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Abstract

Background: Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy and has been the poster-
child for improved therapeutics in cancer, with life time disease-free survival (LTDFS) rates improving from <10% in 1970
to >80% today. There are numerous known genetic prognostic variables in ALL, which include T cell ALL, the
hyperdiploid karyotype and the translocations: t(12;2)[TEL-AMLI], t(4;1 1) [MLL-AF4], t(9;22)[BCR-ABL], and t(I;19)[E2A-
PBX]. ALL has been studied at the molecular level through expression profiling resulting in un-validated expression
correlates of these prognostic indices. To date, the great wealth of expression data, which has been generated in
disparate institutions, representing an extremely large cohort of samples has not been combined to validate any of these
analyses. The majority of this data has been generated on the Affymetrix platform, potentially making data integration
and validation on independent sample sets a possibility. Unfortunately, because the array platform has been evolving over
the past several years the arrays themselves have different probe sets, making direct comparisons difficult.

To test the comparability between different array platforms, we have accumulated all Affymetrix ALL array data that is
available in the public domain, as well as two sets of cDNA array data. In addition, we have supplemented this data pool
by profiling additional diagnostic pediatric ALL samples in our lab. Lists of genes that are differentially expressed in the
six major subclasses of ALL have previously been reported in the literature as possible predictors of the subclass.

Results: We validated the predictability of these gene lists on all of the independent datasets accumulated from various
labs and generated on various array platforms, by blindly distinguishing the prognostic genetic variables of ALL. Cross-
generation array validation was used successfully with high sensitivity and high specificity of gene predictors for
prognostic variables. We have also been able to validate the gene predictors with high accuracy using an independent
dataset generated on cDNA arrays.

Conclusion: Interarray comparisons such as this one will further enhance the ability to integrate data from several
generations of microarray experiments and will help to break down barriers to the assimilation of existing datasets into
a comprehensive data pool.
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Background

The advent of DNA microarrays has provided the science
community with a tool to concurrently examine the
expression of thousands of genes within a given cell or tis-
sue type, thus providing a platform for future diagnoses
and prognostic analyses of disease with gene-level specifi-
city [1,2]. Microarray technology is progressing rapidly as
better sequencing and prediction algorithms allows for
more refined gene prediction. This has prompted the evo-
lution of the probe sets contained within the array chips
over the past few years, in both oligonucleotide and cDNA
arrays [3]. This microarray platform expansion has hin-
dered the direct comparison between numerous datasets
of a given phenotype that have been produced using sev-
eral generations of arrays. In microarray analyses of dis-
ease, having a large number of samples better accounts for
the biological variability between individuals and there-
fore increases the power to enhance and define a pathoge-
netic model for that disease. Due to the considerable
expense of microarray chips and the equipment required,
along with the common problem of sufficient sample
acquisition, being able to combine and compare datasets
from various laboratories and across all microarray gener-
ations would be a benefit to the entire biomedical com-
munity. The constant evolution of microarrays has thus
resulted in a significant hindrance to their power as a
research or diagnostic tool by dividing datasets according
to platform and seemingly limiting their interarray
comparability.

With the large number of microarray datasets available in
the public domain for distinct disease phenotypes from
various microarray platforms, cross-platform compari-
sons can currently be attempted. For example, a number
of laboratories have been studying diagnostic pediatric
acute lymphoblastic leukemia (ALL) samples from
human bone marrow on both oligonucleotide and cDNA
microarrays and depositing the raw intensity values into
the public domain. Additionally, in 2002 at St. Jude Chil-
dren's Research Hospital, Yeoh et al. generated a list of
genes that have distinct expression levels for various kary-
otypic and phenotypic aberrations common to pediatric
ALL [4]. This set of genes has been useful as a prognostic
profile for ALL by identifying subclasses of the cancer
using microarray technology [4]. Importantly, the St.
Jude's gene list has been validated on independent data-
sets both within their own lab and in an independent lab-
oratory by Kohlmann et al. in 2004. They used the Yeoh et
al gene list to successfully segregate the various subclasses
of adult ALL [5]. Consequently, this disease provides an
excellent model for testing interarray comparability using
one common gene list.

ALL is the most common pediatric malignancy compris-
ing over 75% of the annual diagnoses of leukemias in
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children [6]. In the United States, the outcome for chil-
dren with ALL has improved dramatically over the past
thirty years with the long-term disease-free survival
(LTDEFS) rates increasing from less than 10% in 1970 to
over 80% today [7]. However, ALL still carries the risk of
relapse in over 20% of patients [8]. ALL survival is largely
due to a greater understanding of the risk factors that
affect outcome, which has allowed for more intensity-tai-
lored treatment following an assessment of the patient's
risk [7]. Accurate segregation of patients into their proper
risk group is critical to allow for a risk-stratified treatment
that is effective enough to clear the disease and decrease
the risk of relapse while minimizing the negative long-
term side effects [7]. Factors that affect prognosis are age,
sex, race, white blood cell count at diagnosis, phenotypic
differences, such as T-cell versus B-cell lineage ALL and
karyotypic alterations, such as the hyperdiploid karyotype
and the translocations t(12;21)[TEL-AML1], t(4;11)[MLL-
AF4], t(9;22)[BCR-ABL], and t(1;19)[E2A-PBX] [7,9].
These genetic lesions can affect the individual's response
to treatment. For example, patients with a hyperdiploid
karyotype and those with the TEL-AML1 fusion gene have
a better prognosis than patients in the other subclasses
[10]. The initial diagnosis and classification of ALL is cur-
rently revealed through multiple time-consuming and
expensive tests often involving multiple laboratories [11].
Thus, a tool that could consolidate these tests into one
diagnostic platform would be beneficial to both research-
ers and clinicians working with ALL.

In this study, we sought to determine if datasets from dif-
ferent microarray platforms could be compared in a useful
manner. We chose to study pediatric ALL because there is
already a substantial pool of datasets freely available in
the public domain. First, we collected pediatric ALL array
data and cDNA array data generated in experiments from
various laboratories. In addition to the collection of pub-
lic data, we supplemented the hyperdiploid karyotype
and the T-cell lineage ALL subclasses by expression profil-
ing additional diagnostic pediatric ALL samples from a
tumor bank in Children's National Medical Center in
Washington, D.C. We used these independent datasets,
including the one generated in our lab, to validate the
gene predictors, as defined by Yeoh et al. (2002), for each
of the aforementioned prognostic genetic variables.
Cross-platform array validation was used successfully to
ascertain the accuracy, sensitivity and specificity of the
gene predictors for the prognostic variables. In addition,
we have demonstrated the ability to compare datasets
from different microarray platforms. To our knowledge,
this is among the first known successful applications of
this technique, along with the validation of the Yeoh et al
pediatric ALL gene lists on adult ALL by Kohlmann, et al
(2004) [5]. Interarray comparisons such as these will fur-
ther enhance the ability to integrate data from several
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Table I: Training and test datasets used to validate ALL subclass predictors

Training Sample Set

Microarray Platform

Yeoh et al. Cancer Cell, 2002, 1:133—143

Validation Sample Set

Microarray Platform

Affymetrix HG_U95Av2

Predictors

Armstrong et al. Nat. Genet., 2002, 30(1):41-7
Mitchell et al. Unpublished data 2003
Stephan DA, Golub TR. Unpublished data 2000

Affymetrix HG_U95Av2
Affymetrix HG_UI33A
Affymetrix HuGene FL

Hyperdiploid, MLL-AF4, TEL-AMLI
Hyperdiploid, T-ALL
TEL-AMLI, E2A-PBX |

Golub et al. Science, 1999, 286:531-7 Affymetrix HuGene FL T-ALL
Ramaswamy et al. Proc. Natl. Acad. Sci. USA, 1999, 98(26):15149-54  Affymetrix Hu6800 and Hu35KsubA T-ALL
Moos et al. Clin. Cancer Res., 2002, 8:3118-3130 <DNA TEL-AMLI, MLL-AF4, BCR-ABLI, T-ALL
Catchpoole et al. Unpublished data 2002. <DNA T-ALL

generations of microarray experiments and will help to
break down barriers to the assimilation of existing data-
sets into a comprehensive data pool.

Results and discussion

Expression profiling of ALL diagnostic bone marrow

To supplement the ALL subclasses that are under-repre-
sented in expression profiling thus far, we collected and
extracted the total RNA from sixteen diagnostic bone mar-
row samples housed at Children's National Medical
Center; seven of the hyperdiploid karyotype and nine
with T-cell lineage. The extracts were then hybridized to
Affymetrix U133A arrays and expression profiled as an
independent training data set.

Validation of the gene predictors using independent
datasets spanning various array platforms

In order to validate the portability of gene predictors
across microarray platforms we compared the accuracy
with which the six prevalent ALL subclasses can be distin-
guished on disparate array platforms. To do this we used
the discriminating gene lists (~40 genes), which were pro-
vided by the comprehensive training ALL sample set ana-
lyzed and published by Yeoh et al. in 2002 [4]. In their
study they hybridized RNA from ALL bone marrow sam-
ples to Affymetrix U95Av2 arrays. The resulting expression
data were analyzed by multiple statistical methods to
facilitate the generation of lists of genes that represent the
greatest difference in expression between the ALL sub-
classes [4]. Yeoh et al. used both a training and test dataset
in their analysis to first uncover the subclass-specific gene
expression profiles and then to test their predictability on
independent samples [4]. The genes are listed hierarchi-
cally, along with supplemental information about the sta-
tistical methods used, at http://www.stjuderesearch.org/
data/ALL1. We then accumulated the ALL diagnostic bone
marrow array data available in the public domain (Table

1).

The independent datasets that we accumulated, including
the one generated in our lab, spanned four different
microarray platforms: Affymetrix HuGene FL, U95Av2,
U133A and custom cDNA microarray platforms (Table 1).
To modify these test datasets into data that could be
directly applied to the predictor gene lists from the
U95Av?2 arrays, we correlated the probe numbers between
these different arrays and the U95Av2 set using the probe
match spreadsheet, NetAffx, available at http://
www.affymetrix.com. We then used the discriminating
gene list for each subclass to extract the appropriate
probes and their intensity values from the expansive
expression data for each sample of the validation datasets
independently. The level of similarity between the probe
sets of the two different array platforms was evident
through the number of genes within the 40 discriminators
that could be found within the validation data (Table 2).
For example, the data published by Armstrong et al.
(2002) was generated on the U95Av2 array platform [6].
Therefore, expression data for all 40 predictor genes could
be correlated and represented in their corresponding MLL-
AF4, TEL-AML]1, and hyperdiploid datasets. Similarly, the
U133A arrays that were used to generate expression data
in our lab for the hyperdiploid karyotype and the T-cell
lineage ALL contained probes representing the majority of
the 40 discriminators, with 38 and 35 genes, respectively.
The HuGene FL arrays contain significantly fewer probe
sets in common with the selected predictors (from the
later-generation U95Av2 microarrays). Accordingly, of the
40 original predictor probes, only 25 were present in the
TEL-AML]1 dataset, 26 in the E2A-PBX1 dataset and 13 in
the T-cell dataset. The difficult task of matching probes
from the Affymetrix gene chips with cDNA arrays was
illustrative of the disparities between the probe sets within
these two platforms. For example, the five cDNA predic-
tors built using the datasets produced by Moos et al.
(2002) and Catchpoole et al. (unpublished data) con-
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Table 2: Prediction accuracies for ALL subclasses as determined by the different microarray platforms.

ALL Subclass Microarray # of Samples # of Samples # of Genes in Accuracy (%)? Sensitivity (%)} Specificity (%)*

Platform in the Representing Predictor (out
Dataset the Predictor  of 40)!
Subclass

Hyperdiploid  Affymetrix 432 5 40 97 80 100
U95Av2

Hyperdiploid  Affymetrix 16b 7 38 94 86 100
UI33A

T-ALL Affymetrix 16> 9 35 100 100 100
UI33A

T-ALL Affymetrix 4l¢ 8 13 100 100 100
HuGene FL

T-ALL Affymetrix 204 10 30 95 100 90
Hu6800

T-ALL cDNA 52e 7 5 98 86 100

T-ALL c<DNA 9f 3 29 100 100 100

TEL-AMLI Affymetrix 432 9 40 9l 67 97
U95Av2

TEL-AMLI Affymetrix 238 14 30 86 79 100
HuGene FL

TEL-AMLI cDNA 52e 12 10 87 83 88

MLL-AF4 Affymetrix 432 20 40 100 100 100
U95Av2

MLL-AF4 cDNA 52e 2 7 98 50 100

E2A-PBXI Affymetrix 23¢ 2 26 96 50 100
HuGene FL

I'With a few exceptions, the majority of the gene lists published by Yeoh et al (2002) contain 40 genes.
2The ability of the predictor to correctly classify the blinded test set into the correct subgroup

3 (# of positive samples predicted correctly)/(total #of true positives)
4 (# of negative samples predicted correctly)/(total #of true negatives)
a Armstrong et al. (2002) Nat. Genet. 30(1), 41-7.

b Mitchell et al. (2003) Unpublished data.

¢ Golub et al. (1999) Science 286, 531-7.

dRamaswamy et al. (2001) PNAS 98(26), 15149-54.

¢ Moos et al. (2002) Clin Cancer Res. 8, 3118-3130.

fCatchpoole et al. Unpublished data.

g Stephan et al. (2000) Unpublished data.

tained data for only ten genes or less from the predictor set
gene list.

To validate the gene predictors from Yeoh et al. (2002),
using the aforementioned independent test datasets from
various array platforms, we employed supervised learning
methods using GeneCluster2 software. Prior to analysis,
we formatted the discriminating gene expression values
from the test datasets onto spreadsheets according to soft-
ware instruction, and subsequently applied the data to the
software. Genecluster2 then generated blinded predic-
tions on the ALL samples of the test datasets through
weighted voting with a leave-one-out methodology. This
is accomplished by randomly removing one sample at a
time from the test dataset of ALL samples and "training" a
predictor gene profile to recognize similarities or dispari-
ties between the two classes based on the expression pro-
files of the samples for the genes of interest [11]. In this

manner each sample is assigned to one of the two classes
based on their expression pattern of the predictor genes.
The prediction accuracy, sensitivity and specificity were
calculated for each of the predictors from each array plat-
form and are displayed in both figure 1 and table 2. The
accuracy of our predictors ranged from 86%-100%, with
a mean accuracy of 95%. The mean specificity of the
predictors was 98%, ten of which provided a specificity of
100%. The sensitivity ranged from 50%-100%. The mean
sensitivity was 83% (fig. 1, table 2).

We saw a high accuracy from the predictors employing
data from both U95Av2 and U133A arrays, attesting to the
fact that nearly all of the 40 discriminating genes were
present in the datasets, thus maximizing the possible pre-
diction strength. In the case of the E2A-PBX1 predictor
(96%) and the MLL-AF4 predictor (98%), the sensitivities
were only 50%. In both cases there were only 2 samples
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Hu6800!

Hyperdiploid MLL-AF4 TEL-AMLI1

T-ALL

TEL-AMLI1 E2A-PBX1 T-cell

Accuracy=97 Accuracy=100
Sensitivity=80  Sensitivity=100
Specificity=100 Specificity=100

Accuracy=91
Sensitivity=67
Specificity=97

Accuracy=95
Sensitivity=100
Specificity=90

Accuracy=86 Accuracy=96 Accuracy=100
Sensitivity=79 Sensitivity=50 Sensitivity=100
Specificity=100 Specificity=100 Specificity=100

TEL-AMLI1| | MLL-AF4 T-ALL?

T-ALL?

Hyperdiploid T-cell

Accuracy=87 Accuracy=98 Accuracy=100 Accuracy=98
Sensitivity=83 Sensitivity=50 Sensitivity=100 Sensitivity=86
Specificity=88 Specificity=100 Specificity=100 Specificity=100

' Affymetrix
2Catchpoole et al. (Unpublished data)
3Moos et al. (2002)

Figure |

Accuracy=94 Accuracy=100
Sensitivity=86 Sensitivity=100
Specificity=100 Specificity=100

Summary of results of the various ALL subclass predictors tested. The predictors are organized according to microarray plat-
form and the results are listed under each class in terms of the accuracy, sensitivity and specificity of the classification.

out of the sample pool expressing the respective transloca-
tion and in both analyses one of the two was continuously
classified incorrectly. This could be due to many factors,
misdiagnosis or mislabelling of the sample, poor sample
quality or differences in sample handling. It is difficult to
draw a conclusion due to the fact that the samples were
collected and processed in a laboratory outside of our
own. Another problem with these two predictors may
simply be the low sample number. Two samples may not
provide enough strength to the classification by
Genecluster2 simply due to the inability of such a low
sample number to account for the biological variability
that exists between patients that is independent of their

subclass of ALL. The most surprising result was the high
accuracy with which the gene lists could classify T-ALL,
TEL-AML1 and MLL-AF4 from cDNA data considering the
disparity between the probe sets of cDNA arrays and oligo
arrays. The accuracies of the classifiers were: T-ALL (Catch-
poole data), 100%; T-ALL (Moos data), 98%; MLL-AF4,
98%; and TEL-AML1, 87%. Therefore, it appears that the
number of genes in the predictor gene list is much less of
a factor in the predictor's classification accuracy than the
number of samples representing the phenotype of inter-
est, which supports the argument that being able to do
cross-platform analyses to increase sample size is crucial
for sensitive and specific class prediction using expression
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data. This is strongly illustrated by the cDNA predictors,
which have few probes in common with the arrays used to
generate the predictor gene list, but still classify the ALL
samples with high sensitivity, specificity and accuracy. On
the other hand the E2A-PBX1 predictor and the MLL-AF4
predictor had low sensitivities correlating to a low sample
number in these groups. The high number of probes in
common between the arrays used to generate these inde-
pendent datasets and the arrays used to generate the pre-
dictor gene list, 26/40 and 40/40, respectively, were not
able to rescue the low sensitivity of the predictor.

Conclusions

Currently the vast majority of expression data from
numerous labs is not being used to its highest potential as
independent labs continue to move to more expansive
array platforms rendering older datasets less informative
in the context of new data. Increasingly, progressive tech-
nologies in genome databasing and chip construction are
prompting this inevitable evolution of microarrays. Until
data can be analyzed and directly compared across array
platforms, the size of the data pools will remain small and
isolated according to platform [12]. Here we have shown
that the previously validated predictor gene list from Yeoh
et al. (2002) withstands validation by testing the predic-
tors using a leave-one-out strategy on all publicly availa-
ble datasets as well as a dataset generated in our own lab
regardless of the array platform used. This meta-data anal-
ysis of over 200 arrays from diagnostic ALL samples with
hyperdiploidy, T-cell lineage and translocation status
(previously confirmed through gold standard tech-
niques), shows that expression profiling as an integrated
platform is robust and that ALL data, and presumably
other disease models, can be interplatform comparable.
By validating the comparability between data from dis-
tinct microarray platforms we have demonstrated a tool
that can enhance the statistical power provided by large
sample sets. Thus, we can potentially develop and validate
sensitive diagnostic tools based on large training sample
sets, to allow for the rapid assignment of individualized
therapy to improve disease outcome in pediatric ALL and
other diseases.

Methods

RNA extraction from bone marrow samples

ALL diagnostic bone marrow samples were housed in a
tumor bank in Children's National Medical Center in
Washington, D.C. Mononuclear cells from diagnostic
bone marrow aspirates were separated using density cen-
trifugation on Cappel Lymphocyte Separation Medium
(ICN Biomedicals, Aurora, Ohio) and immediately flash
frozen according to manufacturer's instruction. A total of
sixteen samples were obtained with IRB approval; seven
with a hyperdiploid karyotype and nine samples of a T-
cell lineage as confirmed by immunophenotyping. The

http://www.biomedcentral.com/1471-2164/5/71

frozen samples were placed directly in TRIzol reagent for
RNAse-free thawing for total RNA extraction. We extracted
a 10 pug-20 pg pellet of total RNA from each sample by
centrifugation following phenol-chloroform extraction.
The integrity of the resultant total RNA from each sample
was quantified by gel electrophoresis before it was consid-
ered to be of good quality for cDNA synthesis. Samples
were re-extracted if ribosomal bands were not visible.

Expression profiling and support vector machine meta-
analysis

10 pg of the extracted RNA from each sample was labelled
and hybridized to an Affymetrix U133A array (Affymetrix,
Santa Clara, CA) according to protocol as previously
described [13]. Intensity values were calculated using
Microarray Suite 5.0 (MAS 5.0) and expression values
were adjusted to fall within the lower and upper limits of
1 and 45000 as described by Yeoh et al. (2002) [4]. To cre-
ate a predictor that allows for the direct comparison
between different generation Affymetrix arrays and cDNA
arrays, we used the predictor gene list for each subclass
provided by Yeoh et al. (2002) from Affymetrix U95Av2
microarrays. The 40 genes that showed the greatest mean
difference in expression between the subclass of interest
and the remaining subclasses was used as our predictor
gene set. The gene lists and additional information,
including the statistical metrics used to generate the gene
list from the training set, can be viewed at: http://
www.stjuderesearch.org/data/ALL1. To identify compara-
ble data points between the gene lists from the training set
(produced on the U95Av2 Affymetrix chip), and the
expression values of samples provided by other public
datasets on different generation Affymetrix arrays, we used
the probe match function within NetAffx http://
www.affymetrix.com. Data for these probe pairs in the
validation sets were extracted and expression values were
linearly adjusted to fall within 1-45000 [4]. Affymetrix
probes were identified within cDNA data by a combina-
tion of BLAST sequence comparison http://
www.ncbi.nlm.nih.gov/BLAST/ and GenBank accession
number queries. Ratios were log-transformed prior to
analysis. GeneCluster2 (http://www.genome.wi.mit.edu;
Center for Genome Research, MIT, Cambridge, MA) was
used to perform blinded predictions on the validation
dataset using weighted voting with a leave-one-out meth-
odology. Accuracy, specificity and sensitivity values were
then generated for each predictor, as a measure of the pre-
dictor's ability to correctly group the samples into their
respective class in the validation sets.
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