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Abstract

Background: Intracellular zinc concentration and localization are strictly regulated by two main
protein components, metallothioneins and membrane transporters. In mammalian cells, two
membrane transporters family are involved in intracellular zinc homeostasis: the uptake
transporters called SLC39 or Zip family and the efflux transporters called SLC30 or ZnT family. ZnT
proteins are members of the cation diffusion facilitator (CDF) family of metal ion transporters.

Results: From genomic databanks analysis, we identified the full-length sequences of two novel
SLC30 genes, SLC30A8 and SLC30A 10, extending the SLC30 family to ten members. We used an
expressed sequence tag (EST) data mining strategy to determine the pattern of ZnT genes
expression in tissues. In silico results obtained for already studied ZnT sequences were compared
to experimental data, previously published. We determined an overall good correlation with
expression pattern obtained by RT-PCR or immunomethods, particularly for highly tissue specific
genes.

Conclusion: The method presented herein provides a useful tool to complete gene families from
sequencing programs and to produce preliminary expression data to select the proper biological

samples for laboratory experimentation.

Background

Zinc is involved in many cellular processes as a cofactor of
numerous enzymes, nuclear factors and hormones and as
an intra- and intercellular signal ion [1,2], and hence, is a
very important component of cell viability. However,
since both zinc excess and deficiency could be toxic, local
intracellular zinc concentrations must be strictly regu-
lated. The two main protein components involved in zinc
homeostasis are metallothioneins, zinc transporters [3],
and specific, gated, zinc permeable membrane spanning
channels [4,5]. Metallothioneins play an important role

in zinc transport, storage and distribution [6]. Zinc trans-
porters are transmembrane proteins, which ensure zinc
ions carriage across biological membranes. Some trans-
porters allow intracellular uptake of zinc, while others
permit cellular efflux of zinc. Proteins involved in cellular
uptake of zinc have been characterized in plants, yeast and
mammals [7]. In mammalian cells, seven homologous
zinc export proteins, named ZnT-1 to -7 have been discov-
ered (for review see [3]). These proteins are members of
the SLC30 solute carrier subfamily of the CDF family (Cat-
ion Diffusion Facilitator), and share the same predicted
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structure, with six membrane-spanning domains and a
histidine-rich intracellular loop between helixes IV and V,
excepted for ZnT-6 which retains a serine-rich loop [8]. It
is still controversial whether mammalian ZnT proteins are
truly transporters or proteins controlling zinc transporta-
tion through other channels [9]. However, recent works
demonstrated that bacterial ZitB and CzcD proteins, two
members of the CDF family are antiporters catalyzing the
obligatory exchange of Zn2+ or Cd2+ for K+ and H+ with a
1:1 stoichiometry [10,11].

ZnT-1 is an ubiquitous zinc transporter located in the
plasma membrane and ensures zinc efflux from the cell
[12]. ZnT-2 equally confers zinc resistance, although it is
located in acidic endosomal/lysosomal vesicles and
allows vesicular zinc accumulation inside the cell [13].
ZnT-3 and ZnT-4 are more closely related to ZnT-2 than
ZnT-1. ZnT-3 is tissue specific and mainly located in brain,
in the membranes of zinc-rich synaptic vesicles within
mossy fiber boutons of hippocampus [14] and in testis
[15]. Conversely, ZnT-4 is expressed ubiquitously [16],
but higher levels of ZnT-4 are found in brain, mammary
glands and epithelial cells [6]. This transporter has been
shown to be essential in mammary epithelia for regulat-
ing milk zinc content in mice [17]. ZnT-5 is an ubiquitous
zinc transporter localized in intracellular non-acidotropic
vesicles and found to be abundantly expressed in pancre-
atic beta cells [18]. A sixth member of the ZnT family,
ZnT-6 has been described and is responsible for the relo-
cation of cytoplasmic zinc into the trans Golgi network
and the vesicular compartment [19]. Recently, ZnT-7 was
also described as a Golgi apparatus protein involved in
accumulation of zinc [20].

From genomic databanks analysis, we identified two
novel SLC30 genes, SLC30A8 and SLC30A10. During the
preparation of this article, another SLC30 gene, SLC30A9,
appeared in Genbank [21,22] under the accession
number BC016949, extending the family to 10 genes.
However, the homology for this latter gene to the other
SLC30 sequences is very low. To further characterize these
new genes and prove the validity of this method, we took
advantage of the ever-increasing wealth of information
available through the human expressed sequence tag data-
base (dbEST). Assuming that cDNA libraries used for EST
sequencing are representative of all mRNA transcripts in a
given tissue [23], we determined SLC30 family mRNA
transcript levels in different tissues by EST database anal-
ysis for all the already known ZnTs (except for ZnT-9) and
compared their in silico expression profiles with experi-
mental data on human tissues. For most cases, the experi-
mental data correlate with in silico analysis. Hence, this
strategy provides valuable informations and the method
presented herein is a useful tool to complete gene families
from sequencing programs and to produce preliminary
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expression data before selecting the proper biological
samples for laboratory experimentation.

Results and Discussion

An approach for discovering new genes is to search the
whole human genome sequence for homologous
sequences of known genes or known gene families by in
silico methods. Recent publications demonstrate the effi-
ciency of this technique to find new genes [24,25]. Using
the different already known ZnT c¢DNA and protein
sequences in human, mouse or rat as a bait for a BLASTN
or a TBLASTN search of the human genome databanks, we
discovered two DNA sequences encoding new putative
zinc transporters belonging to the ZnT family. These new
genes were named SLC30A8 and SLC30A10, encoding the
proteins designated ZnT-8 and ZnT-10 respectively.
Human SLC30A8 cDNA was found in the contig
AC027419, which allowed us to localize the SLC30A8
gene to human chromosome 8 at the position q24.11
(Table 1). The gene contained 8 exons, spanned 37 kb and
is predicted to code for a 40.8 KDa protein (Fig. 1). The
sequence data reported for human ZnT-8 mRNA was sub-
mitted to Genbank under the accession number
AY117411. Human SLC30A10 cDNA was found in the
contig AC093562, which allowed us to localize the
SLC30A10 gene to human chromosome 1 at the position
q41. The gene contained 4 exons, spanned 15 kb and was
predicted to code for a 52.7 KDa protein (Fig. 1). The
sequence for ZnT-10 mRNA was submitted to Genbank
under the accession number BK004163. We also localized
ZnT-2 gene (SLC30A2) in human genome to chromo-
some 1 at the position p36.11 (Table 1) by homology
with the rat ZnT-2 sequence [13]. The predicted cDNA and
protein sequences are identical to the NM_032513 nucle-
otide and NP_115902 protein entries of Entrez database.

We then aligned the predicted sequence of the nine
human ZnT proteins! with the ClustalW program. When
compared, all the proteins of the family are predicted to
have a conserved structure, with a common pattern com-
posed of 6 transmembrane helices and a histidine-rich
domain between helices IV and V. Both N- and C termini
are predicted to be located on the cytoplasmic side of the
plasma membrane. Alignments of amino acids compos-
ing the fifth and sixth transmembrane domains illustrate
this homology (Fig. 2A). However, despite very well con-
served residues, the homology between amino acid
sequences can differ from one protein to another. For
example it was known that ZnT-5 exhibited 15 transmem-
brane domains, but the region homologous to the mem-
bers of the family is located in the carboxyl-terminal
portion and is predicted to adopt six membrane-spanning
domains. The histidine-rich loop is replaced by a serine-
rich loop for ZnT-6. We report the presence of a loop rich
in basic residues for ZnT-10, while ZnT-8 keeps the
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Table I: Human SLC30 family genes. Chromosomal localisations, number of exons, number of histidine residues between the fourth and
the fifth predicted transmembrane domains (TMIV and TMV) and Genbank accession number of SLC30 genes.

Gene name Chromosome localisation Exons Histidine residues between TMIV ~ Genbank Accession Number  References
and TMV
SLC30AI 1 q32.3 2 10 AF323590 [12]
SLC30A2 | p36.11 8 3 NM_032513 [13]
SLC30A3 2p233 8 3 NM_003459 [15]
SLC30A4 15 q2l.1 8 5 AF025409 [17]
SLC30A5 5qll.2 15 15 AY089991 [18]
SLC30A6 2 p21-22 nd | NM_017964 19
SLC30A7 I p21.2 I 21 AY094606 [20]
SLC30A8 8 q24.11 8 3 AY117411 a
SLC30A9 4pl2-pl3 nd 0 NM_006345 [22]
SLC30A10 I q4l 4 0 BKO004163 a

a) this study nd: not determined

SLC30A48
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Genomic organization of SLC30A8 and SLC30A 10 genes.
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ZnT-1 (244) NMBGc VEL e A V1 VVNLVF S WK
ZnT-2 (167) s VYA A1 eB)] F M Q ﬁLVAYIL KB E
ZnT-3 (231) s vida Al v ¢ o LEYs BB LAASI L xBd o
ZnT-4 (270) Avida Al v G » k% v L1 ANy 1 JERE B £
ZnT-5 (588) N MG VR L AR T I IVSTVLEEQF GW TMV
ZnT- 6 (194) FLPRMNP I afararLcr TyMLBlET NNY
ZnT-7 (233) ILéGVL No ITIASIMM NFGL
ZnT-8 (213) s VA ARl v B L F 1 sRAL 1 sP L1 KEE
nT-10  (236) NIRGcvLL [eB) A vvev: TIN1 1 FEIv LEL
ZnT-1 (294) Y LY vvmvcel LYy TR YBLPKESs AL
ZnT-2 (198) Y v FVFS vilcTRIL T I ARP VI LV
ZnT-3 (262) AN rLFsillc Alc ABRTHRPV LR
ZnT-4 (301) A D YVFS LPAvArTEAFRI 1T wWiYT v vIlI
ZnT-5 (619) 1 ) LFIA I FLEVVEdLI KBDIA C QV TMVI
ZnT-6 (225) A VI I AT ALMTFGIMYJIMS VYS GKV
InT-7 (264) 1 ) I LI A 1V VILRESVG
ZnT-8 (244) il A D FIFS VA I TIAkKFs 1 L
InT-10  (274) y1 viMVvElT 1 BsBEAFBELI KETAA
ZnT-1 (137) ESGFSQDSGEG sPlccBlcBcllc L PKGPRVKSTRPGSSDINVAPGEQGPDQEETN
ZnT-2  (150) ------- schBlcEIsBlcTTNQQ - - - - - - - - oo
ZnT-3 (201) ------- AGPPEISElGSRGAEYAPL - - - - - - - - oo oo
ZnT-4 (239) ------- scllrElsBlsBlstpsNSPTR- - - - - - - - - - oo -
ZnT-5 (542) - ----~- - g aBlsEla GASQGSCESSEESESMMEGESDEG ———————————————
ZnT-6 (158) - ------ KPFAYVSEAASTSWLOQERIVADLS - - - - - - - - - - - oo oo oo -
ZnT-7 (162) ------- GGEGE EGsGﬂcﬂsﬂsLFNGALDQAEGEVDECESEEVKEGAAESEDE
ZnT-8 (199) ------- RCLGEINBIKEVQAN - - - - - o o o o oo
ZnT-10 (136) ------- CAAWFACCLRGRSRRLQQRQQLAEGCVPGAFGGPQGAEDPRRAADPT
ZnT-1 (191) TLVANTSNSNGLKLDPADPENPRSGDTVEVQVNGNLVREPDEIMELEEDRAGQLN
ZnT-2 (163) -----=------ D - s
ZnT-3 (218) -----=------ EEGPEEPLP-—----- - oo - - oo oo oo oo o — o LGNTS
ZnT-4  (257) ----===- -~ GSGCERNBlG---- - - oo e oo oplsLa
ZnT-5 (574) - ------—-- BcBlsBlecsace---------- -~ - oo GMNAN
ZnT-6 (181) - - ---=--- - - - RSLCGIIPG-------- - - - - - - mmm oo oo o= o LSSIF
znT-7 (209) ARGEGEIFEIsBEDGPSLKETTG-- - - - - - - o - oo oo PSRQI
ZOT-8 (212) = = = = = = = = = == m o m e e e e e m e e e e e e e e e e o mmm e m— oo Als
ZnT-10 (183) APGSDSAVTLRGTSVERKREKGATVFANVAGDSFNTQNEPEDMMKKEKKSEALN
Figure 2
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Partial alignment of ZnT proteins A: Partial amino acid alignment of transmembrane domains V and VI from ZnT proteins
identified in Homo sapiens was performed with ClustalW. Putative transmembrane domains were determined by the TMPred
program [38]. Residues conserved in more than 50 % sequences are boxed in black, while semi-conservative substitutions are
boxed in grey. B: Partial amino acid alignment of histidine rich-loop domain from ZnT proteins identified in Homo sapiens was
performed with ClustalW. The histidine residues are boxed in black, while Serine residues are boxed in grey. For ZnT-10, the
basic residues are underlined.

characteristic histidine-rich loop (Fig. 2B). The histidine
content is also very different, from no histidine residue for

ZnT-10 to 20 histidine residues for ZnT-7 (Table 1).
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ZIP-2 NP_055394 Outgroup

ZnT-9 BC016949

ZnT-6 NP_060434

ZnT-1 Q9Y6M5

ZnT-10 BK004163

ZnT-4 014863

ZnT-8 AAM80562

ZnT-2 NP_115902

ZnT-3 Q99726

100.0
75.0
100.0
— 99.4
70.8 -
70.0
100.0
0.1

ZnT-5 AAM09099

Figure 3

ZnT-7 AAM21969

Dendrogram of ZnT proteins. Bootstrapping (2000 replicate sets) and calculation of the consensus tree by the neighbour-
joining method were performed with the DAMBE program. The numbers indicate bootstrapping values as a percentage at
internal nodes. The scale of the branch length is given in amino acid substitutions per site. Accession numbers in Entrez data-
banks are indicated for protein sequences excepted for ZnT-10 whose accession number corresponds to the cDNA sequence.

Zip-2 protein sequence was used as an outgroup.

Using the amino acids alignment, a phylogenetic tree for
the 10 ZnT sequences was calculated by the neighbour-
joining method (Fig. 3). Zip-2, a zinc membrane trans-
porter belonging to the SLC39 family was used as an out-
group. From this analysis, we can delineate three
subfamilies: ZnT-1 and ZnT-10; ZnT-5 and ZnT-7; ZnT-2,
7ZnT-3, ZnT-4 and ZnT-8. This result was confirmed by
similarity analysis of the amino acid protein sequences.
The subfamily ZnT-2, -3, -4, -8 exhibited the highest
homologies, with the highest score of 53.5 % between
7ZnT-2 and ZnT-8. The homology between ZnT-1 and ZnT-
10 is high with a score of 48.3. But, ZnT-5, -6 and -7 are

less homologous, with a highest score of 27.8 % between
ZnT-5 and ZnT-7. ZnT-9 has the lowest homology with
the other ZnTs. Despite an overall shared topological
structure, the similarity between the subfamilies is rela-
tively low.

The in silico characterization of SLC30 tissue expression
pattern was performed by an expressed sequence tag (EST)
data mining strategy. The predicted SLC30 transcripts
(ORF, 5' and 3' UTRs) were queried against the human
EST database using BLASTN. We obtained a total of 426
significant hits with a bit score >150 and an E-value
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Table 2: Statistics for in silico analysis of SLC30 genes tissue expression. The total EST are the significant ESTs (a bit score >150 and an
E-value <0.001) resulting from BLAST analysis with SLC30 sequences. The EST sequenced from libraries prepared from pooled cDNA
tissues or derived from other libraries were rejected. The number of libraries was determined from information regarding each cDNA

library retrieved from EST data.

SLC30A1 SLC30A2 SLC30A3 SLC30A4 SLC30A5 SLC30A6 SLC30A7 SLC30A8 SLC30A10
Total EST 43 47 29 35 130 50 20 58 14
EST rejected 20 22 2 20 30 Il 7 2 6
EST analyzed 23 25 27 I5 100 39 13 56 8
Number of libraries 21 12 Il Il 65 26 Il 10 5
average EST/library 1.10 2.08 2.45 1.36 1.54 1.50 1.18 5.60 1.60
°
£ £ H
2 z 8 2 S >
%’ © g § o x ﬁ o g '.g
> . ] o = [ o 5 H S mo @ =
T T ] £ - S [ c > 2> 9 £ 0 o 2t R E S =
S D=3 ¢ 9o £ @ 2B c < s @ ESC L 580 Q2>5% 0+ O £ 3 Q2 o 3
L >83T ccs 8ol . % T s S O95 0 cEg@cgcec S8 L e S h S5
Q ® g9 4 T s 9 RGN 2
2 idodlcnd563 80 eee8853522388sabdEasRES
SLC30A1
SLC30A2 0
SLC30A3 || 1to 1.5
SLC30A4 1.6to 2
SLC30A5 211025
SLC30A6
2.
SLC30A7 6to3
SLC30A8 >3.1
SLC30A10
Figure 4

In silico determination of SLC30 genes tissue expression. The SLC30 sequences (ORF, 5' and 3' UTR) were used for a
BLASTN search of the human EST database through NCBI BLAST web service [36]. The significant ESTs (a bit score >150 and
an E-value <0.001) were sorted and information regarding each cDNA library was retrieved from either the human Unigene
databank [40] or from the respective company catalogue. The calculated frequency of each mRNA transcript for a given tissue
is represented by grey levels intensities ranging from no occurrence (white) to values higher than 3.1 occurrences (black).

<0.001. The ESTs sequenced from libraries prepared from
pooled cDNA tissues or derived from other libraries were
rejected for the analysis. 306 EST sequences were consid-
ered for tissue origin. The numbers of EST clustered for
each Zinc transporter sequence are very different, ranging
from 8 ESTs for SLC30A10 to 100 for SLC30A5. The aver-
age number of ESTs per library ranges from 1.1 for
SLC30A1 to 5.6 for SLC30A8 (Table 2).

We found SLC30A1 expression in 18 tissues out of 36,
indicating a very wide expression pattern (Fig. 4). ZnT-1
was demonstrated to display a broad tissue distribution. It
is particularly abundant in intestine, liver [26] and in the
brain [27]. On the other hand, no ZnT-1 transcripts were
expressed at detectable levels in lamina propria intestinal
cells or in many kidney cells. ZnT-1 gene is controlled at

the transcriptional level by zinc status. The elevation of
extracellular zinc concentration results in a rapidly and
dramatically increase of SLC30A1 mRNA levels, mediated
by the transcription factor MTF-1, a sensor of zinc level
[28]. So, the basal evaluation of SLC30A1 expression by
EST analysis may not reflect the real expression which
depends on extracellular conditions.

For SLC30A2 expression, we calculated a highest level in
placenta and high levels in eye, kidney and ovary. Experi-
mental results indicate an expression of ZnT-2 in intes-
tine, kidney, seminal vesicles and testis [13]. In rats,
SLC30A2 mRNA expression is limited to small intestine,
kidney, placenta and liver, while SLC30A2 mRNA levels
were increased several fold only in small intestine, liver
and kidney upon a single oral dose of zinc [16]. The very
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high level of SL30A2 expression in placenta presumably
indicated an important role of ZnT-2 transporter in zinc
exchange between maternal tissues and foetus.

The results for SLC30A3 display a good correlation
between in silico analysis and experimental data. We deter-
mined a restricted expression with very high levels of
expression in brain and testis, an expression pattern previ-
ously identified by northern blot and reverse tran-
scriptase-PCR analysis [15]. In brain, SLC30A3 mRNA is
most abundant in the cerebral cortex and in synaptic ves-
icle membranes within mossy fiber boutons in the
hippocampus [14]. Zinc is secreted from these vesicles in
response to high frequency stimulations [29,30].

ESTs for SLC30A4 were founded only in few tissues (B-
cells, muscle, ovary, parathyroid gland, stomach and tes-
tis) and the correlation with experimental data is very
poor. The highest level was calculated for testis tissue sam-
ple. Znt-4 was first thought to play an important role in
milk secretion. A nonsense mutation, leading to a trun-
cated form of ZnT-4, is responsible for the inherited zinc
deficiency in the lethal milk (Im) mouse [17,31]. In the Im
mouse, the maternal milk does not contain enough zinc
for the newborn mice to live. ZnT-4 is constitutively
expressed in human breast epithelial cells [32]. However,
in human no difference in ZnT-4 expression levels was
observed between lactating and resting breasts. In rats,
ZnT-4 is expressed ubiquitously and was refractory to
changes in zinc intake [16]. ZnT-4 is also expressed in
polarized enterocytes, in which it is localized in the mem-
brane of intracellular vesicles, the majority of which con-
centrates in the basal cytoplasmic region. The protein was
not founded in proliferating cells of the crypt, but was
detected in differenciated enterocytes of the villi, the appa-
rition corresponding to the junction crypt/villi.

From EST analysis results, SLC30A5 is ubiquitously
expressed, with high levels in kidney, liver, pancreas,
brain, skin, bone marrow and T-cells. We determined the
presence and the level of SLC30A5 mRNA by PCR
amplification of cDNA libraries prepared from different
human tissues [see additional file 1]. As expected from
calculated data, a SLC30A5 specific product was detected
at a high level in nearly all kind of tissues, thus confirming
the previously published results [18].

From in silico analysis, SLC30A6 displayed the highest lev-
els in germinal B-cells and colon and high levels in eye
and lung. In vivo, SLC30A6 mRNA has been detected in
liver, brain, small intestine and kidney. Western blot anal-
ysis indicated that ZnT-6 is present in mouse brain, small
intestine, kidney and lung [19].

http://www.biomedcentral.com/1471-2164/5/32

Low levels of expression were calculated for SLC30A7,
excepted in the colon and the eye. SLC30A7 mRNA
(Northern-blot) or PCR products were detected in the
heart, liver, spleen, plasma blood leukocytes, small intes-
tine, kidney, brain, lung, ovary, prostate and testis at a
very low level ([20] and see additional file 1). Recently, we
demonstrated an induction of SLC30A7 expression by
extracellular zinc deficiency [33].

SLC30A8 had a very high expression restricted to the pan-
creas. We detected a faint signal for four other tissues. We
then analyzed SLC30A8 gene expression by PCR using a
panel of 24 cDNAs prepared from different tissues. A spe-
cific PCR product was only detected in pancreatic tissue
sample (see additional file 2). This last result is highly cor-
related with in silico analysis.

From EST analysis results, SLC30A10 had a restricted
expression to fetal liver and fetal brain. It is the first zinc
transporter predicted to have a fetal restricted expression.
SLC30A10 and SLC30A1 have a high homology. At birth,
ZnT-1 protein is nearly undetectable and ZnT-1 expres-
sion increases at the end of the first postnatal week [34].
So, we speculate that ZnT-10 could play a role comparable
to that of ZnT-1 during fetal development.

Conclusions

From genomic databanks analysis, we identified two
novel SLC30 genes, SLC30A8 and SLC30A10, extending
the SLC30 family to ten members. We determined an
overall good correlation of ZnT in silico gene expression
with expression patterns obtained by RT-PCR or immu-
nomethods, particularly for highly tissue-specific genes.
As the average number of ESTs recovered per library was
relatively low (few copies of ZnT sequence per library), we
can not definitively conclude that tissues without ESTs for
a given ZnT do not express this gene at all. We have also
to keep in mind that the zinc status of the cells and, hence,
the adaptative mechanisms to extracellular zinc concen-
trations were usually unknown for sample tissues used for
RT-PCR experiments or EST sequencing programs. In con-
clusion, this method provides a useful tool to complete
gene families from sequencing programs and to produce
preliminary expression data to select the proper biological
samples for laboratory experimentation.

Methods

Genomic DNA and translated sequence analysis

BLASTN or TBLASTN [35] analysis were performed on the
NCBI web server [36] and the ENSEMBL web server [37]
with human ZnT-1 (AF323590 and Q9Y6MS5), mouse
ZnT-1 (U17132 and Q60738), rat ZnT-1 (U17133 and
Q62720), rat ZnT-2 (U50927 and Q62941), human ZnT-
3 (NM_003459 and Q99726), mouse ZnT-3 (U76007
and P97441), human ZnT-4 (AF025409 and O14863),
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mouse ZnT-4 (035149), rat ZnT-4 (O55174), human
ZnT-5 (AY089991 and AAMO09099), human ZnT-6
(NM_017964 and NP_060434) and human ZnT-7
(AY094606 and AAM21969) DNA or protein sequences.
The TMpred computer program [38] was used to analyze
and predict the transmembrane potential of the predicted
protein sequences [39].

EST analysis for in silico determination of SLC30 genes
tissue expression

The SLC30 sequences (ORF, 5' and 3' UTRs) were used for
a BLASTN search of the human EST database through
NCBI BLAST web service [36]. The significant ESTs (bit
score >150 and E-value <0.001) were sorted and informa-
tion regarding each c¢DNA library was retrieved from
either the human Unigene databank [40] or from the
respective company catalogue. Libraries prepared from
pooled tissue samples or derived from other libraries were
rejected from the analysis. The frequency of each mRNA
transcript for a given tissue was calculated. The ESTs were
also analyzed by the Gene2EST program [41] to precisely
locate the 5' and 3' starting ends of the transcript and the
spliced variants [42].

Sequences alignment and phylogeny

Predicted Homo sapiens ZnT protein sequences were
aligned using the clustalW program [43]. For phylogenetic
analysis, bootstrapping (2000 replicate sets) and calcula-
tion of the consensus tree were performed with the
DAMBE program by the neighbour-joining method [44].
Bootstrap analysis is based on multiple re-sampling of the
original data and is the commonest method of estimating
the degree of confidence in the topology of phylogenetic
trees. Zip-2 protein sequence (NP_055394) was used as
an outgroup.

Expression in human tissues

The presence and the level of SLC30A5, SLC30A7 and
SLC30A8 expression were determined by PCR amplifica-
tion of ¢cDNA libraries (Origene Technologies, Boston,
MA) prepared from different human tissues with Expand
high fidelity DNA polymerase (Roche, Meylan, France).
The specific primers were: 5'-CTG CIT TAG TCA TGG
GACTITTTG C and 5'-TAG AAC CTG GCA GGC ATCTTT
AAT C for ZnT-5, 5'-GAT GTC CAC CAT GAG AGA CTG
CIT C and 5'-CAT AAA GTC CAG AAG TGC TGT TCC TG
for ZnT-7, 5'-GAT GCT GCC CAC CTC TTA ATT GAC and
5'-CCA AGA CCA GGA TGG AAA AGA TGA for ZnT-8 and
5'-CCA AGG CCA ACC GCG AGA AGA TGA C and 5'-
AGG GTA CAT GGT GGT GCC GCC AGA C for B-actin.
The products were analyzed by agarose gel electrophore-
sis, stained with ethidium bromide and photographed
under UV light with a CCD camera.

http://www.biomedcentral.com/1471-2164/5/32
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Note
1 Excluding ZnT-9

Additional material

Additional File 1

Expression of ZnT-5 and ZnT-7 mRNA in human tissues. ZnT-5 and
ZnT7 mRNA expressions were assessed by PCR using cDNA libraries pre-
pared from different human tissues: Brain, heart, kidney, spleen, liver,
plasma blood leukocyte, lung, muscle, intestine, ovary, prostate, testis.
Specifically amplified products were visualized by agarose gel after ethid-
ium bromide staining. B-actin specific primers were also used as a control
to ensure equal template concentrations.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-5-32-S1.ppt|

Additional File 2

Expression of ZnT-8 mRNA in human tissues. ZnT-7 mRNA expression
was assessed by PCR using cDNA libraries prepared from different human
tissues: 1: Brain, 2: Heart, 3: Kidney, 4: Spleen, 5: Liver, 6: Colon, 7:
Lung, 8: Small intestine, 9: Muscle, 10: Stomach, 11: Testis, 12: Pla-
centa, 13: Salivary, 14: Thyroid, 15: Adrenal, 16: Pancreas, 17: Ovary,
18: Uterus, 19: Prostate, 20: Skin, 21: Plasma blood leukocyte, 22: Bone
marrow, 23: Fetal brain, 24: Fetal liver. Specifically amplified products
were visualized by agarose gel after ethidium bromide staining. f-actin
specific primers were also used as a control to ensure equal template
concentrations.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-5-32-S2.ppt]
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