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Abstract

Background: Prediction of structure and function for uncharacterized protein families by
identification of evolutionary links to characterized families and known structures is one of the
cornerstones of genomics. Theoretical assignment of three-dimensional folds and prediction of
protein function even at a very general level can facilitate the experimental determination of the
molecular mechanism of action and the role that members of a given protein family fulfill in the cell.
Here, we predict the three-dimensional fold and study the phylogenomic distribution of members
of a large family of uncharacterized proteins classified in the Clusters of Orthologous Groups
database as COG4636.

Results: Using protein fold-recognition we found that members of COG4636 are remotely related
to Holliday junction resolvases and other nucleases from the PD-(D/E)XK superfamily. Structure
modeling and sequence analyses suggest that most members of COG4636 exhibit a new, unusual
variant of the putative active site, in which the catalytic Lys residue migrated in the sequence, but
retained similar spatial position with respect to other functionally important residues. Sequence
analyses revealed that members of COG4636 and their homologs are found mainly in
Cyanobacteria, but also in other bacterial phyla. They undergo horizontal transfer and extensive
proliferation in the colonized genomes; for instance in Gloeobacter violaceus PCC 7421 they
comprise over 2% of all protein-encoding genes. Thus, members of COG4636 appear to be a new
type of selfish genetic elements, which may fulfill an important role in the genome dynamics of
Cyanobacteria and other species they invaded. Our analyses provide a platform for experimental
determination of the molecular and cellular function of members of this large protein family.

Conclusion: After submission of this manuscript, a crystal structure of one of the COG4636
members was released in the Protein Data Bank (code Iwdj; Idaka, M., Wada, T., Murayama, K.,
Terada, T., Kuramitsu, S., Shirouzu, M., Yokoyama, S.: Crystal structure of Tt1808 from Thermus
thermophilus Hb8, to be published). Our analysis of the Tt1808 structure reveals that we correctly
predicted all functionally important features of the COG4636 family, including the membership in
the PD-(D/E)xK superfamily of nucleases, the three-dimensional fold, the putative catalytic
residues, and the unusual configuration of the active site.
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Background

The PD-(D/E)XK domain is ubiquitously found in
enzymes involved in metabolism of nucleic acids, mostly
in nucleases with diverse biological functions. The first
structurally characterized members of the PD-(D/E)XK
superfamily were restriction enzymes (REases) (reviews:
[1,2]). Crystallographic studies revealed that this super-
family groups together many nucleases with different cel-
lular functions, including: phage A exonuclease [3],
bacterial enzymes exerting ssSDNA nicking in the context
of methyl-directed and very-short-patch DNA repair:
MutH [4] and Vsr [5], Tn7 transposase TnsA [6], a family
of archaeal Holliday junction resolvases (Hjc and Hje)
from different species of Archaea [7-9], a Holliday junc-
tion resolvase (endonuclease I) from phage T7 [10], and
an archaeal XPF/Rad1/Mus81 family nuclease that cleaves
branched structures generated during DNA repair, replica-
tion, and recombination [11].

All members of the PD-(D/E)XK superfamily share a com-
mon structural core, comprising a mixed 3-sheet of 4 or 5
strands flanked on both sides by a-helices [1,2,12]. These
secondary structures are often embedded in very different
peripheral elements, which sometimes constitute the
majority of the protein. The common B-sheet serves as a
scaffold for a weakly conserved active site, typically com-
prising two or three acidic residues (Asp or Glu) and one
Lys residue, which together form the hallmark bipartite
catalytic motif (P)D...X,,...(D/E)XK (where X is any amino
acid). The Lys residue serves to position a water molecule
for an in-line attack on the scissile phosphodiester bond,
while the carboxylate residues coordinate a Mg2+ ion,
which acts as a cofactor. Despite the wealth of structural
and biochemical data, obtained mainly for REases (sum-
marized in a collection of reviews: [13]), there is still con-
troversy over the exact catalytic mechanism and the
number of metal ions required (1, 2, or 3) by PD-(D/E)XK
nucleases [14,15]. Moreover, it was found that some
members of the PD-(D/E)XK superfamily developed dif-
ferent variants of the active site. In Vsr and its homologs,
the (D/E)XK half-motif was replaced by "FxH" and an
additional, unique catalytic His residue appeared in
another part of the common three-dimensional fold [5].
In some REases, the acidic residue from the (D/E)XK half-
motif was found to have "migrated" to another region of
the polypeptide in a way that the position of the carboxy-
late group in the active site is generally maintained as in
the "orthodox" members of the PD-(D/E)XK superfamily,
despite the side chain is attached to another place in the
backbone [16-19]. In a few enzymes, the conserved Lys
was found to be replaced by a Glu, Gln, or Asn residue
[20-22].

Crystallographic analyses have also revealed the PD-(D/
E)XK fold in proteins that do not function as deoxyribo-
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nucleases at all and exhibit no conservation of the active
site with the above-mentioned enzymes. The structure of
the C-terminal catalytic domain of tRNA splicing endori-
bonuclease (RNase) EndA is identical to the minimal core
of the PD-(D/E)XK fold [23], yet this protein lacks the
Mg?+binding site common to its cousins that cleave phos-
phodiester bonds in DNA. Remarkably, on the opposite
side of the common fold, EndA developed a different
active site, whose geometric configuration is very similar
to that of a His-Tyr-Lys triad in structurally unrelated
RNase A [24]. Finally, the N-terminal domain (NTD) of
the RPB5 subunit of RNA polymerase from Saccharomyces
cerevisiae exhibits perfect conservation of the restriction
enzyme-like structure, but lacks any catalytic residues - it
is postulated that it functions as a nucleic acid binding
domain devoid of any catalytic activity [25].

The divergence exhibited by the members of the PD-(D/
E)XK superfamily is remarkable. Even enzymes with very
similar biological functions, such as REases that recognize
and cleave the same substrate, can exhibit little or no sig-
nificant sequence similarity. Thus, most of the afore-men-
tioned enzymes were considered unrelated until the
corresponding crystal structures were solved. Only in a
few cases the membership in the PD-(D/E)XK superfamily
was successfully predicted using bioinformatics (in some
cases backed up by mutagenesis of hypothetical catalytic
residues) before the actual structures were determined
[26-29]. The catalogue of members of the PD-(D/E)XK
superfamily is therefore far from being complete and it is
expected that new lineages will be discovered as new
sequences appear in the databases. Here, we predict that a
large uncharacterized protein family with an unusual phy-
logenetic distribution is likely to represent a new branch
of PD-(D/E)XK nucleases.

Results

Sequence analysis of COG4636 reveals remote similarity
to PD-(D/E)XK nucleases

In the course of analyses of proteins with unknown struc-
tures, we came across a family of sequences grouped
together in the Clusters of Orthologous Groups (COG)
database [30] as COG4636 and annotated as "uncharac-
terized protein conserved in Cyanobacteria". Analyses of
cross-references to other databases revealed no functional
information about any member of this family. Nonethe-
less, preliminary analysis of sequence conservation com-
bined with secondary structure prediction revealed a
characteristic pattern of a-helices and -strands associated
with conserved carboxylate residues (review: [31]), which
suggested that members of COG4636 may belong to the
PD-(D/E)XK superfamily (Figure 1). The multiple
sequence alignment revealed nearly perfect conservation
of a "PD" half-motif, but only partial conservation of the
"(D/E)XK" half-motif. Specifically, instead of the Lys

Page 2 of 13

(page number not for citation purposes)



BMC Genomics 2005, 6:21

*

http://www.biomedcentral.com/1471-2164/6/21

*

Nostoc-all3650-17231142 1mmkﬁcvR s TA@DN s-I'r EEAIA Brge----- DNDN TP SN@RL SNLLD--EAGHLTA
G.violaceus1-37520478 TIE SDAVSGIGVRL o’I‘RI VL YHFDvA T ---NTDLTAP® SR RAF----RTYAQV
G.violaceus2-37521913 B 8 K HE VA C\ AVE SL-GSTLWESEL--VASCHEPNS CI®4TONERAVRCKE I IDLSVD
G.violaceus3-37520853 IRM-PLFI Vi LDELE YESE‘— STT B--LAKGFEPW IRNFAAMVGKQCLDLGRD
G.violaceus4-37521465 OKPMPOCL ‘ST!QAEI AAAPI R RAFPELRCTYDG-—-~—~ V=D \WZRI P IDEQAETANVFDR
G.violaceus5-37520579 -DNTEOFRW W0 @raDN S VEGA- - CDRLEYFVE DNKTROAPD FGRPKGDRGS YRQWEENG T
D.hafniense-23119812 NESPSYI F TIYNWERNKKC I DdTS E‘D TFKAE-DNICVGQPD CDRDNMD- -~ -~ KCKYQ
C.aurantiacus-22972601 DF IVHS I9TD QRY ST DVIROA] ERT EAI ---LRIHSPIN ITKQDNWSTFDVAQEGQ
S.coelicolor-21221111 KEWED DH WIdTRICMOHRPDLWLD TO—-— 1#VNEAYR- -~ CRARPD SEAFVGO----GEWADPA
T.thermophilus-46199172 VE@ Khim VDLEA in KALIEVON-— -l i ----- TEGYP 0P PRTRYR----DRLFEAK
G.violaceus-37522233 MRRI LOAIRLARGY PLGOMLSE==Q SA== === SEPVPE EPBIPEGLDYE-=-GGHPTPD
Structure — — —
Ns  APEMRQUNIE E: ILKLVVT === —mm—m e m o | #FHCDE] Li NFTC ——
GVl VPNIAARRKSST--DRLK LLEVLJG------—=-===----—- TDSLRFADVESG TEY ﬂ VFD
Gv2 FPDi IRRODFYAE[QTSL-———— VFERISVBQLTNFRERGQSEGMSARNAAARIWERY 9
Gv3  PPEL ViEDEYIEVEQS ----TFPDL LKENLSRF&%«QSEG R AFRQWVRG 6
Gv4d  APD O PMLI Y-~ ———— === === - §F TAPLE VPEFSDLI ﬁ WLST 4
Gv5 APD VRRCDSLEPVEAMQCVWLS PLLCVRFAMADN CDMSHIRPDGRSFESYWAVARRAE 20
Dh  VETAaGAu i EITDEAAFH-——————==—= = KGAHDYYES YFKGL%AII -—--
Ca  RPAWRSSIT VGEHY VLHFFDE (8) ARLWLG I TDNHVVCYNER GEMGN Y TIMM! TAQA 149
Sa VLIRS SREDGCRYETVQT-=—====—== ==~ - FCKEARFE © VGTABDTE MR TNR VR -
Tt  DALAAS RGEGYGEA-=========m==aeee QALEDGELSLGLY um -——
[ Yl VIEVRIAS VAECYASV- === —mmmmmmmmm EVRNRQE sBAL D NGAR -—-
str — —

Figure |

Multiple sequence alignment of selected representatives of the extended COG4636+ family. The selection of rep-
resentative sequences includes the modeled protein from Nostoc (motif H-PD-EXX-K, members from G. violaceus with differ-
ent order of putative catalytic residues (Gvl: H-PD-EXK; Gv2: S-PD-EXD-K; Gv3: H-PD-EXD; Gv4: H-PD-EXX-N; Gv5: Q-
PD-EXX-K), and members of mono-phyletic clusters from D. hafniense, C. aurantiacus, S. coelicolor, T. thermophilus, and G. viol-
aceus). The positions of putative catalytic residues are labeled with "*". The variable termini, which could not be confidently
aligned, are not shown; the number of omitted residues is indicated. A complete alignment of full-length sequences is available
for download from ftp://genesilico.pl/iamb/models/COG4636/. Amino acids are colored according to the physico-chemical

properties of their side-chains (negatively charged: red, positively charged: blue, polar: magenta, hydrophobic: green). Con-
served residues are highlighted. Elements of predicted secondary structure (helices and strands) are indicated by tubes and

arrows, respectively.

residue most members of COG4636 possessed a hydro-
phobic amino-acid, such as Leu or Val. This suggested that
the apparent similarity to the pattern of catalytic residues
typical for the PD-(D/E)XK superfamily may be either
spurious or indicate a new family of enzymes with an
active site devoid of the otherwise conserved residue. We
searched for homologs of the analyzed family, beyond
sequences from complete genomes grouped together in
COG4636, by carrying PSI-BLAST searches of the nr data-
base. Altogether, we collected 435 sequences with signifi-
cant similarity to COG4636, which will be hereafter
referred to as "COG4636+". No statistically significant
sequence similarity was detected to any protein with an
experimentally determined function.

In order to test the hypothesis of the evolutionary connec-
tion between COG4636 and the PD-(D/E)XK superfamily
we carried out the fold-recognition analysis, which allows
to predict the three-dimensional fold of the target protein
by matching its sequence with the available protein struc-
tures and assessing the sequence-structure compatibility

using a combination of criteria, such as sequence similar-
ity, match of secondary structure elements, compatibility
of residue-residue contacts, etc. (review: [32]). Sequences
of individual members of COG4636 were therefore sub-
mitted to the GeneSilico protein fold-recognition
metaserver [33]. Disappointingly, no methods reported
statistically significant matches between these sequences
and proteins with known structures. Only a few threading
methods that explicitly use the structural information
from the templates (FUGUE, INBGU, mGenTHREADER,
SAM-T02, and 3DPSSM) reported, in some cases, matches
to structures of PD-(D/E)XK nucleases, but never at the
first position of the ranking. However, in the course of
CASP-5 protein structure prediction contest we found that
the fold-recognition operation for strongly diverged pro-
teins can be greatly improved by limiting the analysis to
the conserved core, i.e. omission of strongly diverged
regions and non-conserved insertions, as well as using a
refined multiple sequence alignment rather than allowing
the servers to build their own sequence profiles from
unrefined PSI-BLAST results [34]. Thus, we modified the
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Fold-recognition alignment between all3650 and structures of Hjc and Hje. Amino acids are colored according to
the physico-chemical properties of their side-chains. Conserved residues are highlighted. Secondary structure elements exper-
imentally identified in Hjc and Hje and predicted for all3650 are shown between the target and the template sequences. Known
and predicted catalytic residues are indicated by "*" (above the alignment for the target, below the alignment for the

templates).

multiple sequence alignment of the COG4636+ family by
removing strongly diverged termini that could not be
reliably aligned, and submitted to the meta-server only
the core section, comprising ca. 110 aa. This time, as
expected, fold-recognition analysis of a well-defined pro-
tein core gave unambiguous results: mGenTHREADER,
SPARKS, and FUGUE reported structures of Holliday junc-
tion resolvases Hjc and Hje, members of the PD-(D/E)XK
fold [7-9], at the first positions of their rankings, with sig-
nificant scores (0.45, -2.08, and 3.46, respectively).
Results obtained from the primary servers have been sup-
ported by the consensus server Pcons [35], which reported
the Hjc and Hje enzymes at the first four position of its
ranking, with scores 1.38-1.20, compared to the insignifi-
cant score 0.61 for the subsequent fold in the ranking.

Modeling and model-based identification of a putative
active site

In order to identify the putative active site of newly pre-
dicted members of the PD-(D/E)XK superfamily, we mod-
eled the structure of one of the COG4636+ members,
whose sequence was close to the consensus calculated for
the whole family (hypothetical protein all3650 from Nos-
toc sp. PCC 7120, GI: 17231142) and used it as a platform
to study the three-dimensional arrangement of conserved
residues. A homology model of all3650 was constructed
using the "FRankenstein's Monster" approach (see Meth-
ods and ref. [34]), starting with the unrefined alignments
between the consensus sequence and the structures of Hjc
and Hje enzymes (1gef, 1hh1, and 10b8) reported by
threading methods. Initially, the model of the protein
core was constructed by iterating the homology modeling
procedure, evaluation of the sequence-structure fit by

VERIFY3D, merging of fragments with best scores, and
local realignment in poorly scored regions. Local realign-
ments were constrained to maintain the overlap between
the secondary structure elements found in the template
structures, and those predicted for the target. This proce-
dure was stopped when the regions in the protein core
(helices and strands) obtained acceptable VERIFY3D score
(>0.3) or their score could not be improved by any
manipulations, while the average VERIFY3D score for the
whole model could not be improved. The final alignment
between all3650 and the three structures used as tem-
plates is shown in Figure 2. The final model of the core,
comprising residues 39-188, obtained a poor average
VERIFY3D score of 0.13 due to low scores in the variable
loops that could not be modeled with confidence. How-
ever, the secondary structure elements (with the exception
of the C-terminal helix), obtained an acceptable average
score of 0.37. It is important to note that all catalytic resi-
dues of the PD-(D/E)XK fold are found in the stable
regions of regular secondary structure rather than in loops
[36]. The variable N-terminus, which could not be mod-
eled because of the strong divergence and the lack of
appropriate template structures, was added "de novo"
using the fragment insertion method ROSETTA [37]. The
coordinates of the final, full-length model (Figure 3) are
available as supplementary material [see Additional file 1]
and on-line at ftp://genesilico.pl/iamb/models/

COG46306/

The model of all3650 reveals a typical PD-(D/E)XK nucle-
ase-like spatial arrangement of one Lys g-amino group
(from the residue K127) and two carboxylate groups
(from residues D83 and E111) (Figure 4). The modeled
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Figure 3
Homology model of all3650. Helices and strands are shown in green and yellow, respectively. The predicted catalytic resi-
dues are shown in the wireframe representation and labeled. The termini are indicated.

structure suggest also an additional highly conserved His
residue (H43) that could be a part of the metal ion-bind-
ing site or be involved in substrate-binding. Strikingly, in
all3650 as well as in the great majority of sequences from
the COG4636+ family, the conserved Lys (K127 in
all3650) is found not in the common position in the same
B-strand as the conserved Glu residue (E111 in all3650),
but in a spatially adjacent a-helix. Thus, the predicted
active site is formed by a "PD-EXX-K" sequence motif. This
"migration" of the presumptive catalytic Lys residue and
retention of the original position of the spatially adjacent
carboxylate in COG4636+ members resembles the situa-
tion reported for a number of restriction enzymes such
that as Cfr10I, NgoMIV, Ecl18kl, Ssoll, and PspGlI
[16,18,19,38]. In the latter enzymes, however, it is the car-
boxylate that is relocated and the original position of the
Lys residue is retained, such the active site is formed by a
"PD-XXK-E" sequence motif (Figure 4).

Inspection of the multiple sequence alignment reveals
that only two carboxylates (corresponding to D83 and
E111 in all3650) are practically invariant in the
COG4636+ family, while all the others undergo various
substitutions (Figure 1). In a small group of sequences
(represented by a hypothetical protein gll0909 from G.

violaceus, GI: 37520478) the Lys residue is present both at
the "classical" and alternative position, thereby forming a
"PD-EXK-K" variant of the active site. This arrangement
resembles a putative evolutionary intermediate between
the "classical" active site and the newly discovered rear-
ranged variant. In another lineage of the COG4636+ fam-
ily, an Asp residue appears in the position normally
occupied by Lys in the C-terminal half-motif. Some of the
members of this lineage (exemplified by glr2344 from G.
violaceus, GI: 37521913) exhibit therefore the "PD-EXD-
K" motif, but the majority (exemplified by hypothetical
protein glr1284 from G. violaceus, GI: 37520853) lack the
Lys residue and exhibit only the "PD-EXD" variant. In
another lineage (represented by gll1896 from G. violaceus,
GI: 37521465) the Lys residue is replaced by Asn to form
the "PD-EXX-N" variant of the predicted active site. The
conserved His residue (H43 in all3650) is present in most
members of the COG4636+ family, with the exception of
a small lineage of closely related proteins (represented by
gll1896 from G. violaceus, GI: 37520579) in which it is
substituted by Gln, and a larger group of more diversified
sequences, in which it is substituted by Thr or Ser. Most
members of the latter group possess a Lys or Arg residue
in the "catalytic" position and hence exhibit "PD-EXK-K"
(see above) or "PD-EXR-K" variants of the active site. It
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Figure 4

Spatial conservation of the PD-(D/E)XK active site in
all3650, Hjc, and NgoMVI. A) The predicted structure of
all360 is shown in the same orientation as the crystal struc-
tures of the bona fide PD-(D/E)XK nucleases: B) Holliday
junction resolvase Hje (1ob8 in PDB [9]) and C) REase Ngo-
MIV (Ifiu in PDB [78] to illustrate the spatial conservation of
side-chains in the active site (the carboxylate residues in red
and the Lys residue in blue), despite the lack of their conser-
vation in the PD-EXX-K, PD-DXK, and PD-XXK-E variants
of the sequence motif. Only the common core is shown, ter-
minal regions and insertions have been omitted for clarity of
the presentation.

http://www.biomedcentral.com/1471-2164/6/21

will be very interesting to determine experimentally,
which of those residues in different configurations are
involved in catalysis, and which are only auxiliary. In par-
ticular, it would be interesting to find if both or either of
the Lys residues present in the potential "intermediate"
versions of the active site are required for catalysis.

Phylogenomic analysis of the COG4636+ family

Sequence searches of the nr database at the NCBI revealed
that the great majority of members of the COG4636+
family (382 of total 435) originate from Cyanobacteria; of
these, 84% were found in just 6 genomes (G. violaceus
PCC 7421, Nostoc punctiforme PCC 73102, Crocosphaera
watsonii WH 8501, Nostoc sp. PCC 7120, Anabaena variabi-
lis ATCC 29413, Synechocystis sp. PCC 6803). It is aston-
ishing that members of COG4636+ represent over 2% of
all protein-encoding genes of G. violaceus PCC 7421 (95 of
4430 total [39]), other completely sequenced genomes of
Cyanobacteria are completely devoid of them or encode
only 1 or 2 sequences from this family. We were not able
to identify any members of the COG4636+ family in the
sequences derived from seawater samples collected from
the Sargasso Sea [40] and deposited in the "environmen-
tal samples" database at the NCBI. Since the prevalent
Cyanobacteria found in the Sargasso Sea are Synechococcus
and Prochlorococcus, the lack of COG4636+ members in
the environmental samples is in good agreement with the
paucity of these genes in the fully sequenced genomes of
these species.

In order to reconstruct the evolutionary history of the
COG4636+ family, we calculated the phylogenetic tree,
based on the same reliable section of the multiple
sequence alignment that was used for protein structure
prediction (see Methods). Unfortunately, in all trees
obtained with different methods and parameters, the
majority of deep branches received very low bootstrap
support (data not shown), hence the relationships within
the whole family must be regarded as unresolved. We
were able, however, to identify a number of branches with
bootstrap support >90%. Many of such branches com-
prise members from one species only. This situation is
characteristic for sequences found in a few non-Cyanobac-
terial species; for instance 8 sequences from D. hafniense
DCB-2 (Firmicutes), 7 sequences from C. aurantiacus
(Chloroflexales), and 6 from S. coelicolor (Actinobacteria)
each form a separate species branch on the phylogenetic
tree, while 14 sequences from T. thermophilus HB27 (Dei-
nococcus-Thermus lineage) form three separate branches.
Several monophyletic groups of closely related sequences
are also observed in G. violaceus (e.g. a sub-family com-
prising 7 sequences with GI numbers: 37522824,
37520777, 37522646, 37521452, 37522233, 37520151,
37522558). There is also one branch comprising 6 closely
related sequences in C. watsonii, GI numbers: 45527153,
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45527776,45524526,45527777,45527775,45527774).
Other statistically significant branches, however, com-
prise members from different species, suggesting that they
were either formed prior to speciation or that their mem-
bers were transmitted horizontally between different
genomes of already existing species.

To identify if members of COG4636+ are encoded by any
known mobile genetics elements or if they are preferen-
tially associated with any other proteins, we analyzed the
genomic neighborhood of all members of the family.
Although we carefully examined annotations of predicted
open reading frames (ORFs) in the range of 3000 bp
upstream and downstream, we weren't able to identify
any recurrent type of proteins, either with respect to the
molecular or cellular function or the predicted three-
dimensional fold (data not shown). Also no preference
for occurrence of COG4636+ family members within or
near any apparent mobile genetic elements (putative
prophages etc.) was observed. Thus, insertion of the genes
encoding putative COG4636+ nucleases seems virtually
random. The only notable exception is a neighborhood of
another member of COG4636+, suggesting tandem dupli-
cation. We identified one instance of 4 consecutively
arranged genes in the genome of C. watsonii WH8501, all
from the above-mentioned branch of 6 closely related
sequences (the other two relatives are located elsewhere
on the chromosome). We also found a few tandem dupli-
cations: 9 in C. watsonii WH8501 and 5 in G. violaceus
PCC7421, 5 in Nostoc sp. PCC6803, 2 in N. punctiforme
PCC73102, 2 in A. wariabilis ATCC 29413, 2 in
Synechocystis sp. PCC6803, 2 in T. thermophilus HB27, 1
in T. erythraeum IMS101 and 1 in M. magnetotatcticum MS-
1. In general, however, tandem duplications are rare and
the distribution of COG4636+ family members along the
chromosomes of Cyanobacteria with completed genomes
seems completely erratic (Figure 5).

Discussion

Our results suggest that functionally uncharacterized pro-
teins grouped together in COG4636 are a branch of the
PD-(D/E)XK superfamily, which has not been identified
to date due to a presence of an unusual variant of the
active site, which lacks the conserved Lys residue at the
typical position in the primary sequence. That the catalytic
Lys can migrate in the framework of the active site of PD-
(D/E)XK nucleases has been suggested earlier, based on
the sequence analysis of another nuclease domain found
in site-specific, non-long terminal repeat retrotransposa-
ble elements [2], but to date no molecular model was
offered to suggest the alternative point for the attachment
of the side chain to the protein backbone. Our sequence
analysis of the COG4636+ family and the structural
model of one of its members explain the problems with
identification of the PD-(D/E)XK motif on the sequence
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level and provide a platform for further studies. Specifi-
cally, our analysis points at the most interesting members
of the family, which display previously not observed vari-
ants of the PD-(D/E)XK active site. Experimental analyses
of these proteins and determination of the role of individ-
ual amino acids in the evolutionary context may help to
better understand the plasticity of the PD-(D/E)XK active
site and may settle down the controversy in the field of
nucleases regarding the mechanism(s) of the reaction.

Phylogenomic analyses show that putative nucleases
grouped in the COG4636+ family are exceptionally abun-
dant in genomes of certain Cyanobacteria, but absent in
others. They are typically abundant in the sequenced
genomes of freshwater species, but scarce in the genomes
of marine species, with the exception of C. watsonii WH
8501, which was isolated from tropical waters of the West-
ern Atlantic and Pacific oceans. It is remarkable that mem-
bers of COG4636+ are almost absent from the genomes of
Synechococcus and Prochlorococcus species thriving in the
Sargasso sea, as well as in the environmental samples iso-
lated from that region. On the other hand, in G. violaceus
PCC 7421 they comprise over 2% of all protein-encoding
genes. This phylogenetic distribution resembles that of
mobile genetic elements such as introns or insertion
sequences (reviews: [41,42]) and suggests that the con-
temporary COG4636+ family originated from a few
predecessors that underwent extensive horizontal gene
transfer and massive proliferation in certain genomes.
Monophyly of COG4636+ sequences in non-Cyanobacte-
rial species strongly suggests that proliferation occurred in
each of these species independently, following a single
event of colonization by horizontal transfer from a
Cyanobacterium (or in the case of T. thermophilus — three
independent successful colonizations).

We hypothesize that the mechanism by which these puta-
tive nucleases induce their proliferation in a genome is
similar to that displayed by homing nucleases and restric-
tion enzymes [43], namely to incise the DNA by introduc-
ing nicks or double-strand breaks, which stimulates
recombination and may lead to tandem duplications and
a variety of genomic rearrangements [44-47]. Frequent
cleavage of the genomic DNA would be lethal for the cell,
therefore if members of COG4636+ are indeed active as
nucleases, then they should target rare sequences (in a
manner similar to homing endonucleases; review: [48])
or unusual structures in the DNA (similarly to the struc-
ture-specific Holliday junction resolvases), or their activ-
ity would have to be somehow regulated (inhibited) by
interactions with other proteins or cellular processes (for
instance by DNA modification). There are known exam-
ples of Holliday junction resolvases carried on defective
lambdoid prophages [49]. Unfortunately, analysis of the
genomic neighborhood shows no preferred association of
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*+  Gloeobacter violaceus PCC 7421
4659019 bp

Synechocystis sp. PCC 6803
3573470 bp

Streptomyces coelicolor A3(2)
8667507 bp

Figure 5
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Nostoc sp. PCC 7120
6413771 bp

Thermus thermophilus HB27
1894877 bp

Pirellula sp. 1
7145576 bp

Localization of COG4636+ family members in the chromosomes of Cyanobacteria with completed genomes.
Circular chromosome maps of genomes with at least three genes encoding COG4636+ members (indicated by dots). Genes
shown in dark blue are transcribed clockwise (positive reading frame) and those in red are transcribed anticlockwise (negative
reading frame). Dots plotted inside the circle indicate that more than one gene is localized in the same region of the map (1/

360 of the genome length).
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COG4636+ members with any mobile genetic elements
or particular gene families that could give us hints about
the cellular processes they could be part of or suggest how
their predicted nuclease activity could be inhibited or reg-
ulated. Especially, we found no correlation with the pres-
ence of known or putative methyltransferases. This
suggests that despite sharing the common PD-(D/E)XK
fold with REases, COG4636+ members are unlikely to
serve as parts of restriction-modification systems, which
are known to be abundant in Cyanobacteria [50,51]. It
must be noted, however, that multiple solitary DNA
methyltransferases were reported in Anabaena PCC 7120
[51], and these enzymes could potentially provide protec-
tion against the cleavage of the chromosomal DNA by at
least some of the COG4636+ members found in this
organism.

One possibility is that COG4636+ members serve as a part
of the restriction barrier, similarly to the unrelated NucA
family of extracellular nucleases found in Cyanobacteria,
e.g. Anabaena sp. PCC 7120 [52] and Microcystis sp. [53].
They could also fulfill a role in maintenance of the iden-
tity of the species by controlling the flow of incoming
DNA, as recently suggested for restriction-modification
systems [54]. From the genomic analyses it appears, how-
ever, that the primary function of COG4636+ members is
to spread and multiply, and their cellular roles may be
merely side-effects of this selfish expansion. It is very
likely that their nuclease activity is recombinogenic and
may increase the frequency of genomic rearrangements.
Moreover, the multiplication of closely related
COG4636+ members in certain genomes leads to an
abundance of dispersed related DNA sequences, which by
themselves may increase the frequency of genome rear-
rangements by homologous recombination. It was sug-
gested that in the marine Cyanobacteria the factors that
increase the genome plasticity might not be promoted by
natural selection due to the homeostatic environment of
the open ocean [55]. Conversely, the unstable environ-
ment of fresh waters might promote the spreading of fac-
tors that destabilize the genome by increasing the
frequency of recombination and thereby increase the
diversity of the population. This is in good agreement
with our finding of prevalence of COG4636+ members in
Cyanobacteria that thrive in fresh waters and their paucity
in marine species (with the exception of C. watsonii WH
8501). Summarizing, it is plausible that members of
COG4636+ fulfill an important role in the genome
dynamics of Cyanobacteria and other species they colo-
nize. We hope that our predictive study will facilitate
experimental determination of the molecular and cellular
function of members of this intriguing protein family.

http://www.biomedcentral.com/1471-2164/6/21

Methods

Sequence analysis

Searches of the non-redundant (nr) database were carried
out at the NCBI using PSI-BLAST [56] with default param-
eters, using different sequences from COG4636 as que-
ries. Significantly similar sequences were retrieved from
all searches and pooled together. Identical sequences from
the same organism were removed. A multiple sequence
alignment was generated using MUSCLE [57] with default
parameters and subsequently adjusted manually, based
on the analysis results of secondary structure prediction
(see below), to ensure that no unwarranted gaps are intro-
duced within a-helices and B-strands. Phylogenetic infer-
ence was carried out using the reliable central section of
the multiple sequence alignment. The matrix of pairwise
distances was calculated from sequences according to the
JIT model [58] with gaps treated as missing data. The
neighbor-joining (NJ) tree was inferred according to the
method of Saitou and Nei [59].

Phylogenomic analysis

The Eutils module from the Biopython package was used
as an interface to access remotely the NCBI databases [60].
The Gene Identification numbers of proteins included in
the final multiple alignment sequences were used to iden-
tify the corresponding GenPept entries, which were down-
loaded into a local Barkeley database using an in-house
developed parser based on the SAX package http://source
forge.net/projects/pyxml. The "coded_by" field from each
GenPept file was used to identify the corresponding DNA
sequence, which were also downloaded into the database.
The sequence in the range of 3000 bp upstream or down-
stream from the region encoding a COG4636+ member
were scanned for the presence of annotated Open Reading
Frames (ORFs). Initially, the functional categorization of
these ORFs was carried out based on the automatic assign-
ment into the PFAM and COG families. In the absence of
any recurrent function, the annotations of all ORFs were
carefully re-analyzed visually and in uncertain cases, addi-
tional searches against the CDD database were carried out
[61]. The distribution of COG4636+ members on the
chromosome maps was visualized using a program devel-
oped in-house specifically for that purpose.

Protein structure prediction

Secondary structure prediction and tertiary fold-recogni-
tion was carried out via the GeneSilico meta-server gate-
way at http://genesilico.pl/meta/[33]. Secondary structure
was predicted using PSIPRED [62], PROFsec [63], PROF
[64], SABLE [65], JNET [66], JUFO [67], and SAM-T02
[68]. Solvent accessibility for the individual residues was
predicted with SABLE [65] and JPRED [66]. The fold-rec-
ognition analysis (attempt to match the query sequence to
known protein structures) was carried out using FFAS03
[69], SAM-T02 [68], 3DPSSM [70], BIOINBGU [71],
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Figure 6

The crystal structure of Tt1808 (Iwdjin PDB). Tt1808
is shown in the same orientation and is colored and labeled
in the same way as the homology model of all3650 on Figure
3. Two regions of differences between Tt1808 and the model
of all3650 are indicated: the N-terminal subdomain has a sim-
ilar fold, but different orientation (magenta line) and the C-
terminal region folds as a 3-harpin (cyan line) rather than as
an o-helix.

FUGUE [72], mGENTHREADER [73], and SPARKS [74].
Fold-recognition alignments reported by these methods
were compared, evaluated, and ranked by the Pcons server
[35].

Homology modeling

Fold-recognition alignments to the structures of selected
templates were used as a starting point for homology
modeling using the "FRankenstein's Monster" approach
[34], comprising cycles of model building, evaluation,
realignment in poorly scored regions and merging of best
scoring fragments. The positions of predicted catalytic res-
idues and secondary structure elements were used as spa-
tial restraints. Briefly, preliminary models were generated
based on the alignments to various template structures
returned by the FR servers. The sequence-structure fit in
these models was assessed using VERIFY3D [75] and visu-
alized using the COLORADO3D server [76]. The most
common and best-scoring fragments were merged to pro-
duce a hybrid model, in which the sequence-structure was
re-evaluated. In the poorly scoring fragments the align-

http://www.biomedcentral.com/1471-2164/6/21

ment was locally modified by shifting the sequences
within the limits of predicted secondary structures and a
next generation of models corresponding to different
alignments was generated. The cycles of evaluation of
models, generation of hybrids and local re-alignment in
problematic regions continued until the global VERIFY3D
score could not be improved. Regions, which could not be
modeled because of the lack of the appropriate template
structure, were added "de novo" using the fragment inser-
tion method ROSETTA [37].

Note added in Proof

After submission of this manuscript, a crystal structure of
one of the COG4636+ members was released in the
Protein Data Bank (code 1wdj; Idaka, M., Wada, T.,
Murayama, K., Terada, T., Kuramitsu, S., Shirouzu, M.,
Yokoyama, S.: Crystal Structure of Tt1808 from Thermus
thermophilus Hb8 To be Published). Our analysis of the
Tt1808 structure and its comparison with the model of
all3650 confirms our predictions. Tt1808 does indeed
exhibit the PD-(D/E)xK fold: the DALI [77] search of the
the Protein Data Bank (PDB) database with 1wdj revealed
that its 8 closest structural matches with Z-scores in a
range of 5.3-3.7 are members of the PD-(D/E)xK super-
family, including the Holliday junction resolvases we
used as templates to model the all365 protein. Analysis of
the Tt1808 structure (Figure 6) reveals that we correctly
predicted the topology of the catalytic domain in all365.
We only mispredicted an a-helix in the C-terminus of
all365; in Tt1808 this element is replaced by a B-hairpin.
We have also successfully modeled the structure of the N-
terminal subdomain but failed to predict the interaction
between this part and two loops of the catalytic domain
(compare Figure 3 and Figure 6). It is important to note
that these errors concern regions that do not influence any
of our functional interpretations based on the all3650
model. Most importantly, the identity of presumed cata-
lytic residues of all365 was predicted correctly, including
the postulated unusual position of the Lys residue (in our
model of all365 the side chain of K127 has a different ori-
entation than K130 in Tt1808, but such details are irrele-
vant to our functional interpretations). It is interesting to
note that Tt1808 has the S-PD-EXR-K variant of the active
site, and that the side chain of the R118 residue, which
replaced the "classical" catalytic Lys, points away from
other catalytic residues, on the opposite side of the loop
between the "EXR" and "K" elements. Summarizing, we
correctly predicted all functionally important features of
the COG4636+ family, including the membership in the
PD-(D/E)xK superfamily of nucleases, the three-dimen-
sional fold, the putative catalytic residues, and the unu-
sual configuration of the active site.
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Table I: Distribution of COG4636+ family members among different bacteria.

organism / genome

Gloeobacter violaceus PCC 7421
Nostoc punctiforme PCC 73102
Crocosphaera watsonii WH 8501
Nostoc sp. PCC 7120

Anabaena variabilis ATCC 29413
Synechocystis sp. PCC 73102
Thermus thermophilus HB27
Trichodesmium erythraeum IMSI101
Desulfitobacterium hafniense DCB-2
Chloroflexus aurantiacus

Streptomyces coelicolor A3(2)
Rhodopirellula baltica SH |

Moorella thermoacetica ATCC 29413
Deinococcus radiodurans R1
Magnetospirillum magnetotacticum MS-1
Synechococcus elongatus PCC 73102
Aquifex aeolicus VF5

Kineococcus radiotolerans SRS30216

Caulobacter crescentus CBI5
Thermosynechococcus elongatus BP-1
Synechococcus sp. PCC 73102

Microcystis aeruginosa

Prochlorococcus marinus str. MIT9313
Prochlorococcus marinus subsp. marinus
CCMPI375

Prochlorococcus marinus subsp. pastoris
CCMPI1986

Synechococcus sp. WH 8102

phylum

Cyanobacteria
Cyanobacteria
Cyanobacteria
Cyanobacteria
Cyanobacteria
Cyanobacteria

Deinococcus-Thermus

Cyanobacteria
Firmicutes
Chloroflexi
Actinobacteria
Planctomycetes
Firmicutes

Deinococcus-Thermus

Proteobacteria
Cyanobacteria
Aquificae

Actinobacteria

Proteobacteria
Cyanobacteria
Cyanobacteria
Cyanobacteria
Cyanobacteria
Cyanobacteria

Cyanobacteria

Cyanobacteria

habitat

calcareous rock

cycad (endosymbiont)

marine water

fresh water

fresh water

fresh water

thermal environment

marine water

sewage sludge

fresh water (hot springs)

soil

marine water

fresh water (ponds)

unknown

fresh water (ponds)

fresh water

fresh water (hot springs)

unknown (isolated from radioactive
work area)

fresh water

fresh water (hot springs)

brackish (euryhaline) and/or marine
water

fresh water (lakes, ponds and rivers)
marine water

marine water

marine water

marine water

data source  COG4636+ members

total disrupted

C 95
WGS 71
WGS 62

C 58
WGS 45

C 36

C 14 -
WGS 10 3
WGS
WGS

—_n —_ —_ g -

o
il

WGS

WGS
WGS

(@]
NN NNWWOoo N
\

WGS

C — Completed genomic sequence, WGS — Whole Genome Shotgun, UGS — Unfinished Genomic Sequence, NR — non-redundant database (NCBI).
ORFs were regarded as "disrupted” if they bear frameshift mutations or stop codons.

List of abbreviations

aa, amino acid(s); bp, base pair(s); nt, nucleotide; e,
expectation; REase, restriction endonuclease; ORF, prod-

uct of an open reading frame,
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