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Background: The classical C2H2 zinc finger domain is involved in a wide range of functions and
can bind to DNA, RNA and proteins. The comparison of zinc finger proteins in several eukaryotes
has shown that there is a lot of lineage specific diversification and expansion. Although the number
of characterized plant proteins that carry the classical C2H2 zinc finger motifs is growing, a

systematic classification and analysis of a plant genome zinc finger gene set is lacking.

Results: We found through in silico analysis 176 zinc finger proteins in Arabidopsis thaliana that
hence constitute the most abundant family of putative transcriptional regulators in this plant. Only
a minority of 33 A. thaliana zinc finger proteins are conserved in other eukaryotes. In contrast, the
majority of these proteins (81%) are plant specific. They are derived from extensive duplication
events and form expanded families. We assigned the proteins to different subgroups and families
and focused specifically on the two largest and evolutionarily youngest families (Al and Cl) that
are suggested to be primarily involved in transcriptional regulation. The newly defined family Al
(24 members) comprises proteins with tandemly arranged zinc finger domains. Family Cl (64
members), earlier described as the EPF-family in Petunia, comprises proteins with one isolated or
two to five dispersed fingers and a mostly invariant QALGGH motif in the zinc finger helices. Based
on the amino acid pattern in these helices we could describe five different signature sequences
prevalent in Cl zinc finger domains. We also found a number of non-finger domains that are

conserved in these families.

Conclusions: Our analysis of the few evolutionarily conserved zinc finger proteins of A. thaliana
suggests that most of them could be involved in ancient biological processes like RNA metabolism
and chromatin-remodeling. In contrast, the majority of the unique A. thaliana zinc finger proteins
are known or suggested to be involved in transcriptional regulation. They exhibit remarkable
differences in the features of their zinc finger sequences and zinc finger arrangements compared to
animal zinc finger proteins. The different zinc finger helix signatures we found in family C| may have
important implications for the sequence specific DNA recognition and allow inferences about the

evolution of the members in this family.
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Background

C2H2 zinc finger proteins (ZFPs) constitute an abundant
family of nucleic acid binding proteins in the genomes of
higher and lower eukaryotes. The number of ZFPs identi-
fied by in silico analysis corresponds to ~2.3 and ~3% of
all genes in diptera and mammalia, respectively [1,2].
Approximately 0.8% of the proteins in Saccharomyces cere-
visiae [3] have C2H2 zinc finger domains and about 0.7%
in Arabidopsis thaliana (this paper). C2H2 zinc fingers (ZF)
display a wide range of functions, from DNA or RNA
binding to the involvement in protein-protein interac-
tions. Therefore ZFPs not only act in transcriptional regu-
lation, either directly or through site-specific modification
and/or regulation of chromatin, but also participate in
RNA metabolism and in other cellular functions that
probably require specific protein contacts of the ZF
domain. In addition, the comparison of the whole ZFP
sets in major eukaryotic lineages has revealed a remarka-
ble level of complexity through lineage specific diversifi-
cation and expansion. These expansions often include
ZFPs that contain conserved lineage specific non-finger
domains like the vertebrate specific KRAB domain
(reviewed in [4]) or the ZAD domain specific to diptera
[1]. These domains are protein interaction domains with
known or suggested repressor functions. Several ZFPs in
plants, e.g. Arabidopsis and Petunia, have already been
functionally characterized. They are involved in a variety
of processes such as the regulation of floral organogenesis,
leaf initiation, lateral shoot initiation, gametogenesis and
stress response. Former reviews on plant-ZFPs [5] have
been limited to approximately 30 proteins. But the sys-
tematic analysis of a complete ZFP set of a plant genome
with the aim to predict some basic molecular functions is
lacking. The genome annotation of the model plant Ara-
bidopsis thaliana has reached high quality and allows com-
prehensive computational analyses. Here we describe the
classification of the full set of ZFPs in the Arabidopsis
genome including a genome-wide comparative analysis
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based on the in silico analysis of the whole proteome of
this plant.

Results

General classification and characterization of ZFPs in the

Arabidopsis genome

In A. thaliana we found altogether 176 proteins that con-
tain one or more ZF domains (Table S1 [see Additional
File 1]) which by far exceeds the previously reported num-
bers by Riechmann et al. [6,7]. Therefore, according to our
estimate, A. thaliana ZFPs (AT-ZFPs) constitute the most
abundant family of putative transcriptional regulators in
A. thaliana. So far most studies on the DNA recognition of
ZFPs have been carried out on proteins with tandem
arrays of fingers (reviewed in [8]). In the genomes of ani-
mals, these types of ZFPs (classified as sets A and B, see
Methods) constitute the majority (about two thirds) of all
ZFPs (S.B. unpublished data). In striking contrast to the
animal kingdom, only a minority of 33 AT-ZFPs (about
20%) contain tandem ZF arrays with 32 proteins in set A,
containing up to five ZF, and one protein (TF3A) in set B
(Table 1), containing nine ZF in more than one array. The
vast majority of AT-ZFPs (about 80%) contain a single ZF
or several dispersed ZFs (classified as set C). Set C can be
further classified into three clearly distinguishable sub-
sets, C1, C2 and C3 (Table 1). These subsets are character-
ized by ZF types that differ in their spacing between the
two invariant zinc coordinating histidine residues by
three (C1), four (C2) or five (C3) amino acid residues. A
complete list of all classified 176 AT-ZFPs is shown in the
supplementary Table S1 [see Additional File 1] including
additional data and links to database information
(MatDB, TIGR). Pairwise sequence comparisons of all ZF
domains found showed that pairwise distances (PAM
Dayhoff matrix, see Methods) among domains of subsets
A1, C1, C2 and C3 varied and were lowest in A1 and C1
(1,02 and 1,27) and twice as high in C2 and C3 (2,35 and
2,57). This suggests that ZF domains of subsets A1 and C1

Table I: Overview of conserved and unique Arabidopsis ZFPs in different subsets. Maximum values are in boldface. Unique ZFPs are
further classified into families, pairs and singletons. CIS and C2S belong to one family but contain ZFs both with HX3H and HX4H
spacing, an asterisk marks a pair with the exceptional combination of ZFs with HX4H and HX3H spacing in the first and second finger,

respectively. The most expanded families, Al and Cl are in italics.

Classified set Set A+B SubsetCl SubsetC2 SubsetC3 Y all Sets
Conserved AT-ZFPs 6 (18%) 2 (3%) 9 (20%) 16 (73%) 33 (19%)
unique AT-ZFPs 27 (82%) 75 (97%) 35 (80%) 6 (27%) 143 (81%)
- ZFPs in families Al 24 Cl 64 C2A 6 C3A3 126

ClQ4 C2B 17 C3B3

CIS3 C252
- ZFPs in pairs 2 2% 8 - 12
- Singletons | 2 2 - 5
2 all ZFPs 33 77 44 22 176
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are younger than those of C2 and C3 and result from a
more recent expansion.

Conserved AT-ZFPs

BLAST analysis against the non-redundant database of
NCBI resulted in 33 AT-ZFPs that are conserved in other
taxa. The proportion of conserved AT-ZFPs varies remark-
ably between the different subsets (Table 1), with minor
proportions in sets A/B (6 of 33), C1 (2 of 77) and C2 (9
of 44), but a major proportion in set C3 (16 of 22). The
33 conserved AT-ZFPs and their assignment to 27 evolu-
tionarily conserved ZFP families are highlighted in Table
S1 [see Additional File 1]. The family names given in the
table have either been published already (Table 2) or are
proposed by us. About half of the ZFP families are new
(SF1-SF13) and do not contain any functionally character-
ized members in any species. Only six of the 33 conserved
AT-ZFPs have so far been functionally characterized in
Arabidopsis or other plants. They will be discussed below
together with our functional predictions for some of the
conserved AT-ZFPs that have so far not been experimen-
tally investigated.

Sets A and B

The first TF3A homolog in a plant (At1g72050) has
recently been cloned and characterized [9]. AT-TF3A is
highly diverged in sequence from TF3As in vertebrates,
but it binds specifically to 5S rRNA and 5S rDNA as shown
in [9]. Interestingly, the nine fingers of AT-TF3A are
arranged differently from animal TF3A. Instead of having
the nine fingers in a single array, the first finger is isolated
and fingers 2-4 and 5-9 are arranged in two separate tan-
dem arrays. We found two other plant orthologs of AT-
TF3A in Oryza sativa and Medicago truncatula (data not
shown). One additional conserved AT-ZFP has tandem
ZFs with the typical characteristics of a DNA binding ZFP
of animals. This ZFP, At4g06634, contains four tandem
ZFs and is, like its putative ortholog TRM1 from Zea maize,
a member of the YY1-family (Table 2). TRM1 was recently
cloned and characterized as suppressor of rbcS-m3 [10], a
gene involved in photosynthetic CO, fixation. It was
shown in [10] that TRM1 binds to an YY1-like DNA site
and to two other regions with no homology to the YY1
site. Since TRM1 and At4g06634 are very conserved in
sequence, we suggest that At4g06634 probably has similar
DNA target sites. No functions have been described so far
for any of the remaining four conserved AT-ZFPs (Table S1
[see Additional File 1], newSF1 and 2, ZP207-SF) in set A
or for their homologs in other eukaryotes. They contain
tandem fingers with rare HX4H spacing and have unusu-
ally short linkers (one or no residue), features that are
conserved in the eukaryotic homologs.

http://www.biomedcentral.com/1471-2164/5/39

Subset CI

Subset C1 comprises 77 ZFPs containing ZFs with HX3H
or HX3C spacing. Only two of them, At5g09740 and
At5g64610, are also conserved in other kingdoms. They
arose through duplication and belong to the SAS-MOZ
family (Table 2). Both ZFPs contain the conserved combi-
nation of a single ZF with CHROMO and SAS domains
(Table 2). Therefore we suggest that they have a function
in histone acetylation (HAT), a key process in chromatin-
remodeling (reviewed in [11]).

Subset C2

In subset C2, there are more ZFPs that are involved in
chromatin-remodeling processes and are conserved
between plants and animals. These are VERNALIZATION
2 (VRN2), EMBRYONIC FLOWER?2 (EMF2) and FERTILI-
ZATION-INDEPENDENT SEED (FIS2) [12-15]. They
belong to the Polycomb group (PcG) and were given the
name VEF family. As first described in [16] the ZF
domains and other non-finger parts of these three AT-
ZFPs are conserved in the Su(z)12 proteins of Drosophila
and human. PcG proteins are required to maintain the
transcriptionally repressed state of homeotic genes
throughout development. The molecular function(s) of
their single ZF are unknown, but data from Drosophila
Su(z)12 suggest their involvement in specific protein con-
tacts, but not DNA binding. FIS2 [12,13], VRN2 [14] and
EMF2 [15] act as repressors in different developmental
stages of Arabidopsis (reviewed in [11]). Another con-
served AT-ZFP in subset C2 is the protein SERRATE (SE,
At2g27100) [17]. The phenotype of the SE mutant reveals
a role of the affected protein in the early steps of organ
elaboration and a role in the regulation of gene expression
via chromatin modification was also suggested [17]. We
assigned the proteins At5g01160 and At3g12270 to the
evolutionarily conserved E7 and PRMT families (Table 2),
respectively, based on their conserved combination of a
single ZF with a RING and a PRMT3 domain.

Subset C3

16 out of the 22 ZFPs in subset C3 are conserved in other
eukaryotes. There is no information available regarding
the function of these proteins. Interestingly, we found that
eleven of them are predicted to have a U1 type ZF (Table
S1 [see Additional File 1], Table 2) that contains con-
served extensions on both sides of the ZF which has a
HX5H spacing. They are known or suggested to be
involved in RNA binding and therefore we suggest that
these conserved AT-ZFPs with Ul type ZFs could be
involved in RNA metabolic processes, e.g. splicing like the
splicosome associated proteins of the SAP62 family
(Table 2), corresponding to At2g32600 in Arabidopsis.
According to our prediction we found, that other con-
served AT-ZFPs with U1l type ZFs are combined with
domains, like DNAJ (At1g74250), KOW (At1g55460) or
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Table 2: Description of acronyms: Description and Pfam/SMART accession numbers (if available) of acronyms used throughout the text
and in Table S| are given. Column "conserved" refers to classification in conserved ZF-families (ZF-fam) and/or non-finger domains

(NFD).
Acronym Description Pfam SMART conserved
ANK Ankyrin repeat PF00023 SM00248 NFD
C3H C3H1 zinc finger PF00642 SM00356 NFD
CHROMO CHRomatin Organisation MOdifier PF00385 SM00298 NFD domain
DNA) Dnaj molecular chaperone domain PF00226 SM00271 NFD/ZF-fam
DUF537 Plant family of unknown function PF04396 - NFD
DUF627 Plant family of unknown function PFO478I - NFD
DUF629 Plant family of unknown function PF04780 - NFD
E7 E7cadherine binding protein family - - ZF-fam
EXO3 Exonuclease domain PF00929 SM00479 NFD
FZFnew New ZFP family FZF - - ZF-fam
G-patch G-patch domain PFO1585 SM00443 NFD
HLH Helix-loop-helix domain PFO0010 SM00353 NFD
IPPT IPP transferase family PFO1715 - NFD/ZF-fam
JmjC Jumoniji domain, C-terminal part PF02373 SM00558 NFD
JmjN Jumonji domain, N-terminal part PF02375 SM00545 NFD
KIN17 KIN17 family - - ZF-fam
KOw Kyprides, Ouzounis, Woese motif PF00467 SM00739 NFD
MBD Methyl-CpG binding domain PFO1429 SM00391 NFD
oTuU OTU-like cysteine protease PF02338 - NFD
PHD PHD zinc finger PF00628 SM00249 NFD
PreSet N-terminal to some SET domains - SM00468 NFD
PRMT3 Ribosomal protein LI | methyl-transferase (PrmA)family PF06325 - NFD/ZF-fam
PUG Domain in protein kinases - SM00580 NFD
RING zf-C3HC4 or RING finger PF00097 SM00184 NFD
RRM RNA recognition motif PF00076 SM00360 NFD
SAP6I Splicosome associated protein 6 1/PRP9 family - - ZF-fam
SAP62 Splicosome associated protein 62/PRPI | family - - ZF-fam
SAS MOZ/SAS family PFO1853 - NFD/ZF-fam
SE Serrate family - - ZF-fam
SET SET domain PF00856 SM00317 NFD
TF3A Transcription factor IlIA family - - ZF-fam
Ul-ZF Ul -like zinc finger PF06220 SM00451 NFD
UBA UBA/TS-N domain (ubiquitin associated domain) PF00627 SMO00165 NFD
UBX UBX domain PFO0789 SM00166 NFD
UPF0023 Uncharacterized protein family PFO1172 - NFD
VEF VRN2-EMF2-FIS2 family - - ZF-fam
YYI Ying Yang | family - - ZF-fam
ZF-ANI AN -like zinc finger PFO1428 SM00154 NFD
ZP207SF ZFP207 family - - ZF-fam

G-patch (At5g26610) (Table 2), which are also known to
be involved in different RNA metabolic processes
(reviewed in [18]). Like chromatin-remodeling, many
pathways of the RNA metabolism are ancient, conserved
processes in eukaryotes, which is reflected by our finding
that several ZFPs that are described above are evolutionar-
ily conserved in all eukaryotic taxa from Protozoa to
Mammalia (data not shown).

AT-specific ZFPs and their families
BLAST analysis resulted in the assignment of the 143 AT-
specific ZFPs to eight families, six pairs and to five single

occurrences. This distribution reflects the high incidence
of duplication events in the Arabidopsis genome. The two
largest families, named A1 and C1, contain 24 and 64
members, respectively. Together they constitute about
60% of all AT-specific ZFPs. Additional data on other AT-
specific ZFP families and pairs with uncharacterized mem-
bers are given in Table S1 [see Additional File 1]. The C1
family is part of subset C1. We investigated the two biggest
families in more detail.
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The Al family

General description

The Al family, with 24 members, represents by far the
most expanded AT-ZFP family of set A. All ZFPs of the A1
family contain four similar ZFs with a conserved arrange-
ment as shown in Figures 1 and 3. They are classified by
us into four different subgroups named Ala, Alb, Alcand
Ald with 13, three, two and six members, respectively
(Figures 1 and 2). These assignments are new and now
group plant ZFPs described in the past as belonging to dif-
ferent groups or families. Among them are StPCP1 from
Solanum tuberosum [19] and ZmID1 from Zea mays
[20,21], which are members of the Ala subgroup. Also
part of this group are ZFPs of the recently described WIP-
subfamily [22] which is identical to the subgroup Ald that
contains six members. So far three members of family Al
have been studied in more detail and shown to be quite
variable in function. StPCP1 was identified by its ability to
confer growth on sucrose as the sole carbon source upon
a sucrose uptake-deficient yeast strain [19]. Zmld1, the
indeterminatel (id1) gene, was the first example of a gene
other than photo-receptors that is involved in the produc-
tion or transmission of a flowering signal [20,21]. In the
id1 maize mutant the terminal shoot meristem continues
to display vegetative (i.e. indeterminate) growth. One
characterized member of the WIP-subfamily or subgroup
Ald is transparent testa 1 (tt1, At1g34790), a gene that has
been found to be involved in seed coat development in
Arabidopsis [22]. All three studied representatives of family
A1 have been suggested to be transcriptional regulators.
However, no regulatory DNA sites or target genes have
been reported for any of them.

ZF arrays and subgroups

All 24 members of the A1 family contain four ZFs with the
conserved arrangement F1 isolated, F2-F3-F4 in tandem
(Figure 3). In former reports [19,20] only the first and the
third ZF, F1 and F3, have been considered, but in [22] the
existence of two possible additional fingers (F2 and F4)
was mentioned though not discussed in detail. Both ZFs
reported earlier match the consensus ZF pattern
X2CX2CX12HX3H/C and have high scores in Pfam
searches. In contrast, the "new" fingers F2 and F4, have
unusual ZF patterns (Figure 3) resulting in low scores.
Pairwise comparisons (not shown) indicate highest simi-
larities between members of the same subgroup with
identities of 77-96 % for the subgroups Ala, A1b and A1d
and 62.5 % for the two members of subgroup Alc. Com-
parisons between subgroups showed that similarities are
about 30-40%. From the neighbor-joining tree (Figure 2)
and the domain architecture (Figure 3) one can infer that
Ala and A1b are more similar to each other than any of
them is to Alc or d. Also, Alc and Ald are more closely
related to each other than either is to Ala or A1b. Remark-
ably, amino acid residues in the ZF helix positions -1, 3
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and 6, known as primary DNA recognition positions, are
among the most conserved positions. Moreover, about
half of the conserved amino acids are residues with high
specificity to particular DNA bases according to a pro-
posed ZF-DNA "recognition code" [8] which allows for
the prediction of possible core bases of a DNA site (Figure
4). We emphasize that this prediction is in part specula-
tive because the ZF-DNA recognition rules are more com-
plex than previously assumed.

Conserved non-finger regions in the Al family

Using the expectation maximization search tool MEME
(see Methods) we found additional conserved sequence
parts in the regions outside of the ZF domains (Figure 3).
These conserved regions vary in length and are not shared
among the four subgroups, with the exception of a con-
served N-terminal region of 29 residues that starts with an
R/K rich stretch that is common to subgroups Ala and
Alb. The basic amino acids could represent a nuclear
localization signal [23]. In addition, all members of
subgroup Ala contain two other conserved sequences at
their C-terminus. The consensus of the first is
'SATALLQKAAQMGS', the second is characterized by the
pattern 'T [R/L]DFLG [L/V]" (Figure 3). These patterns
could be necessary for protein interactions or localization.

The CI family

The C1 family represents with 64 members by far the most
expanded AT-ZFP family and includes about 85% of all
ZFPs in subset C1. ZFPs in the C1 family are characterized
by either a single finger or a varying number (2-5) of dis-
persed ZFs, most of them with the conserved QALGGH
sequence in their alpha-helix positions 2-7. A part of this
conserved plant family was investigated in petunia and
named the EPF family [24]. Based on 21 petunia-ZFPs
with two, three or four dispersed ZFs, a first systematic
classification of their ZF types was described in [24].
About 20 members of the Arabidopsis C1 family have also
been described regarding their biological functions and
expression characteristics [25-28]. We have subdivided
family C1 according to the varying numbers of fingers as
subclasses C1-1i (N = 33), C1-2i (N = 20), C1-3i (N = 8),
C1-4i (N =2)and C1-5i (N =1).

Representatives of the different C| subclasses

Subclass C1-1i has 33 members exclusively found in
plants or specifically A. thaliana (Table S1 [see Additional
File 1]). 28 members show the invariant motif QALGGH
in the alpha-helix (Figure 5a). The best studied member of
this subclass is the SUPERMAN protein (SUP, At3g23130,
AtZFP9) [28]. One suggested function of SUP is the coor-
dination of stamen- and carpel-specific meristematic cells
and hence the maintenance of the boundary between
whorls three and four of the floral organ [29]. The sup
gene encodes a transcription factor with specific DNA
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Atlg68130-Alb RPAGTPDPEAEVVSLS-PRTLLESDRYVCEICNQGFQRDONLOMHRRRHKVPWKLLK---RET-NE-—--—— EVRKRVYVCPEPTC---LHHNPCHA
At2g01940-Alb [N . ... ... Devurnn. U T ——— . DN-.I----- Keoaeann, = aoaco
At1g25250-Alb [N ... .... Devenn.. — ... | . . .. ... e L DKKD. === ==t et ee e Do o s

At3g45260-Ala INLP.N...D...IA..-.NS.MTTN.FI..V..K..K...... L...G.NL KQ---.TN-K.-—---- Q.K.K..I...K..-—--V..D.AR

At5g60470-Ala NLP.N...N...I...-.KS.MATN.FF..... K. SE .L.K.G.NL KQ-—--KTN-KN----— Q.K.K..I...KS.-——-V..D.AR.
At4g02670-Ala GLP.N...D...IA..-.K...ATN.F...... 1660000000 L...G.NL KQ---KN.-K.-—-——- QOK.K.....® TN.---A..H.SR.
Atlgo3840—Ala INLP.N....... IA..-.K..MATN.FL....GK......... L...G.NL KO-==.TS-K-——=—==. . i itiier.. KS.---V..H.TR.
At5g44160-Ala INLP.N....... IA..-.T..MATN.FL..V.GK......... L...G.NL .KQ-—= . TS-K-——====. ... . ... K..-—--V..HSSR

Atlgl4580-Ala NQP.N.N.D...IA..-.K.IMATN.FL..V. .K. E. .L...G.NL....KQ-—-KSN-K------ ...RK..L. .S.---V..D.AR.
At2g02080-Ala NOP.N.N.D....A..-.K..MATN.FI.DV..K....E....L...G.NL .. KQ---KS.-K-————-— . . KRK . R ===V oD, Sk,
At2g02070-Ala INOPR. .NSD...IA..-.K..MATN.FI..V..K. E. .L...G.NL .. KQ---KS.-K-————-— ..KRK..L. .S.-—-V..D.SR.
Atlg55110-Ala NOP.N....... MA..-.K..MATN.FI..V..K......... L.K.G.NL....KQ-—-.SN-KD---—-- V... .K. . G.-—-V..H.SR.
At5966730—Ala INLP .M .D...IA..-.K..MATN.F...... Ioecoacoan L...G.NL....RQ-——-.S.-K.—-————- . . K. . VSG.---V..D.SR.
At3g50700-Ala INLP .M S..IA..-.K...ATN.F...... Koo.o.oooo.. L...G.NL....RQ---KSN-K.--=----— K.K...... VS.---V..D.SR.
At3gl3810-Ala INQP . N .S..IA..-.K..MATN.F...... K.o.o.oooo... L...G.NL....KQ-—-.SN-K.--—-—- VI. . .K. A8 ===V o Do SR,
At5g03150-Ala INQP..... D.D.IA..-.T..MATN.F...... 6060000000 L...G.NL....KQ-—-.SK-Q.—-———- VIK.K..I..IK..---V..DASR

At1g34370—A1c ————————— .PGSY.ILQ.EKEEI.APHTHF-.T..GK..K..A..R..M.G.GDEY.TAAALAKPNKESVPGSEPMLIKR.S. .FLG.KRNKE .KKFQP
At5g22890-Alc --—-——-—-—--- SSGSYDILE.DVADL.AKYTH.-.Q..GK..K..A..R..M.A.GDEY.TREALISP.SQDKKGGYSLK.HY.S..QHG.RWNQR.EKFQP
Atlg51220-Ald TP--SQI.IGPTQFT.PL.FKT.N.YN.M...MWG.GSQYRKGPESL.G.QP----TGML.LPCFC.-A.G.KNNID.PRAKP
At3g20880-Ald TP--SQI .MGPTQFS.PL.FKT.N.YN.M...MWG.GSQYRKGPESL.G.QP----TAMLKLPC.C.-A.G.KNNID.PRARP
At3g57670-Ald TP--SQI.IGPTQFS.PV.FKT.N.YN.M...MWG.GSQYRKGPESL.G.QP----TGML.LPC.C.-A.G.RNNID.PRAKP
Atlgl3290—Ald ..——SQI.VGPTQFS.SV..KT.N.FN.M...MWG.GSQYRKGPESL.G.KSS---SSIL.LPC.C.-AEG.KNNID.PRSKP
Atl1g08290-Ald .P--AQIHVGPMQFA.S..SKT.N.YN.M. ..MWG.GSEFRKGADSLKG.IQP---AAIL.LPC.C.-AEG.KNNIN.PRSKP
Atlg34790-Al1d ------------ AY| AP--EQI.IGFTHFS.HV.FKT.N.YN..... MWG .GSQYRKGPESLKG.QP----RAMLGIPC.C.-VEG.RNHID.PRSKP

Atlg68130-Alb

At2g01040-A1D . ...uiiiitie Vo o0 oo=cooese0n0sc00as
At1g25250-A1D . ...ueinnin.nn. Ve Ve im e m e
At3g45260-Ala Tl S...G-E.K.K.D-K..-.K...M..W...S.
At5g60470-Ala P So oo |Chl BN K D= =000 6 0o oo o ol
At4g02670-Ala 018660000 (CRNG —E . K O W...T.
Atlg03840-Ala Teoa.. C...G-E.K.K..-K.A-.R...... W...S..
At5g44160-Ala oo o cana C...G-E.K.T..-K.A-.R...... W...S..
Atlgl4580-Ala Tl YY...G-E.K.K.D-K..-.R...... W...S..
At2g02080-Ala Tl RN G —F. . K < SO Wo o aao
At2g02070-Ala 04806000 RAVNEING —F . KRN RO W...S..
Atlg55110-Ala Teoa... F...G-E.K.K..-K..-.K...... W...A..
At5g66730-Ala ool C...G-E.K.K..-K..-.K...... W...S.
At3g50700-Ala oMocoooo C...G-E.K.K.D-K..-.K...... W...S

At3gl3810-Ala P C...G-E.K.K.D-K..-.K...... CoooSoo
At5g03150-Ala cootfooooo S5 o o CRt Y K, =l =Ko o 0000 W...A..
Atlg34370-Alc KTILCV.N.YK.T.C-D.SFT.S-..HT.KFS.IA.L.T.E.
At5922890—A1c .KSVICA.N.YK.S.C-P.MYM.R-...V.HFS.L..LRT.E.
Atlg51220-Ald .K.FRTLQT.YK...G-S.PFA.R-M.G-.AF..KG.WRT.E.
At3g20880-Ald .K.FRTLQT.YK...G-VRPFA.R-..G-.AF. .KG.WRT.E.
At3g57670-Ald .K.FRTLQT.YK...G-I.PFM.R-K.G-.AF..RG.WRT.E.
Atlgl3290-Ald .K.FRTLQT.YK...G-A.PFR.RKK.E-.TF..RG.WRT.E.
At1908290—A1d .K.FRTLQT.YK...G-S.PFS.G-K.G-.AL..KG.WRT.E.
Atlg34790-Ald .K.FRTLQT.YK...G-..PFS.R-L.G-.LL..KG.WRT.E.

Figure |

Zzz=zz=zom

LGDLVGIKKHFRRKHSNHKQWICE-RCS-KGYAVQSDYKAHLKTCGTRGHSCDCGRVEFSRVESFIEHQDTCTVRRSQPSNHR

......................... N.SA..VHREPP.
oS- ccooo0o0c0000000000000 o I.QP..T
KEYR TL...KD...T.RAF.DALAEE--SA.
S.EFR TL...KD...S.RSF.D.LAEE--SSK
DYR .TL...KDT..T.RAF.DALAEE--SA.
....EYR .TI...RD...T.RAF.DALAEE--TA.
....EYR .TI...RD...T.RAF.DALAEE--TAK
.. .KEYR .TI...RD.Y.T.RAF.DALIQE--SA.
.. .KEYR .TI...RD.Y.T.RAF.DALIQE--TA.
.. .KEYR TL...RD...T.RAF.DALAQE--SA.
.. .KEYK TL...RD...T.RAF.DALAEE--SA.
KEYK TL...RD...T.RAF.DALAEE--SAK
KEYK TL...RD...T.RAF.DALAEE--.A.
.. .KEYR TL...RD...T.RAF.EALAEE--TA.
....EYK....TL...KD...T.RAF.DALTEE--GA.
KNKWL.S..TT...KDKLFG.IALF-QGHTPAI---
DIKWV.S..TK...KDKLMS.VSLF-LGHVPAH---
KL-WY.S..SD.KHKR.LKD.VKAFGNGHVPC----
KL-WY.S..SD.KHKR.LKD.VKAFGNGHVPC----
KL-WY.I..SD.KHKR.LKD.IKAFGNGHGAY----
KL-WF.V..SD.KHKR.LKD.VRAFGDGHAAH----
.KL-WY.T..SD.KHKR.LKD.IRSFGSGH.PH----
.K.-WV.V..SD.KHKR.LKD.VKAFGSGHGPY---~—

Multiple sequence alignment of the zinc finger regions and their conserved flanks in 24 AT-ZFPs of family Al:
ZF domains are highlighted in grey, conserved stretches of basic amino acids in green and WIP-stretches in blue. Positions

identical to the first sequences are dots, '-' indicate gaps.

binding properties [30]. It was shown in [30] that the
minimal region required for specific DNA binding
includes the single zinc finger and two basic regions on
either side of the ZF domain. Based on these DNA binding
studies and on the NMR structure of the ZF domain of
SUP [31] a peculiar DNA recognition mechanism was pro-
posed by the authors and will be discussed below.
Recently two further SUPERMAN-like representatives of
subclass C1-1i were described for A. thaliana. RABBIT
EARS (RBE, At5g06070) regulates petal development and
is probably required for the early development of the
organ primordia of the second whortl [32]. Additionally,
the expression of At2g42410 (ZFP11) was investigated
[33]. It has very low expression levels in flowers, axillary

meristems, roots and stems. Interestingly, the deletion of
the R/K rich stretch at the C-terminus of the ZF, that was
shown to be important for DNA binding in SUP, revealed
that this stretch is necessary for the nuclear localization of
the protein.

Subclass C1-2i comprises 20 members (Table S1 [see
Additional File 1]). Among them are a few with known
biological functions. In [27] the expression of four pro-
teins, namely STZ/ZAT10 (Atlg27730), AZF1
(At5g67450), AZF2 (At3g19580) and AZF3 (At5g43170)
was investigated. The authors showed that all four genes
are involved in the plant's water-stress response. Our anal-
ysis assigned them into one subgroup (C1-2iD) as shown
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At1g51220
At3g20880
At3g57670
At1g34790 d
At1g08290
L At1g13290
At1g34370
c
] At522890
At1g68130
1 At125250 b
At2g01940
L At5g03150
L At1g55110
At1g14580
At2g02080
a
At2g02070
At3g45260
i At560470
L At4g02670
At1903840
{ At544160
At5g66730
At3g50700
At3g13810

0.1

Figure 2
Neighbor-joining tree of the multiple sequence alignment as shown in Figure |. Relationships between members of
the four subgroups Ala to Ald are illustrated.
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domains subgroup N

linker ~ 20aa 4 - baa

| VRN
—EE . e 7
— — . mb 3

Alc 2

— - ——
— . —— e

B cocxizhxsH [ ocxizixsc M cxacxizHxsc [ wip
cxacxi7HxaH [ oxacxi3Hxac cxtcxi2vxeH [l SATALL

B cxacxo0HxaH [ ] oxacxiabxzH [ DFLG

cons. with basic
N-terminus
Figure 3

Schematic presentation of zinc finger domain distribution and other conserved motifs of groups Ala to Ald.
Length of linkers between ZF domains is given and patterns of the different ZF types are given. Unusual spacing is underlined.

Fingerli Finger2u Finger3 Finger4

-1 3 6 -1 3 6 -1 3 6 -1 3 6
Ala R N L D G K vV D A R S T
Alb R N M D G K V D A R S E
Ald R N M D T T Vv D T H S D
Alc R N M T/SC N Vv D T R K G/S
DNA bases G A *? cC ? G ? C ? G C °?
Figure 4

Amino acid residues in helix positions -1, 3 and 6 in ZF domains of groups Ala to Ald. Conserved amino acid res-
idues with high specificity to particular DNA bases according to a proposed ZF-DNA "recognition code" and corresponding
putative DNA bases are highlighted in yellow.
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Cl-1i

At1g66140 1iA

At1g80730 1iA At3g53600_2iA  ....... RK.Duvvvrnnnnnnnnn ~~ TeDeMuvooiinnnnn K.
At5957520_1iA
At1g24630 1iA At3g46080_2iB P.P..GVE.PM............
At5g10970 1iA At3g46090_2iB P.P..GVK.PM............
At5g25160 1iA At3g46070 2iB T.P..GLE.PM......... K
At5g14010 1iA At5g59820 2iB P.P..GVE.PM............
At5g48890 1iA At2928710 2iB E.P..GAE.AV......... K
At2g41940_1iB R.E.H..F.N.PT. v ouvnua .. QOH At2g28200_2iC LEL....GSE.TS. ..o
At3g58070_1iB R.E.H..F.N.PT. v oo, Q.. At3gl0470_2iC .E.G..GAE.TS......cuou...
At5g06650 1iB KR.K.H. . FuN.PT. o oo oo QQT At5g04390_2iC .E.G..GAE.TS......ccu...
At5g03510_2iC LE....KAE.SS............
At59g27880 1iC  KIYT.HF.KKG.ST............ Q..EWD.K
At5g01860 1iC .. A TF.KKE.ST...v'vuuunn. Q..S5.... At1g27730_2iD YK.SV.D.T...Y...... K...R.~~.V.T..NK..PS....... KE . i
- At59g04340 2iD YK.SV.D.A...Y...... K...R.~~. V... .HK..A........ K.C.Y
At1g67030 1iD  LKYE.Q..CLE.AN.......L...L K..0.L.. At5g43170 2iD YK.GV.Y.T...Y...... K...RS~~.V..V.GK..A........ K.C.Y
At1g68360 1iD  .KYE.Q..C.E.GN.......ftuu.. K..Q0QL. . At3g19580 2iD YK.NV.E.A.P.Y...... K...RI~~.E....HKV.P........ K.C.Y
At1g1048071iD KRHE.Q..GKE.AN. .. ...ouu... K..LKK. . At3g49930_2iD YK.SV.G.S.P.Y...... KT..R.~~.N....FK..PS....... EHE . i
- At59g67450 2iD YK.TV.G.S...Y¥...... KT..R.~~.T....FK..AS....... K.C.Y
At59g05120_1iE  PIYK.K..P...DKT.......... RK..EVE.Q
At1g02040_2iX1 Q. .AK.V.T.Heeiviinenn.. ~~.E.T..HRV.SS....... K.C.W
At1gl3400_1iH KEYE.RF.SL..FK....... M.R.RQ..ETESL
At1g68480 1iH  K.YE.RF.SL..CK....... M.R.RQ..ETETL
c
At39g09290 1iF  .SYV.SF.I.G.SNA...... M.I.R.D.AKLRQ
At39g53820 1iF  .PYI.EF.E.G.SNA...... M.I.RKD.AKLRQ Cc1-3i and Cl-4i
At5943540 1iF  .MYE.TF.K.G.TNA...... M.I.R.D.LNKAK
At2g42410_1iG  KNYT.SF.R.E.R.A...... M.V.R.D.AKLRQ
At3g23130 1iG .SYT.SF.K.E.R.A...... M.V.R.D.ARLRL K2-1 K2-2 02-2 Q2-3
At4g17810 1iG  .SYT..F.R.E.R.A...... M.V.R.D.ASSRA -1123456H 9 H =-1123456H 9 H  -1123456H 9 H -1123456H 9 H
At2g37740 1iG  .SYT.SF.R.E.K.A...... M.V.R.D.ARL.Q At1g02030-3iA NGHALGGHMRSH SYQALGGHRASH  SGQALGGHKRSH
At5g06070 1iG  .SY..SF.G.E.K.A...... M.V.R.D.ARL.Q At2g45120-3iA B R R R
- At3g60580-3iA B P PP S
At3g23140 1iT .TYD.DI.K.G.TNP...... N.I.R...ERYPS
- At5g61470-3iB B A e BE-. H---... KI
At2g17180-3iC SLEALFGHMRC. Heoooooll uoPY R M.C
At4g35280-3iC SWl....... C. .......8.. .B...... M.C
At1g26590-3iD s.B..... I.1 LLROLLAC. e
At1g26610-3iD C.Hs. I.T sM..c...AaCc. ..
At1g56200-4iB s.H..... K.T Y Y Foo e, Teeinnnn
At1g49900-4iA-F1-F2 ... K. iy RN
At1g49900-4iA-F3-F4 ... K. T..S...nn

02-1
bbb....bbb..hhhhhhhhhhh R/K-rich
-1123456H 9 H
RVFSCNYCQRKFYSSQALGGHONAHKRERTLAKR

Cl-2i

At29g37430_2iA
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02-2
bbb....bbb..hhhhhhhhhhh
-1123456H 9 HCt

Q2-3
bbb....bbb..hhhhhhhhhhh

-1123456H 9 HCt

FECKTCNKRFSSFQALGGHRASHKK~~HKCSICSQSFGTGQALGGHMRRHR

Figure 5

Alignment of ZF domains of family Cl and classification of the four subclasses into different subgroups. (a) Cl-
liA-l including the conserved C-terminal R/K-rich ZF flank. (b) CI-2iA-D, XI, also shown are positions C-terminal (Ct) of the
ZF. (c) CI-3iA-D, CI1-4iA, B, only the helical sequence parts are shown. Signatures and other important positions are high-

lighted in yellow. The plant specific sequence QALGGH in helix (h) position 2—7 is invariant in all ZF domains except for K2-1

and K2-2 where the K/R is highlighted in pink.

in Figure 5b. This subgroup contains two additional mem-
bers, At3g49930 and At5g04340 that could be function-
ally related to ZAT10/AZF1-3. Other representatives of the
C1-2i subclass are ZAT5, 7, 11 and 12 that were studied in
[26]. As shown in Figure 5b these ZFPs were assigned to
three different subgroups C1-2iA (At2g37430, ZAT11),
C1-2iB (At3g46070, ZAT7 and At5g59820, ZAT12) and
C1-2iC (At2g28200, ZAT5). These three subgroups con-
tain other yet uncharacterized members. Most of them are

the result of duplications for example the segmentally
duplicated ZAT11 and At3g53600 or the tandemly dupli-
cated ZAT7 (At3g46090), At3g46070 and At3g46080
(Table S1 [see Additional File 1]).

Subclass C1-3i contains eight ZFPs with three dispersed
ZFs (Table S1 [see Additional File 1]). They are assigned to
four different subgroups C1-3iA to C1-3iD as illustrated
in Figure 5c¢. This figure is for clarity restricted to the align-
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ment of their ZF helices in positions -1 to 11. The only
characterized ZFP of this subclass is ZAT1 (At1g02030), a
member of subgroup C1-3iA [26]. Its sequence is very
similar to the segmentally duplicated At2g45120 and
At3g60580.

The only two proteins we found with four dispersed ZFs
(C1-4i), At1g49900 and At5g56200, are very different in
length and in their sequences. The sequences of the ZF
helices are also shown in Figure 5c. Only one protein with
five dispersed zinc fingers (C1-5i), At3g29340, occurs in
the Arabidopsis genome. Nothing is known about the func-
tion of the four and five fingered proteins.

Classification of CI ZFPs and evaluation of different ZF helix types
Based on multiple sequence alignments and tree analyses
of the complete sequences of the C1 family members, we
further assigned ZFPs of different subclasses to several
subgroups as illustrated in Table S1 [see Additional File 1]
and Figure 5. These assignments remain the same if we
only compare the corresponding ZF sequences and their
flanks (Figure 5). The comparison of the ZF helices only
(position -1 to 10) resulted in five main signature types
(Figure 5 and 6).

28 ZFPs of subclass C1-1i contain an invariant QALGGH
sequence in their ZF-helix. The alignment shown in Figure
5a reveals several sequence features of the ZFs and their
flanks which are unique to these subclasses, e.g. the invar-
iant N residue in helix position 9 and the conservation of
the C-terminal R/K rich flank in five positions. We will
refer to significant and apparently conserved positions as
signature positions (e.g. the helix positions -1,1,8, 9 and
10). We call the most prevalent signature found in group
C1-1i Q2-1 (Q2 refers to the glutamine in position 2 of
the helix) (Figure 6). Comparison of the other two and
more fingered ZFPs showed that Q2-1 is unique for sub-
group C1-1i. 18 ZFPs of the C1-2i subclass contain in both
ZFs the invariant QALGGH (Figure 5b). The signature of
the two fingers is different from Q2-1 and we refer to fin-
ger number one and two as Q2-2 and Q2-3, respectively
(Figure 6). They contain in contrast to the Q2-1 type, an
A/T (Q2-2) and R (Q2-3) residue at helix position 9. Fur-
thermore, Q2-2 has an aromatic amino acid (F, Y or H) in
helix position 1 whereas Q2-3 shows a conserved G. This
observation is identical to the ZF domains of two fingered
petunia ZFPs [24] where Q2-2 and Q2-3 are named ZF
types A and B, respectively. The signatures of the three fin-
gered ZFPs (C1-3i) are more varied (Figure 6). Based on
the signature and arrangement of the three fingers we
could subdivide the eight proteins into four groups C1-
3iA to C1-3iD (Figure 5¢). We found signatures in the first
finger of all eight proteins and in the second of subgroup
D that we encountered previously in a few representatives
of C1-1i (C1-1iCa and C1-1iCb) and C1-2i (C1-2iX2).

http://www.biomedcentral.com/1471-2164/5/39

This signature has as the most prominent feature the Q of
QALGGH replaced with K or R. We classified the new sig-
natures again according to their residues in helix position
1 and 9. Signature K2-1 has a G in position 1 and a R/Kin
position 9 whereas K2-2 has L, W, M or S in position 1 and
R or A in position 9. We also investigated the signature of
the four and five fingered ZFPs (C1-4i, C1-5i). The four
fingered At1g49900 has the signature Q2-2/Q2-3/Q2-2/
Q2-3 (Figure 5c). The second member of subclass C1-4i,
At5g56200, shows the combination K2-1/K2-2/Q2-2/Q2-
3 (Figure 5c). None of the signatures we found to this
point match any of the ZF domains of the only five fin-
gered ZFPs (At3g29340). The signatures we found are
summarized in Figure 6 and all domain arrangements in
class C1 are presented schematically in Figure 7. The clas-
sification of the signatures is clearly reflected in the neigh-
bor-joining tree of all C1 domains (Figure 8).

Other conserved patterns

The motif search tool MEME revealed a number of other
conserved patterns in family C1 (Figure 7). Most remark-
able is a leucine rich stretch at the C-terminus of almost all
ZFPs in this group. This was also described for homologs
in petunia [24]. This stretch is called ERF-associated
amphiphilic repression motif and is essential for
repression activity [34,35]. We found a basic stretch adja-
cent to all Q2-1 ZF domains of subclass C1-1i. For SUP,
RBE and ZFP11 this basic stretch was already described
and suggested to be either involved in DNA binding or
nuclear localization (see above). We suggest that it could
have a dual function and may be important for both, as it
was shown for other proteins [36,37]. Furthermore we
found the motifs 'CLMLL' and 'KRKSTKR' N-terminal of
Q2-2 in C1-2i and in varying places in C1-3i. The con-
served stretches of basic amino acids found in different
positions in ZFPs of subclasses C1-2i, 3i and 4i may also
serve as nuclear localization signal. The location of all
conserved patterns is shown in Figure 7.

Discussion

Evolution

The majority of ZFPs in A. thaliana are plant specific and
not conserved in other eukaryotes. Comparisons of pair-
wise distances revealed that ZF domains of subsets C2 and
C3 show greater pairwise distances than those of the fam-
ilies C1 and A1l. Therefore we can conclude that ZFPs of
C2 and C3 are evolutionarily older than A1 and C1 which
is supported by our finding that the proportion of con-
served proteins is highest in subset C3 followed by subset
C2 and that many of them are involved in ancient proc-
esses such as RNA metabolism and chromatin-remode-
ling. Families A1 and C1 are probably the result of a recent
expansion. Both families almost exclusively contain plant
and AT-specific proteins which supports the notion that
they are younger families.
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type —112345678910 N

02-1
SSQALGGHQNA 7
™.......H. 6
Nooooooo... 3
NA...... M.TI 3
NP...... N.I 1
A...... M.V 5
Kooooo.. M.R 2
KT......... 1
sum 28

Q2-2
SFQALGGHRAS 11
.M.......H. 4
M...... K. 6
M...... KT 2
M....... i 1
TY.T .QTF 1
M...... QOTF 1
CY....... RL 1
JHe ool T 1
N B 1
sum 30

Q2-3
TGQALGGHMRR 2
.......... K 2
Veeeooeon K 1
M......... K 1
M.oooooo... 3
SH.......H. 4
Seve.. K.C 4
........ K.C 4
5] I C 2
Sevee.. K.S 5
S KKI 1
S .K.L 1
........ K.. 1
sum 29

K2-1
NGRALGGHMRS 2
Kool 1
......... K. 1
Koo oo A 1
C.KS. LILT 1
S.K..... I.1 1
S.K..... K.I 1
S.K.Y...V.R 1
sum 9

K2-2
SWKALFGHMRC 1
N PR B 1
L...R AL 1
.S...C A 1
M. Y o E 1
Veoon.. A 1
V...L.Q 1
sum 7

Figure 6

Pos.

1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

1/2
2/3
1/2
1/2
2/3
2/2
2/2
1/2
2/3
2/3

2/2
2/2
2/2
2/2
2/2
2/2
2/2
2/2
3/3
3/3
3/3
4/4
2/4

1/3
1/3
1/1
1/3
1/3
1/3
1/4
1/2

1/3
1/3
2/3
2/3
2/4
1/1
1/1

’

3/4
1+3/4

4/4
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subgroup

1iA
1iAa,
1iD
1iF
1iT
1iG
1iH
1iE

2iA,
3iA,
2iD,
2iD
3iB
2iX
2iX
21iX3
3icC
3icC

2iA
2iA
2iB
2iB
2iB
2iC
2iD,
2iD,
3icC
3iA,
3iB
4iA
4iA

3iA
3iA
1iCb
3iB
3iD
3iD
4iB
21iX2

3icC
3icC
3iD
3iD
41iB
liCa
liCa

B,

B,
4iB
4iA

X1
4iB

3iD

C

C

Five main helix signature types: Types are given, amino acids in helix positions -1 to 10, number of ZFPs with identical hel-
ices (N) total sum of the helix signature type, ZF position versus total number of ZFs in the protein (Pos.) and assignments to
subgroups. Residues in helix positions | and 9 are in yellow, the QALGGH motif or variations thereof are in bold.
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domains subgroup N

ﬂ

}

Q2-1 B ke
Q2-2 - K22

Q2-3

Figure 7

i

[ ] C1-1i Al 28
[ ] C1-1i Ca 2
C1-2i A/B 7

C1-2iC/D 10

C1-3iA 3
C1-3iB 1
C1-3iC 2
C1-3iD 2
C1-4iA 1
C1-4iB 1

B awmu

basic amino acids

. leucine rich

Schematic presentation of the distribution of zinc finger domains and other conserved motifs in family Cl. The

five main ZF helix types are presented by different colors.

Kubo and coworkers [24] investigated members of the
family C1 with two, three and four fingers and suggested,
based on the distribution of domains, that multi-fingered
proteins in petunia are probably older than those with
two fingers. Based on our more comprehensive analysis of

family C1 that includes also ZFPs with a single finger, we
favor the alternative hypothesis that the single and two
fingered proteins are older and the three and four fingered
are derived. Q2-2 and Q2-3 are conserved between Arabi-
dopsis and petunia (where so far only one single fingered
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protein has been reported) and Q2-1, Q2-2 and Q2-3 are
highly conserved between single and two fingered ZFPs of
rice and Arabidopsis. The K-types vary between rice and
Arabidopsis which could indicate that there is less selective
pressure on this type of zinc finger. We suggest the follow-
ing scenario: the ancestor domains evolved to Q2-1
domains and duplicated to evolve into Q2-2 and Q2-3
domains, respectively, leading to the C1-2i ZFPs. Another
duplication (probably Q2-3) led to three fingered ZFPs
(C1-3i) and the domains K2-1 and K2-2. Recombination
and also loss of domains could have led to the different
three and four fingered types we see today, but can also
explain the rare occurrence of one and two fingered pro-
teins with K-type or similar domains (Figure 7). Based on
the signatures of At1g49900 (Figure 5c and 6) we con-
clude that it arose from the duplication of a C1-2i protein.
The second four fingered protein At5g56200 probably
arose from recombining proteins of the subset C1-3i. The
only five fingered ZFP we found is too diverged in
sequence to allow inferences about its evolution. We
think that the number of the members of the respective
subgroups, the distribution of Q2-2 and Q2-3 as well as
the distribution of non-finger conserved motifs (Figure 7)
favor the assumption of evolution from a low number to
a higher number of domains and not vice versa. All main
signatures we found seem to be conserved in the plant
kingdom. The conservation of the signatures, especially
the Q-type implies that ZF types with the same signature
may recognize similar DNA sites.

DNA recognition by CI family zinc fingers

We found five main signatures that are prevalent in the ZF
helices of the C1 family which suggests variability in the
DNA recognition sites. DNA binding assays determined
binding sites with an AGT core sequence for SUP (C1-1i)
[30], like in earlier reports for ZPT2-1 (or EPF1) and ZPT2-
2 of petunia (C1-2i) [38]. However, the ZF-DNA
recognition mechanism of this family is not entirely
understood. Experimental data published so far for SUP
[30,31] and for the two petunia proteins [24,38,39]
revealed a peculiar DNA recognition mechanism that is
only partially in line with the canonical binding mode of
tandem ZFs [8]. It was suggested for SUP [30,31] that all
or some of the amino acid residues in positions -1, 2 and
3 of the alpha-helix and/or residues at the C-terminus of
the helix are responsible for the base specific DNA recog-
nition. Similar conclusions were drawn from amino acid
mutation studies of ZPT2-2 [24]. These results
emphasized the importance of both the invariant QAL-
GGH sequence of the helix and the C-terminal flanking
residues for DNA binding. In extension of their previous
reports Yoshioka and coworkers showed recently [40] that
the optimal binding sites of petunia ZPT2-2 are slightly
different with AGC(T) and CAGT for the first and second
ZF, respectively, which is in accord with the observation of
different signature sequences (Q2-2 and Q2-3 or A and B)
for the two fingers [24]. We suggest that differences out-
side the invariant QALGGH could be responsible for the
slightly different optimal DNA binding sites of the first
and second finger of ZPT2-2. Additionally, the optimal
DNA binding site of SUP might also vary in comparison
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with the two DNA core sites of ZPT2-2. This is supported
by an extended basic C-terminal flank of the ZF of SUP
(Q2-1) which is characteristic for many other Q2-1 type
fingers (Figure 5a), but is shorter or lacking in the two ZFs
of ZPT2-2. In the case of SUP the flank contains five
arginine residues and it was shown in [30] that mutations
from R to A in three of them abolishes the DNA binding
activity. In Figure 9 we compare the ZF helices and the C-
terminal flanks of SUP and ZPT2-2 and suggest positions
that may contact DNA. We emphasize that detailed con-
clusions concerning DNA recognition mechanisms of the
C1-family ZFs, i.e. which amino acid residues make direct
base contacts and which make stabilizing interactions
with the phosphate backbone, cannot be drawn until the
structure of a ZF/DNA complex is solved by NMR or X-ray
analysis.

Conclusions

We showed that the minority of AT-ZFPs is evolutionarily
conserved and our analysis further suggests that most of
them could be involved in ancient biological processes
like RNA metabolism and chromatin-remodeling. The
majority of AT (plant)-specific ZFPs are known or
suggested to be involved in transcriptional regulation and
exhibit remarkable differences in the features of their ZF
sequences and ZF arrangements compared to animal
ZFPs. In A. thaliana we found two major families with
recent expansions, one with zinc fingers arranged in
tandem (A1), the other with a varying number of dis-
persed zinc fingers and the plant-specific invariant QAL-
GGH motif in the alpha-helix (C1). However, our studies
showed that most ZFPs of A. thaliana have their domains
arranged in a dispersed manner and not in tandem. Addi-
tionally, novel plant specific ZFP-associated domains
were detected that may be involved in DNA binding or
repressor functions. Our results reflect the diversity of the
transcriptional regulation guided by ZFPs in plants com-
pared to animals. Our findings on signatures in zinc finger
domains of the largest family C1, and on conserved non-
finger motifs give insight into the evolution of the ZFPs
and will help to understand their DNA binding function.

Methods

Identification of ZFPs and of conserved ZFP-associated
motifs

For the identification of the ZFPs we searched the Arabi-
dopsis proteome (MatDB_v110103) using the HMMer
package 2.1.1 [41] and the Pfam domain ZF-C2H2
(PF00096) [2]. The minimal cut-off for the search was
chosen at a score of 0. The choice of this rather low thresh-
old permits the detection of all ZFs/ZFPs, but also results
in the detection of many false-positives. Therefore all
identified ZFs/ZFPs subsequently were checked for over-
laps with other protein motifs by manual inspection with
Pfam and SMART [42] search tools and by BLAST search

http://www.biomedcentral.com/1471-2164/5/39

[43]. Putative C2H2 hits that overlapped with more sig-
nificant hits of other motifs were eliminated. Usually,
questionable C2H2 hits have very low scores and do not
exactly fit the spacing of the Pfam C2H2 pattern. Pfam
and SMART were also used for the identification of con-
served non-finger domains in the AT-ZFPs. In addition,
we have applied the program "Multiple Expectation Max-
imization for Motif Elicitation" (MEME) [44] for the
detection of short conserved sequence parts that have not
been described yet as Pfam and/or SMART motif. The pro-
gram MEME detects conserved domains (with unknown
sequence) in unaligned sequences. It starts with an initial
alignment which provides an estimate of the amino acid
composition at each position of the respective conserved
stretch that is found. The two steps that follow, the expec-
tation and maximization steps, are applied repeatedly to
finally converge to a solution that offers the best location
of the motif in each sequence and an estimate of the
amino acid composition of each position of the motif.

Classification of AT-ZFPs into families and subgroups

The identified AT-ZFPs were compared to the NR protein
database of the NCBI in order to find evolutionarily con-
served proteins. Furthermore, all against all BLAST
searches of the AT-ZFPs were performed to define families
and subgroups and the number of their members. ZFPs in
any genome can be classified first into a few main sets
based on the number, types and arrangements of their fin-
gers as proposed earlier by us for ZFPs of the yeast genome
[3]. All ZFPs containing tandem ZFs in one array or in
more than one array are assigned accordingly to sets A and
B, respectively, and all ZFPs containing a single ZF or dis-
persed ZFs are assigned to set C. Based on the results of
our statistical analysis of linker lengths in ZFPs (S.B.
unpublished data) we have defined tandem ZFs as fingers
linked by zero to ten amino acid residues, with five
residues as the most frequent (consensus) linker length.
ZFs separated by longer spacers of eleven or more residues
are considered as dispersed ZFs. Our choice of the upper
and lower limits of ten and eleven linker/spacer residues
for tandem and dispersed ZFs may seem somewhat arbi-
trary. However it reflects experimental data on DNA bind-
ing ZFPs from literature, where a range of two to seven
residues for the linker is given, but most frequently a con-
sensus linker with five residues and the conserved
sequence 'TGEK/RP'. ZF domains of large subfamilies
were also subjected to phylogenetic analyses using Clus-
talX [45] for alignments and the PHYLIP package [46] for
pairwise sequence distance (PAM Dayhoff matrix) and
neighbor-joining analyses.

List of abbreviations
ZFPs C2H2 zinc finger proteins

ZF C2H2 zinc finger
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