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Abstract
Background: High-density DNA microarrays require automatic feature extraction
methodologies and softwares. These can be a potential source of non-reproducibility of gene
expression measurements. Variation in feature location or in signal integration methodology may
be a significant contribution to the observed variance in gene expression levels.

Results: We explore sources of variability in feature extraction from DNA microarrays on Nylon
membrane with radioactive detection. We introduce a mathematical model of the signal emission
and derive methods for correcting biases such as overshining, saturation or variation in probe
amount. We also provide a quality metric which can be used qualitatively to flag weak or untrusted
signals or quantitatively to modulate the weight of each experiment or gene in higher level analyses
(clustering or discriminant analysis).

Conclusions: Our novel feature extraction methodology, based on a mathematical model of the
radioactive emission, reduces variability due to saturation, neighbourhood effects and variable
probe amount. Furthermore, we provide a fully automatic feature extraction software, BZScan,
which implements the algorithms described in this paper.

Background
High-density DNA microarray technologies are now rou-
tinely used in medical and biological research [1-6]. They
provide a systematic means of exploring metabolic path-
ways and also allow more accurate prognosis in complex
diseases, typically cancer. However, the multiplicity of
technological platforms used as well as the down-sizing of
assays, which increases the noise over signal ratio, make
reproducibility and comparability of results harder to
achieve. Indeed, these have been put into question in

recent publications [7,8]. In particular [8] suggests that
data processing and feature extraction methodology are
important sources of non-reproducibility. It is therefore
important to provide algorithms and methods that reduce
variability in measurements as well as reduce human
intervention in the process of data acquisition. This is a
prerequisite to the goals of data sharing as promoted by
the MGED group [9-11].
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In this paper we focus on cDNA spotted Nylon microar-
rays combined with radioactive labelling of target mRNA
[12-27]. This DNA microarray technology is easy to set up,
cheap and allows a sensitive detection without target
amplification from lower amounts of mRNA target than
most other technologies [13,25]. This technology suffers
from a specific drawback, the overshining (or "neighbour-
hood") effect whereby signals from strong features and
their neighbours may mix together, making individual
features hard to discriminate. Less specific issues are also
present with this detection technology: scanner saturation
(signals may be stronger than the scanner's range upper
limit), noise and variability of the measured signal as a
function of the amount of spotted probe. However, radi-
oactive detection is not impaired by the presence of dust
on the array surface, unlike fluorescence detection.
Another advantage of the radioactive signal which has
been overlooked so far is the very distinctive shape of a
radioactive spot, which can be theoretically modelled and
experimentally fitted to extract the fundamental parame-
ters of the signal source. In this paper, we take advantage
of this approach to compute corrections to the various
sources of variability identified above. In addition we pro-
vide a quantitative measure of signal quality and show
how this can be used in gene expression data analysis.

Methodology
Our approach in this paper is based on a theoretical fit to
the measured signal which has been deduced from a
model of radioactive emission (see Figure 1). We there-
fore have an alternative way of quantifying a feature's sig-
nal: rather than integrating the measured intensities over
the feature's surface, we integrate the fit function. A sec-
ond ingredient of our methodology is the use of an auto-
matically adjusted diameter for each feature, thereby
modulating the surface over which signal or fit are inte-
grated in the process of extracting a single intensity value
for each feature. We also provide a qualitative (present/
absent) flag for each spot which evaluates if the feature's
shape is spot-like or not, and a quantitative quality metric
QM on a 0 to 1 scale. This is used to evaluate the quality
of the measured signal, compared to an ideal radioactive
spot.

Software Implementation
All the methods presented in this paper have been imple-
mented in the software BZScan, which is an open source
Java tool (under the X.org license http://www.x.org/
Downloads_terms.html, a copy-left, GPL-compatible
license): the Java code sources and the compiled jar file
are available on the web site http://tagc.univ-mrs.fr/bioin
formatics/bzscan and freely re-distributable. It can be run
directly from the latter web site using Java Web Start.

BZScan is a fully automatic feature extraction platform in
the sense that it locates and quantifies features
corresponding to a predefined array design in a single
operation. It detects and proposes corrections to all major
biases: overshining, saturation, variable spot diameter. It
provides analysis tools (quality flags and metrics, plots
and statistics) for quality control, and it exports data in
MAGE-ML format [9] for better interaction with third
party software and databases. Furthermore, a whole set of
images can be processed in walkaway "batch mode" with-
out any user intervention (up to 300 images are processed
in 24 hours in fully automatic mode on a standard PC).
Automation improves reproducibility and standardisa-
tion by reducing user-dependent biases. BZScan is there-
fore well-suited to high-throughput MIAME-compliant
[28] research projects.

BZScan is more automatic than Xdigitise [29] or FUJI's
ArrayGauge (the latter does not provide batch quantifica-
tion nor fully automatic feature location) and offers more
analysis and correction functionalities. It is as complete a
tool as GridGrinder http://gridgrinder.sourceforge.net/
but additionally offers radioactivity-specific insight and
runs on all operating systems. While several different
overshining correction schemes [17,21] have been pro-
posed, few softwares offer variable spot diameter quanti-
fication and saturation correction.

Results and Discussion
We have designed a feature extraction benchmark based
on several hybridisations, spotting patterns and scanning
parameters. It provides data for a systematic exploration
of saturation, overshining and spotting effects. Three array
types have been used, named Array A1–A3 and described
in the Methods section.

Comparison with alternative quantification softwares
We have compared quantifications of the same oligonu-
cleotide hybridisation (Array A1) with FUJI's ArrayGauge
software (which was routinely used in our laboratory) and
with our method (BZScan software), see Figure 4. The cor-
relation in log between the two outputs is 0.996 for the
image intensity values and 0.964 for the fitted intensities.

Remark that using the intensity values amounts to using
the same quantification method as in ArrayGauge. This
correlation is therefore a test of the consistency between
ArrayGauge's lengthy manual adjustment of spot
positions and BZScan automatic feature location. The
high correlation between the two outcomes confirms that
all spots where rightly located by the automatic search.
This is important for the quality of the fit. When using the
fit for signal quantification, the correlation with ArrayG-
auge stays high because only few spots need any of the
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corrections discussed below. These few spots may how-
ever yield important biological information and reliable
quantification of all of them is needed.

Correction of saturation
Scanners have a limited measurement range which a par-
ticular signal may exceed. This results in a saturation effect
whereby some features are underestimated by conven-
tional extraction methods [19], see Figure 1, right part. We
propose to correct this effect by using a mathematical fit
computed on unsaturated values only, and then integrat-
ing the values of the fit function, which are allowed to
grow beyond the scanner limit. To demonstrate the valid-
ity of this approach, we have used increasing exposure
times for the same hybridisation of Array A1. Figure 5
shows the effect of saturation by conventional methods
and the efficiency of our correction scheme.

Moreover, the spot quality factors QM (see Methods)
show that longer exposures improve spot morphology
(upper part of Figure 6). This means that we can improve
signal quality of weak sources by using longer exposures
without losing on strong features because of saturation.
Remark that the minimum QM seems to be higher at
higher densities. This is because the noise over signal ratio

tends to be lower when signal plus background is high.
Therefore spots near the background level have a higher
QM if the background level is higher.

Correction of overshining
The phenomenon of overshining, which is specific to the
radioactive detection technology, is well-documented
[17,19,21], see Figure 1, left part. In particular it is the
main limitation on spotting density in such microarrays.
Overshining is due to the slow spatial decay of radioactive
signals (a power law, see equation (1)) which implies that
a strong spot may produce a non-negligible signal over the
surface area of its neighbours, resulting in an overestima-
tion of the latter features. High-density spot patterns
therefore yield measured signals which are convolutions
of several independent sources, and the deconvolution, if
required, is a non-trivial task (see [17] for a direct
approach based on Fourier transform).

To investigate the overshining effect, we have used Array
A2 on which the same 96 spot pattern was replicated five
times at three different densities: 375 µm interspot dis-
tance (in triplicate), 750 µm and 1500 µm interspot dis-
tance. Comparison of the same spots at low and high
density clearly shows the effect of overshining (Figure 7):

3D representation of our algorithmsFigure 1
3D representation of our algorithms. Vertical scale is signal intensity. The wireframe is the fit and the solid surface is the 
measured signal. Left: overshining correction scheme. The fit is extended under the neighbouring spot and determines the 
amount of signal due to overshining. Right: Saturation correction scheme. The fit extends beyond the saturation limit and 
reconstructs the expected shape of the spot.
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some features are overestimated at the higher density, and
they actually correspond to neighbours of very strong
spots. We see in Figure 6 (lower part) that signal quality
(as measured by the QM) is mostly unaffected by varia-
tions in spotting density.

We can detect and correct the overshining effect in the fol-
lowing way: feature F has four nearest neighbours. The fit
to a neighbour's intensities is extended and integrated
over the surface area of F, thereby defining the "potential
correction" to F. If this correction is large relative to the
maximal value of the neighbour's fit, the correction is sub-

Array designsFigure 2
Array designs. From top to bottom: Array A1, Array A2 and Array A3 (oligonucleotide hybridisations).
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tracted to the quantification of F. This is repeated for each
of the four neighbours of F. This scheme significantly
reduces the variability (Figure 7). Out of the 384 spots of
Array A2, 19 were detected as affected by overshining in
the 375 µm density pattern. Correcting them as described
above increases the correlation in log with the 1500 µm
pattern from 0.940 to 0.942 (maximum correlation
achievable by changing only those 19 data points is
0.947).

Other proposals have been made, for example [21] which
is more empirical and less adaptive and therefore intro-
duces more variability in the data, and [17] which itera-
tively applies Fast Fourier Transform (FFT) to the image
data and is therefore computationally heavier for high-
throughput studies (tens of hours per image according to
their data).

Correction of variability in spotted probe amount
It is a known fact that the measured signal varies with the
amount of probe fixed onto the array [19,21,30],
although a strict proportionality is maybe not expected
because of limited spotting and hybridisation efficiency
and limited probe accessibility on the array surface. Some
increase in the signal intensity should however be
observed when a larger amount of probe has been spot-
ted. However, the feature extraction does not always faith-
fully reflect this, resulting in a non-linear bias which is
hard to correct by normalisation. We have used Array A3
as an experimental test of signal to probe amount depend-
ence. Decreasing volumes of the same PCR product (30 µl
to 0 µl) diluted in complementary amounts of water (0 µl
to 30 µl) were spotted on the same array. Figure 8 shows
that our fit improves on more direct methods. This is
mostly due to the automatic diameter detection (equation
(2), data not shown).

Quality Metric and clustering
We can use our QM formula (see Methods) to produce
EWEIGHTs in clustering algorithms by taking the median
QM over each array; similarly GWEIGHTs are computed
by taking the median gene QM. Theses weights modify the
measure of similarity used in clustering algorithms by giv-
ing more weight to well-measured genes and less to the
noisier ones. This affects the clustering results as exempli-
fied in Figure 9. We observe that clusters are much better
delineated when using those weights, and that a noisy
experiment has a lesser influence on clustering.
EWEIGHTs appear to have more impact than GWEIGHTS
in this particular experiment.

See in particular the cluster highlighted in blue at the bot-
tom of the "unweighted" figure: it is entirely determined
by the first sample (column). This sample happens to
have a low QM and no such cluster appears on the

Spotting pattern for Array A2Figure 3
Spotting pattern for Array A2. Each color represents 
one complete 384 spot pattern.
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"weighted" figure. Since the different columns in the data
actually represent the same measure, that cluster had to be
spurious and caused by noise. The EWEIGHTs applied
effectively down-weight columns with a higher average
level of noise.

Nevertheless, the best use of the QM would be to weight
each individual spot (not using a Gene/Sample median as
was done here). Unfortunately most currently available
software do not offer the choice of weighting each spot
individually.

Conclusions
We have investigated several sources of non-reproducibil-
ity in gene expression measurement by cDNA microarrays
on Nylon membrane with radioactive detection.

A mathematical modelling of the radioactive signals
allows us to faithfully fit the signal. This fit provides a
straightforward handle on several drawbacks of the tech-
nology: saturation (by reconstructing the missing signal
beyond the saturation limit), overshining (by reconstruct-
ing the signal below the influenced feature) and spotting
variability (by automatically adjusting the integration
range to the source size). Additionally, it provides a direct
method for estimating the measurement quality, which
we have called QM. This can be used qualitatively
(remove bad signals from the data) or quantitatively (by
defining weights used in clustering algorithms).

Our methods have been successfully applied to microar-
rays from various commercial or home-made sources (see
http://tagc.univ-mrs.fr/bioinformatics/bzscan). Moreo-
ver some of the methods presented in this paper can be
readily applied to the more widely used glass slide arrays
with fluorescent detection. It requires "blurring" the spots
by convolution with a function such as equation (1). This
preserves the integrity of the signal and smoothes out
local irregularities and asymmetries. Feature detection
and quantification can then be performed as described
above, with the advantage that overshining rarely occurs,
but noise, spotting effect and possibly saturation are as
prominent as with any other technology.

Methods
Detailed protocols can be found in [14,23].

Array preparation
Spotting of PCR products from 384-well plates was done
using either a GMS 427 (Affymetrix) or a MicroGrid II
(BioRobotics) robot (see arrays details below), onto
precut Nylon membranes (Pall) of size 72 × 18 mm2.

Target labelling and hybridisation
Two types of hybridisations were performed. The first,
referred to as "oligonucleotide hybridisation" in the
remainder of the paper, used the oligonucleotide LBP9: 5'-
ACTGGCCGTCGTTTTACA-3' as target sample. This
sequence is complementary to a sequence present in all

Software comparisonFigure 4
Software comparison. FUJI's ArrayGauge quantification against two BZScan quantification modes. Image intensities (left) 
and fit intensities (right). Well-shaped spots are in red, badly shaped spots in green.
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Saturation correctionFigure 5
Saturation correction. Two hybridisations were scanned after two different exposure times each (6 h against 100 h for an 
oligonucleotide hybridisation and 8 h against 70 h for a cDNA hybridisation). The image quantification mode saturates while 
the fit quantification preserves a linear increase in signal. The red points are detected as present in both experiments, the light 
green in one of the experiments and the dark green in neither (see Image Processing section for a description of this flag). Blue 
lines indicate background levels (median background computed by the fit equation (1). Notice that saturated spots are 
detected as absent in the longer exposures because of their flat top.
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PCR products spotted on our membranes. These hybridi-
sations are normally used to calibrate the amount of PCR
probe spotted at each feature location. These

oligonucleotide samples were labelled with  ATP

at the 5' end using T4 polynucleotide kinase.

Distribution of QM valuesFigure 6
Distribution of QM values. Quantile plots (20 quantiles) of QM for the same hybridisation scanned after different exposure 
times (6 h against 100 h for an oligonucleotide hybridisation and 8 h against 70 h for a cDNA hybridisation) and for the hybrid-
isation on the same spotting pattern replicated at two different densities (375 µm and 750 µm inter-spot distance).
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The second kind of hybridisation performed, referred to
as "cDNA hybridisation", used cDNA samples obtained
by reverse transcription of mRNA (specific sample sources
are detailed below). The labelling of cDNA samples is per-

formed during reverse transcription with  dCTP.

Arrays and samples
See Figure 2 for sample scans of oligonucleotide hybridi-
sations, which reveal the spotting patterns.

Array A1 was spotted with the MicroGrid II robot. Each of
its 64 pins spotted a 12 × 12 zone resulting in a pattern of

Overshining correctionFigure 7
Overshining correction. The same spotting pattern at three different densities: 375 µm, 750 µm, and 1500 µm inter-spot 
distance. Comparison of the 375 µm pattern with the 1500 µm one shows a larger dispersion than the 750 µm/1500 µm com-
parison: this is the overshining effect. The red points are the spots detected as significantly affected by overshining in the 375 
µm density. Applying a correction computed via the fit reduces the dispersion. Black lines indicate background levels.
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9216 spots. Both cDNA hybridisation (with MCF7 breast
cancer cell line) and oligonucleotide hybridisation were
performed.

Array A2 was spotted with the GMS 427 robot. A pattern
of 384 spots was replicated 5 times at 3 different densities:

375 µm interspot distance (in triplicate), 750 µm
interspot distance and 1500 µm interspot distance (see
Figure 3). Both cDNA hybridisation (with Mouse Thymus
extracts) and oligonucleotide hybridisation were
performed.

Effect of probe dilutionFigure 8
Effect of probe dilution. Variable dilutions of spotted material (dots are medians, bars are inter-quartiles). Using the fit (1) 
(blue) improves the positive correlation between the measured intensity and the spotted probe amount compared to tradi-
tional image (pixel value) quantification (red).
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QM and clustering weightsFigure 9
QM and clustering weights. Unweighted clustering (left) compared with weighted clustering (right), with weights defined as 
columns and row medians of QM. The data correspond to five different exposure of the same cDNA hybridisation. The left-
most array (the noisiest one, 8 h exposure) has a lesser influence on the determination of the clusters on the right-hand side, 
and these clusters appear more coherent. Note that samples (columns) are sorted in the same order on both clusterings.
Page 11 of 14
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Array A3 was spotted with the GMS 427 robot. All PCR
products corresponded to the chlorophyll synthetase gene
from Arabidopsis thaliana. A pattern of 16 × 24 spots was
made. Its 24 columns corresponded to different
concentrations of the same PCR product, while its 16 rows
where all replicates of each other. The first 12 columns
were ordered by decreasing concentration from left (30 µl
PCR plus 0 µl water) to right (0 µl PCR plus 30 µl water),
the remaining 12 columns were randomly re-ordered rep-
licates of the previous 12. Only an oligonucleotide
hybridisation was performed on Array A3.

Image processing
Hybridisation images were obtained using a FUJI BAS
5000 scanning system. Arrays were exposed onto a phos-
phoimaging plate for 6 to 100 hours (for testing purposes
only, normal procedure uses 16 to 24 hours exposures)
and the plate was then scanned at a resolution of 25 µm.

Automatic feature location on the image was performed
using a novel dynamical algorithm: a virtual grid structure
modelled on the spotting pattern is created in which each
spot is replaced by a point mass tied to its four neighbours
by nonlinear springs. The underlying image creates a force
field equal to the image intensity gradients. A present/
absent flag (taking values 1 or 0) is computed by evaluat-
ing if the falloff between the feature centre and its sides is
large enough. It multiplies the gradient forces and there-
fore switches them off for absent or weak spots. The struc-
ture is then evolved under the action of these forces until
equilibrium is reached. At equilibrium, absent spots lie
midway between their neighbours. This method has been
found to reduce human intervention in the quantification
process, and therefore improves reproducibility of results.
It is faster than previously proposed algorithms [16,31].
The present/absent flag is also useful in data analysis.

The algorithm also makes use of a present/absent flag
(taking values 1 or 0) which is computed during align-
ment by evaluating if the falloff between the feature centre
and its sides is large enough. This is used to avoid weak
spots being attracted by strong neighbours during auto-
matic alignment. It is also useful to remove absent spots
from data analysis and to visually evaluate the quality of
the alignment.

Signal fitting
We have computed the theoretical emission of a flat disk-
shaped radioactive source. A good approximation to its
emission intensity profile (above a uniform background
C) is:

as a function of the distance r to to the spot centre. Figure
10 demonstrates that this is a better fit than the Gaussian
used in [22,32,33], by comparison with both theoretically
computed and experimentally measured data. The values
of A, B and C are computed by non-linear least-square
minimisation (Gauss-Newton algorithm) of the distance
∑r(F(r) - I(r))2 between the theoretical profile equation
(1) and the measured pixel intensities I(r), at each feature
location independently. The sum ranges over all non-sat-
urated pixels in the feature area. The function F(r) is the
theoretical fit to the measured intensity profile, C is the
background noise, while A and B are related to its height
and width. The fit also provides a natural length scale for
the diameter of the feature:

where d0 can be tuned empirically. By "natural length
scale", we mean that the ratio of integrated (theoretical)
signal to total emitted signal depends on d0 only. We have
compared two feature extraction methods, the "tradi-
tional" one which sums up the measured intensities Ik
over the surface of a disk of fixed, predefined radius, and
the new method which consists in summing the fit values
Fk over the surface of a disk of diameter dfit which is differ-
ent for each feature. We have found that the second
method significantly reduces the main sources of
variation.

Quality Metric
We compute a quality metric QM which measures how
reliable a measured intensity level is, by comparing the
profile of the measured signal with the theoretical func-
tion. Indeed experimental artifacts occasionally produce
artificially high values in the quantification of a weak spot
(radioactive specks), but this will usually have a very small
QM, because this type of noise does not resemble in any
way an expected signal morphology. The QM factor is
used to deduce EWEIGHTs (weight of importance or qual-
ity of an experiment) and GWEIGHTs (similar measure
for a gene) in subsequent clustering analysis (as in the
Cluster software [34]). We use the following formula for
the QM factor:

where Npix is the number of pixels in the feature area and
Ik and Fk are the measured values and the fit values at each
of those pixel positions. The rationale behind this formula
is that we use 1 minus the noise over signal ratio rather
than the more traditional signal over noise ratio. We
therefore obtain a number between 0 and 1, which can be
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treated like a P-value. It is easy to see that a perfect feature
(Ik = Fk for all k) gives a value QM = 1 and an empty feature
(Ik = 0, FK > 0 for all k) gives QM = 0. This QM has been
found to be a useful and reliable means of detecting meas-
urement artifacts and reducing their influence in subse-
quent analysis.
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