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Abstract
Background: Promoters are key players in gene regulation. They receive signals from various
sources (e.g. cell surface receptors) and control the level of transcription initiation, which largely
determines gene expression. In vertebrates, transcription start sites and surrounding regulatory
elements are often poorly defined. To support promoter analysis, we present CORG http://
corg.molgen.mpg.de, a framework for studying upstream regions including untranslated exons (5'
UTR).

Description: The automated annotation of promoter regions integrates information of two kinds.
First, statistically significant cross-species conservation within upstream regions of orthologous
genes is detected. Pairwise as well as multiple sequence comparisons are computed. Second,
binding site descriptions (position-weight matrices) are employed to predict conserved regulatory
elements with a novel approach. Assembled EST sequences and verified transcription start sites are
incorporated to distinguish exonic from other sequences.

As of now, we have included 5 species in our analysis pipeline (man, mouse, rat, fugu and zebrafish).
We characterized promoter regions of 16,127 groups of orthologous genes. All data are presented
in an intuitive way via our web site. Users are free to export data for single genes or access larger
data sets via our DAS server http://tomcat.molgen.mpg.de:8080/das. The benefits of our
framework are exemplarily shown in the context of phylogenetic profiling of transcription factor
binding sites and detection of microRNAs close to transcription start sites of our gene set.

Conclusion: The CORG platform is a versatile tool to support analyses of gene regulation in
vertebrate promoter regions. Applications for CORG cover a broad range from studying evolution
of DNA binding sites and promoter constitution to the discovery of new regulatory sequence
elements (e.g. microRNAs and binding sites).

Background
Comparative sequence analysis has been a powerful tool

in bioinformatics for addressing a variety of issues. Appli-
cations range from grouping of sequences (e.g. protein
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sequences into families) to de novo pattern discovery of
functional signatures.

Speaking of gene regulation, it has been known for a long
time that there is considerable sequence conservation
between species in non-coding regions of the genome. A
comprehensive explanation of this observation is still elu-
sive. However, sequence conservation within promoter
regions of genes often stems from transcription factor
binding sites that are under selective pressure (see [1] for
a review and [2] for a systematic assessment of binding
site conservation in man and mouse comparisons).

Conserved sequence elements of other types have recently
caught much attention. Not all non-coding conserved
DNA in the vicinity of a gene's transcription start site nec-
essarily functions at the level of transcriptional regulation.
For example, most known methylation-guide snoRNAs
are intronencoded and processed from transcripts of
housekeeping genes [3]. A few microRNAs are apparently
linked to protein coding genes, most notably mir-10 and
mir-196 which are located in the (short) intergenic regions
in the Hox gene clusters of vertebrates [4-7].

A second class of conserved sequence elements exert their
function as regulatory motifs in the untranslated region
(UTR) of the primary transcript or the mature mRNA. The
UTRsite database [8], for example, lists about 30 distinct
functional motifs including the Histone 3'UTR stem-loop
structure (HSL3) [9], the Iron Responsive Element (IRE)
[10], the Selenocysteine Insertion Sequences (SECIS) [11],
and the Internal Ribosome Entry Sites (IRES) [12]. Most
of these elements are contained in CORG since short
intergenic regions or introns upstream of the translation
start site are entirely covered by our definition of an
upstream region.

Phylogenetic footprinting
The CORG framework aims at detecting and describing
regulatory elements that are proximal to the transcription
start site. In this context, the comparison of upstream
regions of orthologous genes is particularly valuable. This
concept is called "phylogenetic footprinting" and an over-
view of this approach can be found in [13].

Phylogenetic footprinting in a strict sense is carried out on
orthologous promoter regions. Local sequence similari-
ties can then be directly interpreted as related regions har-
boring conserved functional elements. We denote these
similarities as Conserved Non-coding Blocks (CNBs).

Multi-species sequence conservation
Comparative approaches gain power from the inclusion
of sequences from more than two species [14]. Multi-spe-
cies comparisons help to increase specificity at the

expense of intra-species sensitivity since supporting evi-
dence (conservation) stems from many observations. To
give an example, Man-mouse-rat comparisons enhance
the detection of transcription factor binding sites since the
rat genome is more divergent from the mouse genome
than anticipated [15]. A nice property of vertebrate micro-
RNAs is the high degree of sequence conservation which
is found in alignments of man, mouse and fish microR-
NAs [16]. Both types of comparisons are available in
CORG. In CORG, we consider cross-species conservation
between promoter regions from 5 vertebrate genomes,
namely Homo sapiens, Mus musculus, Rattus norvegicus,
Danio rerio and Fugu rubripes. Multiple alignments are built
from pairwise CNBs as described in the subsequent
section.

Construction and content
Groups of orthologous genes
In this work, we take a gene-centered view of phylogeny.
Homology among proteins and thus genes is often con-
cluded on the basis of sequence similarity. The EnsEMBL
database [17] allows to distinguish orthologous from
merely homologous genes by taking information on con-
served synteny into account. We employed single linkage
clustering on the graph of EnsEMBL orthologous gene
pairs to define the CORG gene groups.

Genomic mapping of validated promoter regions
Various recent experimental efforts supply information
about the position of transcriptional start sites in the
human and mouse genome. Table 1 gives an overview on
the resources that were employed in CORG.

Some repositories offer genomic coordinates for their start
site entries. Existing genomic mapping information was
incorporated unless the underlying genome assembly
build differed. The remaining data were projected onto
the genome with SSAHA (Sequence Search and Alignment
by Hashing Algorithm), a rapid near-exact alignment
algorithm [18].

Sequence retrieval
The notion of "promoter region" deserves some further
explanation in the context of our approach. Typically,
though not exclusively, we expect conserved regulatory
regions to appear in the vicinity of the transcription start
site of a gene. Since we do not know the precise location
of the start of transcription for each and every gene, we
chose to compare the sequence regions upstream of the
start of translation from orthologous genes. If verified
transcription start sites are known, we define a sequence
window that is large enough to hold both, translation and
transcription start sites, plus 5 kB upstream sequence. In
case we lack this information, our observations on known
transcription start sites indicate that most promoter
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regions should be captured in a sequence window of 10
kb size (Additional File 1). The size of a promoter region
may be bounded by the size of the corresponding inter-
genic region. If an annotated gene happens to lie within
the primary sequence window, the promoter region is
shortened to exclude exonic sequence.

Detection of pairwise local sequence similarities
Significant local sequence similarities (phylogenetic foot-
prints) in two sequences are computed with an imple-
mentation of the Waterman-Eggert algorithm. We have
already given an account of the algorithm and statistics in
[19,20]. The underlying alignment scoring scheme is the
general reversible model [21]:

where Q is the transition rate matrix. We left out the ele-
ments on the diagonal, which are constrained by the
requirement that the sum of all elements in a row equals
zero.

The πi are the stationary nucleotide frequencies, their sum
is constrained to be one. Although the two genomes
under consideration are in general not in their stationary
state with respect to the substitutional process we take the

mean  of the two observed nucle-

otide frequencies, , to be the best estimate of the

stationary base composition.

From other studies we have further knowledge about the
relative rates between transversions, the transition
A:T→G:C, and the transition G:C→A:T, which occur in
roughly in the ratio 1:3:5 along vertebrate lineages [22].
These ratios of rates would generate sequences with 40%
GC in their stationary state. To accommodate the
observed nucleotide frequencies πi we have to allow for
deviation from those ratios. We do this by choosing for
example α ∝ (R(A → T)/πT + R(T → A)/πA)/2, where R(i
→ j) is either 1, 3, or 5 depending on the process under
consideration. At the end we scale the matrix Q, such that
the PAM distance [23] of the substitution model equals
the observed degree of divergence between the two species
under comparison.

Since we were mainly interested in highly conserved regu-
latory elements, we demanded an average similarity level
at least as high as the average exon conservation between
the species under comparison.

The score for aligning two nucleotides i and j is then s(i, j)
= log(P(i, j)/(πiπj)) where P(i, j) is the probability of find-
ing the pairing of i and j under the above substitution
model [21].

Joining pairwise into multiple alignments
All CNBs from pairwise sequence alignments are split up
into groups as defined by gene homology. For each group
a graph O = (V, E) with vertices V and edges E is con-
structed, which represents the species-internal overlap of
CNBs on the genomic coordinate level. Each vertex a ∈ V
represents a footprint, which is a pairwise local alignment
between two species. An undirected edge is placed
between two vertices if the corresponding CNBs have only
one species in common and show an overlap of at least 10
bp on the sequence level.

Table 1: Resources for validated transcription start sites

Database name Features

Eukaryotic promoter database (EPD) [44] The Eukaryotic promoter database is the smallest in size, but largely 
consists of manually curated entries.

DataBase of Transcriptional Start Sites (DBTSS) [45] The DBTSS contains reliable information on the transcriptional start 
sites for man and mouse promoters. They exploit the oligo-capping 
technique to enrich their pool of clones for full-length 5'-to-3' cDNAs

H-Invitational Database (H-InvDB) [46] H-InvDB is an international effort to integrate annotation of 41,118 full-
length human cDNA clones that are currently available from six high 
throughput cDNA sequencing projects.

FANTOM 2 (RIKEN) [47] The RIKEN consortium presented the FANTOM collection of RIKEN 
full-length cDNA clones. FANTOM stands for Functional Annotation of 
Mouse cDNA clones.

The Reference Sequence project (RefSeq) [48] The Reference Sequence project aims to provide a comprehensive, 
integrated, non-redundant set of sequences, including full-length 
transcripts (mRNA)
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In our graph O, cliques of minimal size three are detected
with an implementation of the Bron-Kerbosh algorithm
[24]. Only those cliques are selected whose species count
is equal to their size. This move prohibits the emergence
of multiple alignments by similarity of multiple short
CNBs to a single long CNB. Multiple alignments are then
computed based on all cliques that meet the outlined cri-
teria. We chose to employ the multiple alignment method
of [25] who applies partial order graphs (POG) to the
multiple alignment problem.

Partial order graphs belong to the class of directed acyclic
graphs (DAGs). A DAG is a graph consisting of a set of
nodes N and edges E, which are one-way edges and form
no cycles.

The multiple alignment problem is then reduced to to
subsequent alignment steps of individual sequences to a
growing multiple alignment graph. If the sequences to be
aligned share substantial sequence similarity, the number
of bifurcation points within the POG stays low and allows
rapid computation of the multiple alignment.

Alignment results are subsequently trimmed to encom-
pass the leftmost and rightmost ungapped block of at least
6 nucleotides.

Annotation of promoter regions
Exon detection with assembled EST clusters
Promoter regions in CORG always extend upstream from
the most downstream coding start (ATG). As a conse-
quence, promoter regions may contain exons that are not
translated. Our way of detecting such exons is a similarity
search of man-mouse footprints versus GENENEST [26], a
database of assembled EST clusters. Database searches are
carried out for human and mouse footprints with the
BLASTN program [27]. An E-value cut-off of 10-4 is
applied.

Annotation with predicted binding sites
The TRANSFAC database [28] is a repository of experi-
mentally verified binding site sequences and representa-
tions thereof. These representations are used for querying
the collection of man-mouse CNBs for known binding
site patterns.

Potential binding sites are detected with TRANSFAC
weight matrices by the method of [29]. Here, the intuition
is that there are two random models for a given sequence
S: one is given by the signal profile F and the other one by
the background model B. Under both models the distri-
bution of weight matrix scores can conveniently be calcu-
lated by convolution, since the score is a sum of
independent random variables. Probability mass distribu-
tions of PF (Score(S)) as well as PB(Score(S)) can be com-
puted by dynamic programming if column scores are

Genomic context of human SRFFigure 1
Genomic context of human SRF. This image is displayed after the user selected a gene identifier on the search page. It 
provides the user with the genomic context of the selected gene. Known and predicted transcription start sites are shown as 
labelled red dots. Local similarities to homologous regions from other species are shown as connected purple boxes. Blue bars 
depict all upstream regions as contained in CORG. The structure of the corresponding EnsEMBL transcripts as well as the 
extent of RefSeq transcripts is show in the bottom track.
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reasonably discretized. This allows a fine tuning of the
proportions of false positives and negatives for each
TRANSFAC weight matrix. Both error levels were set to be
equal. All details are given in [29].

Utility and discussion
We now present an overview of the web interface of the
database and several example applications.

Interface
The CORG database is accessible via its home page http:/
/corg.molgen.mpg.de and offers a redesigned web inter-
face. From the search page one can quickly jump to gene
loci via EnsEMBL or other standard identifers (e.g. HUGO
symbol, LocusLink identifier, ...). The search query is
processed according to the chosen reference source and a
list of all matching database entries is returned to the user.
This list serves as a springboard to a summary page where
the genomic context of the selected gene and its similari-
ties to other upstream regions is visualized as in Figure 1.

Pairwise as well as multiple comparisons are displayed on
demand at this stage with a JAVA applet that complies
with the JDK 1.1 standard. Alternatively, upstream region
sequence and corresponding annotation can be exported
in EMBL format (sequence data also in FASTA format).
The JAVA applet should run on all JAVA-compatible web
browsers. Detailed information about the conserved non-
coding block structure are simultaneously shown for mul-
tiple upstream regions of different species. If available,
annotation information on putative binding sites of tran-
scription factors and EST matches are displayed for the
query sequence. The applet facilitates zooming into
sequence and annotation. In addition, web links are
assigned to sequence features that relate external data
sources to the corresponding annotation.

CORG data may be also embedded into other viewers or
programs via the distributed annotation system (DAS,
[30]). DAS facilitates the display of distributed data
sources in a common framework with respect to a refer-
ence sequence. Our DAS server http://tomcat.mol
gen.mpg.de:8080/das constitutes such an external data
source. Position information on all conserved non-coding
blocks and mapped promoters is accessible from this DAS
server. Each DAS sequence feature provides a link to the
corresponding CORG database entry. New DAS sources
can be easily added to the ENSEMBL display. A small tuto-
rial on installing external DAS data sources is available on
our web page http://corg.molgen.mpg.de/
DAS_tutorial.htm.

Additionally, tools for on-site batch retrieval of CORG
data will be added to the web portal in the near future.

Phylogenetic profiling of binding sites
One potential application of CORG is phylogenetic profil-
ing of promoter regions. We define phylogenetic profiling
in the context of gene regulation as comparative analysis
of presence/absence patterns of binding sites in promoter
regions. Here, we consider conserved predicted binding
sites and contrast them with validated ones.

Serum Response Factor (SRF) promoter
SRF, a MADS-box transcription factor, regulates the
expression of immediate-early genes, genes encoding sev-
eral components of the actin cytoskeleton, and cell-type
specific genes, e.g. smooth, cardiac and skeletal muscle or
neuronal-specific genes [31,32]. Mouse embryos lacking
SRF die before gastrulation and do not form any detecta-
ble mesoderm [33,34]. SRF mediates transcriptional acti-
vation by binding to CArG box sequences (Consensus
pattern: CC(AT)6GG) in target gene promoters and by
recruiting different co-factors. SRF regulates transcription
downstream of MAPK signaling in association with ter-
nary complex factors (TCFs) (for a review see [35]). TCFs

Graphical multiple alignment view (JAVA applet)Figure 2
Graphical multiple alignment view (JAVA applet). 
Multiple alignment view of 6 homologous sequences from 5 spe-
cies. All consistent local similarities in the upstream region of 
SRF homologs are placed relative to the species-specific 
translation start sites. The distance of the aligned segment to 
the translation start site is almost equal for all mammals and 
larger for the fish. The extent of each upstream region is 
shown as orange bar. Regions covered by flanking genes 
would be shown in red.
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bind to ets binding sites present adjacent to CArG boxes
in many SRF target gene promoters.

Figure 1 gives an overview of the genomic context of
human SRF. As expected, the upstream region of SRF
shows substantial conservation to its rodent orthologs.
Additionally, significant alignments were found in com-
parisons with fish homologs (one from zebrafish and two
from fugu). The same data is presented in the multiple
alignment view of the JAVA applet in Figure 2. This view
gives a better idea on the location of alignments in the cor-
responding source sequences. Note, that the spacing
between translation start and alignment is greater in fish
than in mammals, which hints at different extension of
the promoter region in the two subgroups.

We get a better idea on the cause of sequence conservation
by browsing the multiple alignment. Textual information
can be obtained by clicking on the alignment boxes. Then,
the alignment appears in a pop-up window and may be
copied to another destination. In Figure 3, we used CLUS-
TAL X ([36]) to render the conservation structure on to the
nucleotide level. Here, a striking observation is the conser-
vation of the regulatory feedback loop of SRF to its own
promoter in all species under consideration. So far, this
feedback loop was experimentally verified in the mouse
system [37] but could exist in all other species under
comparison.

Non-coding RNAs
Non-coding RNA can be classified as transcribed regula-
tory elements. Non-coding RNAs are also accessible to the
user via the CORG database. Since we were primarily
interested in non-coding RNAs rather than small mRNA

motifs we restricted our search here to long CNBs. A blast
search of our multiple alignments with length L ≥ 50
against the Rfam database [38] and the microRNA Regis-
try [39] identifies 21 alignments as 7 distinct microRNAs
and a single snoRNA, Table 2.

The snoRNA U93 is an unusual mammalian pseudourid-
inylation guide RNA which accumulates in Cajal (coiled)
bodies and it is predicted to function in pseudouridyla-
tion of the U2 spliceosomal snRNA [40]. It appears to be
specific for mammals. The genomic copy of the human
U93 RNA is located in an intron of a series of reported
spliced expressed sequence tags (ESTs); furthermore, it has
been verified experimentally that U93 is indeed spliced
from an intron [40]. It was detectable in the CORG foot-
print dataset because of its location upstream of a con-
served putative gene C14orf87 with unknown function.

The known microRNAs belong to four different groups.
The mir10 and the mir196 precursors are located at specific
positions in the Hox gene clusters [4-7]. The mir-196 fam-
ily regulates Hox8 and Hox7 genes, the function of mir10
is unknown.

Substitution pattern of non-coding RNAs
For a microRNA we expect a subsequence of about 20 nt
that is almost absolutely conserved among vertebrates
(the mature miRNA) and a well-conserved complemen-
tary sequence forming the other side of the stem from
which the mature microRNA is excised. In contrast, the
substitution rate should be much larger in the loop region
of the hairpin [41]. mir10 is a good example of this typical
substitution pattern, which gives rise to a hairpin
structure. The pairwise correlation structure of nucleotides

Textual multiple alignment viewFigure 3
Textual multiple alignment view. Multiple alignment as rendered by CLUSTAL X. The largest multiple alignment was 
retrieved from the JAVA applet by a cut and paste operation and rendered in CLUSTAL X [36]. Conserved binding sites are 
highlighted by red or blue boxes. Known sites as given in TRANSFAC are marked with a dollar sign [42]. Note that the vali-
dated Egr-1 site is only conserved in mammals. This site is bound by the serum-inducible Krox-24 zinc finger protein.
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is depicted on top of the multiple alignment in Figure 4.
A different pattern is observed for the Iron Responsive ele-
ment in the 5'UTR of SLCA1, a member of the sodium
transporter family. This time the substitution pattern does
not meet the minimal length of the microRNA definition
above. Nevertheless, it is conserved across all vertebrate
species as shown in Figure 5.

Conclusion
We have improved and extended our framework of com-
parative analysis and annotation of vertebrate promoter
regions over previous releases (see [20]). The following
features have been added to the CORG framework:

• Mapping of validated promoter regions and proper
adjustment of the extent of upstream regions.

• Multiple alignments from significant local pair wise
alignments.

• Novel approach to predict transcription factor binding
sites.

• Web site offers now a genomic context view (as in Figure
1) and an option to export sequence and annotation data.

The CORG database is accessible via our web site. The user
is guided step-by-step through the process of selecting and
analyzing her promoter region of choice. CORG features

Table 2: Rfam non-coding RNAs in CORG A + sign indicates that a sequence fragment from the corresponding species (hsa Homo 
sapiens, mmu Mus musculus, rno Rattus norvegicus, dre Danio rerio, tru Takifugu rubripes) is contained in the CORG CNB; ∅ indicates 
that a blast search for an orhologous sequence in the Ensemble database was unsuccessful; n.d. mean no descriptive Ensemble gene 
annotation. The CNBs containing mir-196a-2 are shifted compared to the known microRNA sequences, preventing the detection of 
the correct stem-loop structure. The B columns marks whether a candidate was identified by a blast search against the Rfam or 
microRNA Registry, the A column shows whether a hairpin structure was identified by RNAalifold.pRNAz is the p-value for being an 
evolutionary conserved RNA secondary structure element returned by RNAz.

CNB B A pRNAz ncRNA hsa mmu rno dre tru gene

119596 + + 0.995 mir-34c + + + + ∅ n.d. (BCT-4)
119607 + + 0.938 mir-34b in hsa
119658 + + 0.985

159914 + + 0.998 mir-138-2 + + + + ∅ SLC12A3, n.d. in teleosts
159932 + + 0.999
159939 + + 0.998

194777 + + 0.998 mir-196b + - + + + HOXA9, dre: HOXA9a and HOXA9b
194820 + + 0.999
194839 + + 0.999
194941 + + 0.999

226470 + + 0.999 mir-10a + + + + + HOXB4, dre: HOXB4a and HOXB4b
226514 + + 0.999
226555 + + 0.999
226677 + - 0.004

238163 + + 0.992 mir-10b + + + + + HOXD4, dre: HOXD4a, n.d in tru
238188 + + 0.984
238265 + + 0.994

391314 + - 0.125 mir-196a-2 + + - + + HOXC9, dre: HOXC9a
391315 + - 0.999
391318 + - 0.511

470004 + - 0.218 U93 + + + 0 + n.d.

110374 - + 0.995 IRES ? + + + + + DGCR8
146100 - + 0.891 + + + + 0 Ptf1a
393794 - + 0.999 IRE + + + + + SLCA1
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an interactive viewer based on JAVA technology, which is
tailored to detailed promoter analysis. Large-scale studies
make direct use of our DAS service or the MySQL imple-
mentation of CORG in conjunction with an application
interface (contact authors for details).

We presented selected application examples from the
realm of vertebrate gene regulation. Conserved regulatory
elements of different kinds (binding sites, microRNAs and
UTR elements) are readily accessible to CORG users. New
genomes and annotation will be continuously added to
CORG.

Availability and requirements
The database is freely accessible through the website http:/
/corg.molgen.mpg.de. Programs, scripts and MySQL data-
base dumps are available from the authors upon request.

Authors' contributions
Christoph Dieterich built the entire pipeline and some
parts of the web interface. Steffen Grossmann annotated
transcription factor binding sites and provided parts of the
web interface. Andrea Tanzer analyzed known and novel
RNA elements in the multiple alignments of the CORG
database. Stefan Röpcke set up our database of binding
site descriptions. Peter F. Arndt worked on an appropriate
alignment scoring scheme. Peter F. Stadler and Martin
Vingron initiated this work and provided all necessary
infrastructure.

Alignment and predicted RNA structure of mir-10bFigure 4
Alignment and predicted RNA structure of mir-10b. The mir-10b CNB shows the typical pattern of substitutions in a 
microRNA precursor hairpin: There are two well-conserved arms, of which the mature microRNA is almost absolutely con-
served, and a much more variable loop region. [43].

Alignment and predicted RNA structure of the Iron Response ElementFigure 5
Alignment and predicted RNA structure of the Iron Response Element. The Iron Responsive Element (UTRdb [8] 
identifier: BB277285) shows a substitution pattern that is different from the hairpin structure in Figure 4. Additional ortholo-
gous sequences from the frog Xenopus tropicalis (xtr), the chicken Gallus gallus (gga) and the pufferfish Tetraodon nigroviridis are 
included.
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