
ontology root shared annotation, higher GO levels pertain to more specific shared GO annotations; level category N represents gene pathway
annotations (transferred or known) whose gene does not have any GO annotation.
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genes with known pathway annotations have more
known GO annotations. By considering not only the
known GO annotations but also the ones that we trans-
ferred by transitive relationship, the percentage of path-
way annotations transferred to genes with GO
annotations raises from 60.85 % to 85.57 %. Furthermore,
the distributions of MaxLgi and AvgLgi enhance, with
increased values for high GO levels (96.17 % vs. 90.86 %
of genes with MaxLgi higher than GO level 5 and 93.61
% vs. 89.22 % of genes with AvgLgi higher than GO level
3), while the distributions of MaxLGj and AvgLGj values
remain similar (Figure 5). Conversely, for the known
pathway annotations of genes known to share GO func-
tional annotations with other genes known to be involved
in the same pathway, all these values practically do not
change by considering also the GO annotations that we
transferred by transitive relationship.
These results clearly show that, in the great majority of

the pathway annotations transferred to genes, the anno-
tated gene has function very similar to that of at least one
of the genes known to be involved in that same pathway,
and also similar on average to the functions of all those

genes. Most of all, such considerations can be equally
applied to the genes already known to be annotated to
the same pathway. Furthermore, a relevant part of the
residual gene pathway annotations transferred which
seam without functional evidence are due to the incom-
pleteness of the available gene functional annotations.
In fact, by considering also the new gene functional
annotations transferred through the transitive relation-
ship method, this residual percentage of transferred gene
pathway annotations lowers to more than half (14.43 %),
which is closer to the one of the known gene pathway
annotations available (2.98 %). This also shows the rele-
vance and reliability of the transferred gene to biological
function annotations.
Example of relevant annotation transferred by

transitive relationship. As an example of the ability of
our, although simple, transitive relationship based method
to discover non-trivial gene annotations, we report the
detection of the new annotation of the Insulin-like growth
factor 2 (somatomedin A) (IGF2) human gene to the GO
Insulin-like growth factor binding molecular function. It is
transferred from the same annotation (with “Non-traceable

Figure 5 Co-functional evaluation of genes with pathway annotation transferred by transitive relationship and with known or
transferred GO annotation. Same as Figure 4, but obtained by considering also the GO functional annotations transferred to the genes by
transitive relationship, instead of only the gene known GO functional annotations. In so doing, more than half of the genes without known
functional annotation results having specific transferred GO functional annotation(s), i.e. with high GO level.
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Author Statement (NAS)” evidence) of the Swiss-Prot
reviewed human Putative insulin-like growth factor 2-asso-
ciated protein (IG2R_HUMAN). In major databases this
protein is not defined as encoded by the IGF2 human
gene, which results encoding the Insulin-like growth factor
II (IGF2_HUMAN) protein and its isoforms. Such isoforms
do not include the IG2R_HUMAN protein, although since
1988 a paper describes it as one of the alternative splicing
forms encoded by the IGF2 human gene [18]. Correctness
of the new annotation is also supported by, and in agree-
ment with, other GO annotations already available for the
IGF2 human gene (Figure 6). In particular, it is not contra-
dictory with the insulin like growth factor receptor binding
annotation known for the IGF2 human gene; in fact, the
IGF2 human gene encodes both the two alternative spli-
cing forms above mentioned [18], which have different
binding affinity within the IGF signaling regulatory system.
The detection of this non-trivial gene annotation (i.e. not
directly coming from the annotations of a protein explicitly
known as encoded by the gene) leverages the power not
only of the transitive relationship method, but also of the
protein similarity data integrated in the GPKB [13]. In fact,
these data include the association of the IG2R_HUMAN
protein (P09565 UniProt AC) with the AAL55889 and
AAY40360 EMBL/GenBank protein IDs, which are also
associated with the IGF2 human gene; thus, they transi-
tively associate the IG2R_HUMAN protein with the IGF2
human gene as another of its encoded isoforms (Figure 3).
The subsequent application of the transitive relationship
method to such unveiled ENCODES relationships and the
ANNOTATED TO relationships between the IG2R_HU-
MAN protein and its GO annotations allows identifying
and transfer the Insulin-like growth factor binding as a new
GO annotation for the IGF2 human gene (Figure 3).
Assessment of PPI-genetic disorder candidate asso-

ciations. Unfortunately, it is not possible performing a
global evaluation also for the identified candidate associa-
tions between PPIs and genetic disorders; in fact, no
information to globally compare them with is available,
although a few papers exist about the involvement of dis-
rupted PPIs in the onset and development of some
genetic disorders (e.g. [19]). Thus, our final validation
could regard only some of the 1,027 potential associa-
tions detected between 782 human PPIs and 317 major
genetic disorders (Additional file 2). Among these latter
ones, we focused on the long studied Cystic fibrosis, one
of the common inherited diseases in humans; we found
strong evidence in the literature that supports six out of
the seven identified candidate associations of Cystic fibro-
sis with the PPIs illustrated in Figure 7. In fact, those
PPIs include the interactions of the CFTR_HUMAN pro-
tein with the four DERL1_HUMAN, RNF5_HUMAN,
AHSA1_HUMAN and GOPC_HUMAN proteins, as well
as the interactions of the CHIP_HUMAN protein with

the HSP7C_HUMAN and CLCN2_HUMAN proteins.
Mutations of the encoding genes of all these proteins, in
particular of the Cystic fibrosis transmembrane conduc-
tance regulator (CFTR) human gene, as well as of many
other genes (50 in total), are individually known to be
directly involved in different grades and manifestations of
Cystic fibrosis, which arises from misfolding and prema-
ture degradation of mutated CFTR forms. In addition,
Younger et al. [20] discovered an endoplasmic reticulum
membrane-associated ubiquitin ligase complex that
cooperates with the cytosolic HSP7C / CHIP E3 complex
and contains interacting protein products of the DERL1
and RNF5 genes, which cooperate to triage variants of
the CFTR protein in order to monitor their folding status
and promote proteasomal degradation. In 2006, Wang
and colleagues [21] observed that the down-regulation of
human Hsp90 cochaperone AHA1 (AHSA1) rescues mis-
folding of CFTR protein in Cystic fibrosis. Lately, they
characterized the molecular and structural basis of the
mechanisms responsible for such regulation [22], thus
providing a potential key to understanding the role of
Hsp90 in folding of CFTR and progression of Cystic fibro-
sis disease. More recently, Pelaseyed and Hansson [23]
elucidated the modulated down-expression of CFTR
through over-expression of GOPC, which directs CFTR
for degradation. All these works support and provide evi-
dence for six of the candidate associations identified
between Cystic fibrosis and the six PPIs mentioned. We
could not find clear supporting evidence only for the
identified candidate association of Cystic fibrosis with the
PPI between the CHIP_HUMAN and CLCN2_HUMAN
proteins, although also the latter protein is known to be
associated with Cystic fibrosis, since it is over-expressed
in epithelia affected by Cystic fibrosis [24].
All the identified candidate associations could suggest that
some types of the Cystic fibrosis multi-variant disorder
may be associated with defects in the interactions between
these proteins. In the review [19], Zanzoni et al. previously
reported that gene mutations may alter the interaction
properties of the encoded proteins, disrupting the interac-
tion interface and leading to loss of function and disorders.
They also suggested that PPIs could represent a class of
targetable entities for novel therapeutic strategies. Possibly,
in Cystic fibrosis different mutations could alter the func-
tional interaction of the CFTR_HUMAN protein with the
DERL1_HUMAN, RNF5_HUMAN, AHSA1_HUMAN and
GOPC_HUMAN proteins, or between the CHIP_HUMAN
and HSP7C_HUMAN or CLCN2_HUMAN proteins. If
this would be experimentally confirmed, such finding
could also suggest, as a possible disease treatment strategy,
the engineering of a synthetic protein interacting, e.g.,
with the mutated CFTR_HUMAN protein and similar
in function to the DERL1_HUMAN, RNF5_HUMAN,
AHSA1_HUMAN or GOPC_HUMAN protein, whose
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interaction with the mutated CFTR_HUMAN protein
results altered. At the time of writing, to our knowledge,
such associations of Cystic fibrosis with the mentioned
PPIs were not reported in any public database or explicitly
in the literature; making them available in the GPKB
represents an important advance.

Discussion
Obtained results clearly show that the simple, yet effec-
tive, transitive relationship technique [11] can be origin-
ally applied to discover gene annotations from data
structured in a large biomedical-molecular database,

such as the GPKB. Our implementation, optimized for
its off-line use, allows obtaining results in reasonable
time, also when it is applied on huge amounts of geno-
mic and proteomic data. Furthermore, when it is
required, it can be further accelerated by using it in a
distributed and parallel way on partitioned data. We are
not aware of any large biomolecular database that cur-
rently implements such transitive relationship proce-
dure, which produces results of great benefit to the
community, as we showed.
The major issue in the use of the transitive relationship

approach is in the possible propagation of errors, i.e. the

Figure 6 Some Gene Ontology annotations available for the IGF2 human gene and its new detected one. Yellow upper boxes represent
five of the most specific Gene Ontology molecular function annotations available for the Insulin-like growth factor 2 (somatomedin A) (IGF2)
human gene; the arrow indicates the new detected annotation.
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generation of wrong results due to incorrectness of the
considered data or of their semantic types. Being very
conscious of this aspect, we implemented numerous
mechanisms to avoid wrong results; during both GPKB
construction and transitive relationship processing, these
mechanisms exclude data items that must not be taken
into account, or of low quality. In particular, we lever-
aged our previous efforts in the identification of errors
and inconsistencies in public databases [14] by taking
maximum care in avoiding error propagation through
erroneous transitive relationships due to asynchronisms,
inconsistencies, or errors in the considered data [25-28].
Whenever possible, we identified inconsistencies, recon-
ciled asynchronisms and excluded erroneous data from
the transitive relationship approach, as described in the
Methods section. Furthermore, we adopted several pre-
cautions to ensure biological significance of results.
Firstly, we considered only transitive relationships with
path of length two, avoiding full transitive closure. Sec-
ondly, we focused only on biomedical-molecular relation-
ships whose semantic type and cardinality allow
straightforward transitive relationships, as formalized in a
set of novel rules that we defined in the Methods section.
The only exception was the identification of PPIs candi-
date associated with genetic disorders, which is based on
the available association data between genetic disorders
and genes encoding the interacting proteins. In this case,
only potential candidate associations can be detected,
since for alternative splicing a gene can encode multiple
proteins with different characteristics. Nonetheless, given
the high relevance of such candidate associations, which
presently to our knowledge are not available in any pub-
lic database, we decided to detect them anyway, although
knowing that the results could include errors and that
there is a long way from associating interacting proteins
to a single disease and the disruption of their interaction
to this disease. However, we could find strong supporting
evidence in the literature for the few detected candidate

associations that we validated, i.e. the ones detected
between Cystic fibrosis and human PPIs.
Validation of results obtained through the implemented

method demonstrated that the transitive relationship
approach, applied on the numerous and heterogeneous
annotation data integrated in the GPKB, can clearly detect
and supplement missing gene annotations which are
already implicitly known as annotations of the gene
encoded proteins; in so doing, not only it fills gaps and
fixes inconsistencies among different data sources, but
also it makes explicit relevant information useful for com-
putational analyses. Furthermore and much more signifi-
cantly, it can also reliably identify and supplement
substantial novel gene annotations, as shown in a non-tri-
vial example in the Results section; this is possible mainly
thanks to the data quality checking and integration proce-
dures performed during the GPKB construction and the
historical and similarity data integrated in the GPKB [13].
Despite the GPKB integrates all data publicly available

on the FTP sites of the reference Entrez Gene and GOA
databases, as well as of some relevant gene pathway
databases (i.e. BioCyc, KEGG and Reactome), by using
the transitive relationship approach we could detect and
transfer numerous gene pathway and biological function
(Gene Ontology) annotations not included in these data-
bases. Co-functional evaluation of genes with transferred
and known annotation to the same pathway, demon-
strated overall reliability of the transferred gene path-
way, as well as biological function, annotations.
All obtained results demonstrate the usefulness of our

approach in reliably identifying new annotations, as well as
in complementing the ones provided by individual data-
bases. This is particularly relevant for the gene annotations
to characteristics of their encoded proteins, which are still
limitedly provided by on-line available databases. Indeed,
gene annotations are very important, in particular for the
interpretation of routinely performed transcriptomic ana-
lyses; the great majority of the many tools available for

Figure 7 The seven pairwise interactions, between eight human proteins, that have been detected as candidate associated with
the Cystic fibrosis genetic disorder.
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functional enrichment analysis of gene expression results
directly relies on the available gene annotations [29].
Improvement of such gene annotations in quantity, cover-
age and quality is paramount to obtain better gene func-
tional analysis results. Our approach and its application to
any new release of the GPKB provide a relevant contribu-
tion towards this aim.
Public availability in the GPKB of all new annotations

detected complements our work in the construction of
the GPKB as an updated integrated collection of rele-
vant biomedical-molecular data sparsely available. It
makes the GPKB an even more valuable data source for
integrated bio-searches on several types of annotation
data, aimed at answering complex biomedical questions
that can lead to biomedical knowledge discovery, as we
showed in [30]. Furthermore, the provenance tracking
implemented in GPKB allows users to exactly know the
origin of each data integrated in the GPKB, as well as of
all the annotations detect by transitive relationship and
the data used for their detection. This enables each user
to independently assess quality and confidence in the
data, as well as to select and use only those data that
he/she considers more reliable.
In the next scheduled release of the GPKB, besides the

detected gene annotations and PPI-genetic disorder
potential candidate associations, we plan to include also
transcript annotations identified based on available
annotations of the proteins that the transcripts encode.
Subsequently, we intend to enrich the GPKB also with
DNA sequence annotations detected on the basis of
available annotations of genes and proteins encoded by
the DNA sequences. Presently, both DNA sequence and
transcript annotations are not directly available in any
public database, forcing the researchers interested on
them to tedious and error prone conversions from avail-
able gene and protein annotations. Their public availability
would ease and improve biomedical interpretation of dif-
ferent types of high-throughput biomolecular experimen-
tal results, including those that are recently obtaining with
DNA-seq and RNA-seq next generation sequencing
techniques.

Conclusions
Biomolecular annotations can be efficiently and effectively
detected in silico by leveraging integrated data from multi-
ple databases through a transitive relationship based
approach. The detected annotations require biological vali-
dation; yet, this approach intrinsically provides their in
silico evidence based on the available data. Evaluation of
obtained results demonstrated that this approach can cor-
rectly detect with good precision not only annotations that
are already present in some databases on which the transi-
tive relationship approach is not based, but also new valu-
able annotations not yet included in any database. In the

former case, the same annotations available in some data-
base validate the detected ones; in the latter case, we eval-
uated some of the new identified annotations and found
relevant scientific papers that support them. Their public
availability can improve bioinformatics analyses that are
carried out by using available biomedical-molecular anno-
tations. Their storage in the GPKB, together with the
available annotations there integrated, allows leveraging
the GPKB to perform integrated bio-searches, which may
foster data-driven discoveries that can help unveiling new
biomedical-molecular knowledge.

Methods
Available biomolecular annotations considered
We applied and tested our developed transitive relation-
ship based approach on the very numerous, heteroge-
neous, high-quality and reconciled annotation and
interaction data integrated in the GPKB (Table 1); they
regard biomolecular entities (i.e. DNA sequences, genes,
transcripts and proteins) and their associations with
many different biomedical-molecular characteristics, e.g.
biological functions (i.e. GO biological processes, mole-
cular functions and cellular components), biochemical
pathways, genetic disorders and clinical synopses. At the
time of writing, the GPKB integrated all these data, as
well as molecular interaction data, downloaded the last
time on September 1st 2014 from several well known
databases, carefully selected according to their renowned
relevance and reliability; they included Entrez Gene,
UniProt, IntAct, Expasy Enzyme, GO, GOA, BioCyc,
KEGG, Reactome and OMIM (whenever possible we
integrate in GPKB data retrieved from their original pro-
vider, since in this case they are supposed to be the
most reliable data available). The great amount of high-
quality heterogeneous biomolecular association data
integrated in the GPKB makes it a unique valuable
resource where performing comprehensive evaluations
on all the integrated data that it contains. Thus, we
used the GPKB as database where to apply and test the
implemented transitive relationship method to detect
missing biomedical-molecular annotations.

Transitive relationship approach and its defined rules
Depending on its semantic type, the relationship between
single items (i.e. with cardinality 1 to 1) can own or not
the transitive property. This property states that, if for all
items A, B and C an item A is related to an item B (A ®
B) and the item B is related to an item C (B ® C), then
by transitive relationship also the item A is related to the
item C (A ® C) [11]. Yet, when multiple items are
related to one another, even if the relationship semantic
type holds the transitive property, it does or does not
provide meaningful results by transitive relationship
depending on the cardinality (1 to n, or n to n) of the
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relationship. In particular, if an item B is related to multi-
ple items (Ai (i: 1-n) and Cj (j: 1-m)), then it does not
straightforwardly mean that all such items are related to
each other (i.e. all Ai are related to all Cj, as well as all Ai

are related to each other and all Cj are also related to
each other). Some items Ai could be related to some, or
even all, items Cj and vice versa, but a global relationship
(which would have n to n cardinality) between all items
Ai (i: 1-n) and Cj (j: 1-m) can not be derived. However, even
if an item B is related to multiple items Cj (j: 1-m), if the
item B is related to a single item A, then it directly and
meaningfully implies that such item A is related to all
items Cj (j: 1-m) (A ® Cj (j: 1-m)), i.e. with a relationship
with cardinality 1 to n.
We applied the above considerations to the relation-

ships described by existing biomolecular annotation data
in order to detect missing annotations, by transitive
relationship based on the available annotations, and
transfer them from existing annotations. First, we classi-
fied the semantic types of these relationships and their
cardinality, according to the semantic type of the related
items and their underlying molecular biology (taking
into account that in the annotation data what are
related are the IDs of the related items). Thus, for
example, the cardinality of the relationship between
DNA sequence and protein is always 1:1, or 1:n if alter-
native splicing occurs. In fact, paralog DNA sequences
have different IDs as well as their encoded paralog pro-
teins. Then, depending on such semantic types and car-
dinalities, we defined the possible semantic types of the
biologically meaningful biomolecular annotations that
can be transferred by transitive relationship. The items
involved in biomolecular annotations can be biomolecu-
lar entities (i.e. DNA sequences, genes, transcripts and
proteins), or biomedical-molecular characteristics (e.g.
biological functions, biochemical pathways, genetic dis-
orders, etc.). Such item semantic types are always clearly
defined in available annotation data; furthermore, their
correctness for the data integrated in the GPKB is care-
fully and thoroughly controlled by the GPKB data qual-
ity and consistency checking procedures used. The
semantic types of the relationships between such items,
described by available biomolecular annotations, can be
summarized as follows. The semantic type of a relation-
ship between two biomolecular entities can be more
generic (i.e. RELATED_TO), or more specific (i.e.
ENCODES, INTERACT_WITH). The relationship
between two biomedical-molecular characteristics is
usually generic (i.e. ASSOCIATED_WITH), as well as
the semantic type between a biomolecular entity and a bio-
medical-molecular characteristic (i.e. ANNOTATED_TO),
unless in the latter case the biomedical-molecular charac-
teristic represents a molecule directly interacting with the
biomolecular entity; in this case, the semantic type of the

relationship is INTERACT_WITH. Consequently, the
semantic type of a relationship identified by transitive rela-
tionship over existing relationships of such semantic types
can be always generically defined as ANNOTATED_TO,
when the identified relationship is between a biomolecular
entity and a biomedical-molecular characteristic. Similarly,
when it is between two biomolecular entities, it can be a
generic RELATED_TO, or a more specific ENCODES
(when all involved relationships are of semantic type
ENCODES), or INTERACT_WITH (when it regards bio-
molecular entities that encode interacting biomolecular
entities, e.g. genes encoding interacting proteins). All such
relationships usually have 1 to 1, or 1 to n cardinality; thus
they can be straightforwardly and meaningfully transferred
by transitive relationship. This would not be the case for
relationships between biomedical-molecular characteristics,
which would generally have n to n cardinality; thus, we did
not transfer them by transitive relationship. Also for the
transferred relationships, their cardinality is clearly defined
by the related semantic types and the underlying biology
(taking into account that what are related are the IDs of
the biomolecular entities and biomedical-molecular charac-
teristics). Thus, based on the rules defined above, we could
reliably transfer protein annotations to the genes that
encode the annotated proteins; furthermore, but only as
possible candidate annotations suggested for further study,
we could transfer genetic disorder annotations of genes to
the gene encoded proteins and to the interactions of pro-
teins (PPIs) encoded by genes annotated to the same
genetic disorder.

Control of error propagation during transitive
relationship automatic approach
Since errors and inconsistencies exist in public biomole-
cular database data [25,26], automatic processing of
these data can increase and propagate such errors and
affect the correct identification of new annotations
[27,28]. To avoid it, we implemented several control
procedures devoted to ensure high reliability of identi-
fied annotations. First, we focused the transitive rela-
tionship approach only on those annotations with
transitive semantic relationships and suitable cardinality
(1 to 1, or 1 to n), as illustrated and discussed above in
the Transitive relationship approach and its defined
rules section. Second, we applied our approach only on
quality checked and reconciled data, as the ones inte-
grated in the GPKB [14]. Third, we avoided considering
not current data (i.e. marked as obsolete by the data
source that provides them), or transferring annotations
that would be inconsistent with any of the available data
attributes. For example, we did not transfer any biologi-
cal functional annotation to genes classified as pseudo-
genes (i.e. non-functional genomic DNA sequences); we
did so to avoid transferring annotations that could be
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incorrect, although knowing to miss some correct ones.
In fact, we verified (data not shown) that in the public
databases in some cases the pseudogene classification is
not correct, or is assigned to genes that have both protein
coding and pseudogene alleles, i.e. which are polymorphic
genes. Examples of such genes are the olfactory receptor
family members (e.g. OR10J4, OR1P1, OR2J1, OR4E1,
OR4K3, OR4Q2 and OR51J1) whose allele biological var-
iation can partially explain the different olfactory capabil-
ities among subjects. Finally, from the transitive
relationship approach we also excluded annotations
derived only from previous automatic inferences, e.g. GO
annotations of proteins provided by GOA, or pathway
annotation of proteins from Reactome, with only evi-
dence code “Inferred from Electronic Annotations“ (IEA).
A recent paper [31] shows that GO computationally
inferred annotations of proteins have reached a quality
that might be comparable to that of the GO curated
annotations which are not based on experimental evi-
dence; yet, we prefer not taking into account GO annota-
tions with only IEA evidence, since they are usually
considered less reliable than the other GO annotations
(also the EMBL-EBI QuickGO tool provides separate eva-
luations of co-occurring GO terms based on non-IEA
annotations only, e.g. http://www.ebi.ac.uk/QuickGO/
GTerm?id=GO:0070531#term=stats). Accordingly, we
also avoided to recursively consider, in subsequent transi-
tive relationships, annotations derived in previous transi-
tive relationship steps (e.g. a new annotation A ® C that
was transferred on the basis of a transitive relationship
A ® B ® C is not considered in a transitive relationship
A ® C ® D). Furthermore, to avoid redundancies, in
the case of ontological annotations, we also checked if an
annotation, which would be detected as missing by tran-
sitive relationship, is between a biomolecular entity and
an ontology term that in the ontology structure is ances-
tor of a term already annotated to that biomolecular
entity. In this case, we avoid detecting such annotation as
missing by transitive relationship. In fact, for the ontolo-
gical annotation inheritance property (which is also
known as “true path rule” for the Gene Ontology annota-
tions), such annotation is implicitly included in the anno-
tations already available for that biomolecular entity.

Co-functional assessment of genes with transferred and
known pathway and biological function annotations
Reliability of the gene pathway annotations transferred
through the transitive relationship approach was evaluated
as follows. First, we extracted all the lowest common ances-
tors (LCAs) [32] between each of the known GO functional
annotations of each gene gi with a transferred annotation
to a pathway P and each of the known GO functional
annotations of each gene Gj known to be involved in P. We

considered the level in the GO hierarchy of each of these
LCAs (taking the higher level when a LCA has multiple
GO levels) and calculated the maximum level (MaxLgi-Gj)
of the LCAs of each gi-Gj gene pair. Next, for each gene gi,
we computed the maximum (MaxLgi) and average (AvgLgi)
of these MaxLgi-Gj levels. MaxLgi and AvgLgi provide evi-
dence of the specificity of the most specific functional fea-
ture shared between a gene with a transferred annotation
to a pathway and at least one (MaxLgi), or all on average
(AvgLgi), of the genes known to be involved in that path-
way. The higher MaxLgi (and to a certain extent AvgLgi) is,
the more evidence exists that supports the reliability of
transferring the annotation to that pathway to gene gi.
Furthermore, we compared such evidence with the equiva-
lent one available for the genes known to be involved in a
pathway. Towards this goal, we repeated the same
described evaluation for each gene Gj, by extracting the
LCAs between each of its known GO annotations and each
of the known GO annotations of each of the other genes Gj

known to be involved in the same pathway P. Then, for
each gene Gj, we likewise computed the maximum
(MaxLGj) and average (AvgLGj) of the levels in the GO
hierarchy of the lowest of these LCAs for each gene pair.
Finally, we compared the distributions of quantity and per-
centage of pathway annotations transferred to genes gi (and
of known pathway annotations of genes Gj) over all MaxLgi
(MaxLGj) and AvgLgi (AvgLGj) levels, respectively.
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