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Abstract

Background: The completion and reporting of baculovirus genomes is extremely important as it advances our
understanding of gene function and evolution. Due to the large number of viral genomes now sequenced it is very
important that authors present significantly detailed analyses to advance the understanding of the viral genomes.
However, there is no report of the Antheraea pernyi nucleopolyhedrovirus (AnpeNPV) genome.

Results: The genome of AnpeNPV, which infects Chinese tussah silkworm (Antheraea pernyi), was sequenced and
analyzed. The genome was 126,629 bp in size. The G+C content of the genome, 53.4%, was higher than that of most of
the sequenced baculoviruses. 147 open reading frames (ORFs) that putatively encode proteins of 50 or more amino acid
residues with minimal overlap were determined. Of the 147 ORFs, 143 appeared to be homologous to other baculovirus
genes, and 4 were unique to AnpeNPV. Furthermore, there are still 29 and 33 conserved genes present in all
baculoviruses and all lepidopteran baculoviruses respectively. In addition, the total number of genes common to all
lepidopteran NPVs is sill 74, however the 74 genes are somewhat different from the 74 genes identified before because
of some new sequenced NPVs. Only 6 genes were found exclusively in all lepidopteran NPVs and 12 genes were found
exclusively in all Group | NPVs. AnpeNPV encodes v-trex(Anpel |5, a 3' to 5' repair exonuclease), which was observed
only in CfMNPV and CfDEFNPV in Group | NPVs. This gene potentially originated by horizontal gene transfer from an
ancestral host. In addition, AnpeNPV encodes two conotoxin-like gene homologues (ctls), ctl/l and ctl2, which were
observed only in HycuNPV, OpMNPV and LdMNPV. Unlike other baculoviruses, only 3 typical homologous regions (hrs)
were identified containing 2~9 repeats of a 30 bp-long palindromic core. However, 24 perfect or imperfect direct repeats
(drs) with a high degree of AT content were found within the intergenic spacer regions that may function as non-hr, ori-
like regions found in GrleGV, CpGV and AdorGV. 9 drs were also found in intragenic spacer regions of AnpeNPV.
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Conclusion: AnpeNPV belongs to Group | NPVs and is most similar to HycuNPV, EppoNPV, OpMNPV and CfMNPV
based on gene content, genome arrangement, and amino acid identity. In addition, analysis of genes that flank hrs
supported the argument that these regions are involved in the transfer of sequences between the virus and host.

Background

The family Baculoviridae consists of viruses that contain
circular DNA genomes ranging in size from approximately
80 to 180 kbp. This family of viruses has only been shown
to be pathogenic to arthropods particularly insects [1,2]
and have a very variable G+C content that ranges from
28% to 59 % [3]. The virions have a complex construction
and consist of an envelope and a nucleocapsid. Baculovi-
ruses are divided into nucleopolyhedrovirus (NPVs) and
granulovirus (GVs) generally. Based on phylogenetic anal-
ysis, baculoviruses can be classified into five major groups
including GVs, Group I and Group II NPVs, a group of the
dipteran viruses, Culex nigripalpus NPV (CuniNPV)[4] and
a group of the hymenopteran viruses [5]. NPVs are mainly
found in Lepidoptera and other insects such as Hymenop-
tera, Diptera, Coleoptera, Thysanura and Trichoptera. The vir-
ions contain either single or multiple nucleocapsids. All
hymenopteran NPVs virions contain single nucleocapsid.
GVs have been found only in Lepidoptera [6,7].

Previous reports demonstrated that there are 29 conserved
genes present in all baculoviruses and 33 conserved genes
present in all lepidopteran baculoviruses [7-9], and a total
of 74 genes are present in all lepidopteran NPVs|[5]. To
date, the complete genomes of 31 NPVs and 8 GVs are
published or available in GenBank. 31 NPV genomes have
been published from Autographa californica NPV (AcM-
NPV) [10] to Neodiprion abietis NPV (NeabNPV) [11]. 8
GV genomes published include Xestia c-nigrum GV (Xec-
nGV)[12], Plutella xylostella GV (PlxyGV)[13], Cydia pomo-
nella GV (CpGV)[14], Adoxophyes orana GV(AdorGV)[15],
Cryptophlebia leucotreta GV (CrleGV)[16] and Choristone-
ura occidentalis GV(ChocGV)[17].

The Chinese tussah silkworm (also known as Chinese oak
silkworm), Antheraea pernyi (Lipidoptera, Saturniidae), is an
insect that can spin silk cocoons and eats the leaves of oak
trees. As an important economic insect, Antheraea pernyi is
commercially cultivated mainly in Middle and Northeast-
ern China. It is also used as a source of food and for cos-
metics. Antheraea pernyi NPV (AnpeNPV) can infect
Antheraea pernyi resulting in nuclear polyhedrosis that can
potentially result in an outbreak of infectious disease. The
average incidence rate of this disease reaches approxi-
mately 30% and occasionally reaches above 70%. The
yield of cocoons can be decreased by 30% when AnpeNPV
occurs. This viral disease has brought about huge eco-
nomic losses to sericulturist in China.

AnpeNPV belongs to the lepidopteran family of NPV. The
physical map for AnpeNPV genome has been constructed
and the genome was estimated at approximately 130 kbp
and 128 kbp in size, respectively [18,19]. Our group and
others have reported the sequences of several AnpeNPV
genes including lef-8, lef-9, polyhedrin[20], lef-7, cathepsin,
chitinase[18], genes ie-2, pe38 (GenBank accession
No0.DQ372717),truncated egt, lef-1 (GenBank accession
no.AY846867), odv-e56 (GenBank accession
no.AY846866), lef-3 (GenBank accession no.AY846749)
and gp64[19]. A total of approximately 30 kbp of the
genome of AnpeNPV has been sequenced and released in
GenBank. In this paper, we report the complete sequence
and organization of the AnpeNPV genome. The phylog-
eny of AnpeNPV in comparison with previously pub-
lished baculovirus genomes is also addressed. Sequence
and analysis of the AnpeNPV genome suggest significance
for the epidemiological studies in the research commu-
nity.

Results and discussion

Sequencing, assembly, and analysis of the AnpeNPV
genome

A total of 536 recombinant plasmids containing cloned
viral DNA fragments (with Sau3AI partial digestion) were
obtained. The size of most of the inserted fragments
ranged from 2.0 to 5.0 kbp. Both ends of the inserted frag-
ments were sequenced. The complete sequence of
AnpeNPV genome was assembled from the sequenced
restriction fragments and PCR amplified products.
Approximately over 6 times coverage of the genome was
achieved.

The entire AnpeNPV dsDNA genome was sequenced and
assembled into a contiguous sequence of 126,629 bp with
a G+C content of 53.5% [GenBank: NC_008035]. Of the
previously published sequences of AnpeNPV, only gp64
[GenBank:AY854039] showed sequence differences
(nt155, nt192, nt989, nt1240, nt1327, nt1380, respec-
tively). The reason may be the variation of different virus
isolates. The cytosine of the complement of stop codon of
polyhedrin was designated as the first nucleotide of the
genome. Compared with other baculovirus genomes, the
size of AnpeNPV genome was larger than those of
NeleNPV, NeseNPV, CuniNPV, EppoNPV, AdhoNPV, Plx-
yGV, AdorGV, PhopGV and CrleGV. The G+C content of
the OpMNPV and LAMNPV genomes was higher than that
of the AnpeNPV genome. Only three hrs were identified in
AnpeNPV genome, but twenty-four perfect or imperfect
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drs were found in the intergenic spacer regions. In addi-
tion, 9 drs were also found in the intragenic spacer regions
of AnpeNPV genome. The number of drs in AnpeNPV is
by far the most in any baculovirus genome. The results of
the comparisons between AnpeNPV and other baculovi-
rus genomes are listed in additional files [see Additional
file 1].

Identification of AnpeNPY ORFs

A total of 147 ORFs, with no or minimal overlap and
encoding putative proteins of more than 50 amino acid
residues, were identified (Figure 1 and Additional file 2).
An exception regarding the size of the ORF was made for
Anpe28 which encoded a protein with 48 amino acid res-
idues and showed high homology with the ctl-2 gene of
other baculoviruses. The AnpeNPV ORFs demonstrated
no preference in terms of orientation (48% (71 times) for-
ward and 52% (76 times) reverse) or clustering based on
putative function or expression. Of the 147 identified
ORFs, 143 had homologues in at least one other baculo-
virus and 4 were unique to AnpeNPV. ORF encoding
nucleotides accounted for 118,035 bp, hrs for 1,095 bp
and the remaining 7,499 bp represented intergenic
regions. The G+C content of the coding regions was 55%,
but the G+C content of intergenic regions was only
32.5%, which was significantly lower than that of coding
regions. The results of ORFs identified in AnpeNPV were
listed in Additional file 2 and plotted in Figure 1. As a
comparison, the CfMNPV and OpMNPV ORFs were
shown along with AnpeNPV ORFs in Figure 1. Codon
usage for the 147 ORFs is shown in additional files [see
Additional file 3].

Classification of genes in AnpeNPV and other
baculoviruses

The classification of genes encoded in different baculovi-
rus genomes may help to determine essential genes for
virus survival and to understand features including host
range, virulence and morphology. The genes found in all
baculoviruses are more likely to be essential, whereas aux-
iliary genes found in only some baculoviruses may give
viruses a selective advantage in nature [21].

We classified 147 ORFs into six groups: 1) ORFs found in
all baculoviruses; 2) ORFs found in all lepidopteran bac-
uloviruses; 3) ORFs found in all lepidopteran NPVs; 4)
OREFs found in all Group I NPVs; 5) ORFs found in partial
Group I NPVs; 6) ORFs that are unique to AnpeNPV. The
detailed results were shown in additional files [see Addi-
tional file 4] and Figure 1.

In first group, the 29 genes present in all baculovirus
genomes reported previously were also found in
AnpeNPV genome [see Additional file 4]. Comparison of
these 29 genes between AnpeNPV and the baculovirus
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type species ACMNPV dedicated that their organization
was consistent with Group I NPVs. The 29 genes are more
likely to be essential for all baculoviruses survival.

Lauzon et al. (2004) identified 33 ORFs present in all lep-
idopteran baculoviruses. All of these ORFs were found in
AnpeNPV [see Additional file 4]. The 33 conserved genes
are more likely to be essential for all lepidopteran baculo-
viruses survival.

In addition to the genes present in all baculovirus and all
lepidopteran baculoviruses described above, 12 ORFs in
AnpeNPV were identified in all lepidopteran NPVs [see
Additional file 4]. Some of these ORFs were also present
in one or more GVs. Of these 12 genes, 6 were found
exclusively in all lepidopteran NPVs (Anpe26 (ac34),
Anpe54 (ac55), Anpe56 (ChaB), Anpe96 (p87), Anpel00
(ac108), Anpel22 (calyx)). DeJong et al.(2005) identified
8 ORFs exclusive to all lepidopteran NPVs including ac17,
ac21(arif-1) and ac57[5]. However, due to the absence of
acl7 in ChchNPV[23], ac21(arif-1) and ac57 in
AdhoNPV|[24], these 3 ORFs are now excluded from this
class of ORFs. Including these 12 genes, there were still 74
(29+33+12) lepidopteran NPV specific ORFs. In the work
of de Jong et al.(2005), 74 baculovirus ORFs were also
identified in all lepidopteran NPVs[5], however these 74
are not the same as those identified here [see Additional
file 4]. In this class of genes, Anpe14 had only a partial egt
(the 5'end), which matched to 5' end of egt gene of other
lepidopteran NPVs by BLASTP, and the amino acid iden-
tity ranged from 43% (Bm7, e = 1.0e-16) to 70% (Op14,
e = 1.0e-24) for Group I NPVs. egt is a auxiliary gene in
lepidopteran NPVs, which is not essential for replication
but may facilitate a selective advantage in nature [21].

Another 41 ORFs in AnpeNPV were found in all Group I
NPVs. Of the 41 ORFs, 12 were found exclusively in all
Group I NPVs by de Jong et al.(2005) and Hyink et
al.(2002) [5,25], all of which were also found in
AnpeNPV including Anpe5(ac5), Anpe9 (ptp-1),
Anpel5(odv-e26), Anpe33 (ac30), Anpe42 (gta), Anpe67
(ac72), Anpe68 (ac73), Anpel06 (acl14), Anpell4d
(ac124), Anpell9 (gp64), Anpel23(acl32) and Anpel41
(ie-2) [see Additional file 4].

4 ORFs of AnpeNPV (Anpe31, Anpe71, Anpel40 and
Anpel42) had no recognizable baculovirus homologs
[see Additional file 4]. A homologous region between the
Anpe142 and Microtuble associated protein of Drosophila
melanogaster was found by BLAST search. The microtuble
associated protein is required for the integrity of mitotic
spindle. Additionally, a region of Anpe31 showed homol-
ogy to a carbamate kinase gene of Streptococcus ratti.
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Linear map of AnpeNPV genome. The number and transcriptional direction of each ORF are labeled by arrows, indicating
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ORF in reverse direction. AnpeNPV ORF numbers are shown below the arrows. The name of putative genes are shown upon
the arrows. Homologous regions (hrs) are defined by blank boxes. As a comparison with AnpeNPV, the ORFs from CfMNPV
and OpMNPYV were included.
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In addition, another 27 ORFs [see Additional file 4] were
considered in the class of ORFs found in some Group I
NPVs. These genes may be auxiliary genes and give viruses
a selective advantage in nature. In these ORFs, Anpe89
and Anpel08 were determined as bro, a baculovirus
repeated ORF, which are found in almost all baculovi-
ruses. CfdefORF142 and HycuORF148 were identified as
genes unique to CfDEFNPV and HycuNPV, respectively,
but alignment of Anpel43 to Cfdef142 and Anpe3 to
Hycul148 revealed high conservation (34% and 62%
amino acid identity, respectively). Anpe110 was a homo-
logue of a gene only found in HycuNPV and OpMNPV
(Hycu36 and Op118, 35% and 27% amino acid identity,
respectively). Anpe98 and Anpel26 were homologs of
genes observed only in ACMNPV and RoNPV. Alignment
of the deduced amino acid sequence of Anpe98 (pnk/pnl)
to ac86 (63% amino acid identity, e = 0) and Ro83 (63%
amino acid identity, e = 0) showed high conservation in
their amino acid sequences. At the same time, Anpe98,
ac86, and Ro83 shared a 175 residue-long NK (Nucleo-
side/nucleotide kinase) motif. The percentage identity
within these regions (98.9%) suggested that they are func-
tionally important regions. Additionally, multiple align-
ment of Anpel26 (94 k) to ac134 and Ro127 revealed that
Anpel26 matched to two regions of ac134 and Ro127 in
the 5' and 3'ends (aal-273 and aa 419-505 in Anpel26
were 53% and 45% identical at the amino acid level to aa
1-277 and aa 712-800 in ac134 and Ro127, respectively.
aa278-aa711 in acl34 and Rol27 was truncated in
Anpel126). On the other hand, Anpe 126 also matched to
94 k gene of some Group II NPVs and GVs in the two ter-
minal regions. This implied that the function region of 94
k may be in the two regions. Similarly, Anpell5 was
homologous to eukaryotic trex gene, which was observed
only in CEIMNPV, CfDEFNPV and AgMNPV. The trex gene
encodes a 3' to 5' exonuclease [26-28]. Also, multiple
alignment of Anpe 115 to Cf114 (65% amino acid iden-
tity, e = 4e-84) and Cfdef119 (87% amino acid identity, e
= 5e-116) appeared to be highly conservative in their
amino acid sequences. Furthermore, Anpel15 was 87% (e
= 7e-117) identical at the amino acid level to v-trex gene
of AgMNPV. Anpell5, Cf114, Cfdef119 and the v-trex
gene of AGMNPV had a 171 residue-long EXOIII motif
(exonuclease domain in DNA-polymerase alpha and epsi-
lon chain, ribonuclease T and other exonucleases). The
percentage identity (100%) within these regions indicated
that this region was also functionally important. This kind
of genes may give AnpeNPV a selective advantage in
nature.

Functional Genes

Baculoviruses contain a lot of genes involved in essential
and selective functions, such as viral replication, transcrip-
tion, inhibition of apoptosis, protein structure, assembly
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and auxiliary. Besides, there were some conserved genes,
of which functions were not clearly identified.

All of the conserved function genes, previously identified
in all baculoviruses and all lepidopteran-specific baculo-
viruses [22], were also found in AnpeNPV. Several varia-
ble function genes identified in some baculoviruses and
some conserved baculovirus ORFs of unknown function
were also found in AnpeNPV. The detailed functions of
these genes are listed in additional files [see Additional
file 5].

Whereas, several variable DNA replication genes, includ-
ing helicase-2(1d50), dna-ligase(1d22), dutpase (op31),
RNase reductase-1 (op32) and RNase reductase-2 (op34),
were not found in AnpeNPV. Five genes have so far been
implicated as inhibitors of apoptosis, including iap-1, iap-
2, iap-3, iap-4 and p35. However, only iap-1and iap-2 were
identified in AnpeNPV and considered as genes present in
all Group I NPVs. Baculovirus genomes typically encode
auxiliary genes that are non-essential for replication but
provide a selective advantage to the virus [29]. AnpeNPV
contained some auxiliary genes including ctl-1 and ctl-2
(conotoxin-like homologue 1 and 2, Anpe8 and Anpe28,
respectively), which are small disulfide-rich ion channel
antagonists. ctl1 was found in ACMNPV, OpMNPV, LdM-
NPV, CfMNPV and HycuNPV, but cti2 was only found in
OpMNPV, HycuNPV and LAMNPV. Numerous structural
genes were also found in AnpeNPV, which composed the
structure of virus. Three genes in AnpeNPV, pif-
1(Anpelll), pif-2(Anpe20) and p74 (Anpel29), were
identified as structural genes as well as per os infectivity
factor involved in baculovirus infection to midgut epithe-
lial cells of the host. Other structural genes identified in
some baculoviruses but not in AnpeNPV included homo-
logues to vef-1(Agse75), vef-2(Agse76), vef-3(Agsel28),
pk2(ac123). Vefs have been found to dramatically increase
the infectivity of baculoviruses in non-natural lepidop-
teran hosts [30] and only found in GVs and Group II NPV.

Hrs repeats and the genes around them

Most baculoviruses contain hr regions. An individual NPV
hr is typically comprised of direct repeats usually centered
around a perfect or imperfect palindrome. hrs have been
implicated as origins of DNA replication [31-33] and as
enhancers of RNA polymerase II-mediated transcription
[21]. GV hrs are different from NPV hrs except for PlxyGV,
whose hrs appear more similar to those from NPVs. GV hrs
usually lack a palindrome and are homologous to all
other hrs within the same genome, but there are no two
GVs that have similar hr regions. GV hrs are characterized
to be repeat regions that are variable and AT-rich
[12,13,15,16].
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Three hrs have been identified in the AnpeNPV genome.
The number of repeats per hr ranged from two in hr2 to
nine in hrl. The multiple alignment of the AnpeNPV hrs
(Figure 2a) showed a high degree of conservation within
the hrs and the hr palindrome consensus sequence,
AGCDATGCGTCAGCGCYGAYYBTGCTITTCRAGTA-
YARCCAWTCTWGAAAAMCGT. This palindrome consen-
sus is also found in HycuNPV, CfMNPV, OpMPYV,
BmNPV, AcMNPV, CfDEFNPV and AgMNPV (Figure 2b).
There was no interval between each repeat unit of hr1 and
hr3 in the AnpeNPV genome. This was different from that
of some other NPV hrs, in which an interval between each
repeat unit is found. The repeats of hr3 were nearly the
same. The even repeats of hrl,hrlbhrld hrifhrih, hrij
were the same too. The odd repeats appeared to be formed
by even repeats in which A and T was alternately replaced
with G (Figure 2a). The average G+C content of the hrs
was 43.7%, significantly lower than the 53.5% for the
complete AnpeNPV genome.

The relative location of hrs in AnpeNPV genome was also
characterized. The genes that flanked the hrs were mainly
similar between AnpeNPV and the other seven Group I
NPVs (Figure 3a, b and 3c). AnpeNPV hr3 was in the same
relative genomic location as EppoNPV hr4, OpMNPV hr5
and CfDEFNPV hril between gene p74 and me53.
AnpeNPV hr2 was in the same relative genomic location
as CIMNPV hr4, EppoNPV hr3, OpMNPV hr4, AcCMNPV hr
4, RoMNPV hr4 and CfDEFNPV hr9 between gene pif-1
and chitinase. AnpeNPV hrl was in the same relative
genomic location as CIMNPV hr1, EppoNPV hr2, BmNPV
hr2, ACMNPV hr2, ROMNPV hr2 and CfDEFNPV hr3 near
gene Op26 and fgf. It proved that the Group I NPVs
showed conserved genomic locations for certain hrs. Fur-
thermore, the unique gene Anpe31 for AnpeNPV and
unique gene Anpe130 for AnpeNPV and OpMNPV existed
around hr1 and hr3, respectively (Figure 3a, c). Instead of
a putative hr between odv-e¢56 and ie-2 that is present in
HycuNPV, CIMNPV and EppoNPV, this was replaced in
AnpeNPV by the unique gene, Anpel40 (Figure 3d). Fur-
thermore, instead of the apoptosis inhibiting gene iap-3
located between the sod and fgf genes in some other Group
I NPVs, the iap-3 homolog was putatively replaced by
unique gene Anpe31 and ctl-2 gene in AnpeNPV (Figure
3¢). Also, the relative direction of transcription for fgf and
sod around hrl in AnpeNPV was different from that of
other Group I NPVs, except for that of HycuNPV (Figure
3c). Only in AnpeNPV, HycuNPV and OpMNPV was the
odv-e56 and ie-2 transcription in the same relative orienta-
tion (Figure 3d). This was consistent with the description
by de Jong et al. (2005) that a high degree of variability
existed around the hrs and by Ahrens et al. (1997) that
major rearrangements, insertions and deletions exist
around the hrs in ACMNPV and OpMNPV][1,5].

http://www.biomedcentral.com/1471-2164/8/248

In particular, the v-trex gene homolog (Anpell5) was
inserted between pif-1 and chitinase around hr2 in
AnpeNPV. Besides AnpeNPV, the v-trex gene was inserted
only into CfMNPV and CfDEFNPV at the same location
(Figure 3b) around Cf-hr4 and Cfdef-hr9 respectively.
Using BLASTP, we found that the Anpell5 had high
amino acid identity (>30%) to trex genes from some
eukaryotes, such as Canis familiaris, Rattus norvegicus,
Anopheles gambiae str. PEST,Bos Taurus, Mus musculus,
Homo sapiens, Drosophila melanogaster, and Drosophila pseu-
doobscura. By multi-aligning the deduced amino acid
sequences of these genes, two conserved regions were
found as following: [TS]-x(2)- [FV]- [LF]-D- [LM]-E- [AT]-
T- [GN]-I-P at the N terminus, and F-I-x(5)-P-x-C-L-V-A-
[HY]-N-G-x(2)- [YF]-D-F- [PI]- [LI]- [LI], respectively. Phy-
logenetic tree analysis (Figure 4) by Clustal X supported
the assumption that the v-trex was transferred horizon-
tally, possibly from an insect host, which was similar with
the assumption by Slack et al. (2004) and Lauzon et
al.(2004)[7,27]. The v-trex gene product has the potential
to be involved in virus recombination or UV-light toler-
ance, which could contribute to the high degree of varia-
bility existed around the hrs and may give AnpeNPV a
tolerance advantage in nature. Similarly, Anpel17 (chiti-
nase around Anpe-hr2, Hycu-hr4, Cf-hr4, Eppo-hr3, Op-
hr4, Ac-hr4 Ro-hr4 and Cfdef-hr9, respectively), Anpe36
(iap-1 around Anpe-hr1, Hycu-hr2, Cf-hr2, Eppo-hr2, Op-
hr2, Bm-hr2 and Ro-hr2, respectively) and Anpe29 (sod
around Anpe-hrl, Hycu-hr2, Cf-hr2, Bm-hr2, Ac-hr2 and
Ro-hr2, respectively) showed high amino acid sequence
similarity with the homologues from insect hosts, respec-
tively [see Additional file 6], implying evolutionary con-
servation of them, suggesting that baculovirus maybe
acquire genes that were inserted into the regions around
hrs from insect hosts. Only iap was studied in detail sup-
porting the argument [34,35].

Drs repeats

Direct repeats (drs) as described by Garcia-Maruniak et
al.(2004)[9] are suggested to be a putative non-hr, ori-like
regions containing an unusual AT-rich sequences and per-
fect or imperfect short palindromes in intergenic spacer or
within ORFs. These drs are not repeated elsewhere in the
genome. With the exception of NeleNPV, the majority of
NPVs have hrs and many of these hrs have homologous
palindromes core. The NeleNPV has only nine drs shared
a closer similarity to the organization of repeat regions in
GVs than to those in NPVs and showed little similarity to
typical NPV hrs, which are characterized by the presence
of perfect or imperfect palindrome and AT rich [7]. In
comparison NeseNPV not only has the hrs, but also has
four drs[9]. Similar to NeseNPV, 24 perfect or imperfect
drs were identified by Tandem Repeats Finder(TRF) soft-
ware in addition to the hrs in AnpeNPV [see Additional
file 7]. These drs contained from 2 to 7 repeats. Except for
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(2) Alignment of AnpeNPV hrs. The numbers on the left hand side of each hr indicate the nucleotide position in the genome. hrs
are numbered according to their order in the genome. The arrows show consensus hr repeats, which contain imperfect palin-
drome structure. (b) Alignment of consensus hr repeats from AnpeNPV, HycuNPV, CfMNPV, OpMPV, BmNPV, AcMNPV,

CfDEFNPV and AgMNPV. Conserved residues are shown at the top by asterisks (*). Y =T or CCR=AorG,M=Cor AW

=TorAB=TorCorG,D=AorGorT.

dr11, they were found to be AT-rich, especially
dr13(94.4%), dr14(92.9%), dr15(92.2%), dr10(91.4%),
dr16(91.4%), dr12(89.6%), dro(88.1%), dr24(87.2%),
dr17(86.2%), dr5(86.1%), dr20(85.0%), dr8(84.8%),
dr2(82.5%) and dr6(81.1%). Palindromes ranging in size
from 10 to 18 bp were found in several of the drs. All of
the drs were located inside intergenic spacer regions of the
AnpeNPV genome. The existence of twenty-four drs in the
AnpeNPV intergenic spacer regions may reflect a different
genome replication strategy for the NPVs, and these drs
may be a new type putative non-hr, ori-like region as is
found in GrleGV, CpGV, and AdorGV. In addition, nine
tandem repeats were also identified in ORFs of AnpeNPV
genome with a high GC content [see Additional file 8]. At
the same time, a specific GT-repeat was located from
122228 t0122259nt. The sequences contained continu-
ous GT residues with dinucleotide (GT) repeats. The GT-
repeat was only found in OpMNPV[1]. Similar sequences

of GT repeats have been characterized in other organisms,
e.8., Drosophila virilis[36] and Caenorhabditis elegans [37].

Comparison of AnpeNPV and other baculoviruses

The gene order of AnpeNPV was compared with those of
other Group I NPVs (HycuNPV, EppoNPV, CfMNPV,
OpMNPV, AcMNPV, RoNPV, BmNPV and CfDEFNPV),
two Group II NPVs (MacoNPV A, HearNPV) and a GV
(XcGV) by gene parity plots [38]. AnpeNPV shared 133,
125, 130, 130, 127, 125, 123 and 133 ORFs with
HycuNPV, EppoNPV, CfMNPV, OpMNPV, AcMNPV,
RoNPV, BmNPV and CfDEFNPYV, respectively [see Addi-
tional file 2]. Among the Group II NPVs, AnpeNPV shared
the highest number of ORFs with MacoNPV A (92 ORFs)
and the least with AdohNPV (83 ORFs).

The organization of the AnpeNPV genome was collinear

to that of HycuNPV, EppoNPV, CIMNPV, and OpMNPV
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(Figure 5a). In particular, AnpeNPV showed a high simi-
larity to HycuNPV and they shared a gene (Anpe3/
HycuORF148) unique to them. The gene order in two and

one regions of the AnpeNPV genome were inverted with
respect to the corresponding regions of ACMNPV, RoNPV
and BmNPV; CfDEENPV respectively (Figure 5b and 5c).
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The phylogenetic tree of v-trex in NPVs and someEukaryotes.
The phylogeny indicates distinct lineages when some NPVs
and Eukaryotes v-trex are included. The root position of the
gene suggested that the four NPVs share a common ancestral
lineage with some insects. The v-trex in NPV may originate
from an ancestral host.

Collinearity was not found between AnpeNPV and
MacoNPV A, HearNPV and XcGV(Figure 5d).

Similarity between the 29 core baculovirus genes between
AnpeNPV and other Group I NPV was obviously higher
than the similarities between AnpeNPV and other groups
[see Additional file 9]. CuniNPV was particularly dissimi-
lar, of which similarities were 15.1%-51.1% range and
average of 24.3%.

Phylogeny of AnpeNPY

Based on concatenated 29 conserved genes, a phyloge-
netic tree was estimated for the 29 baculoviruses.
Sequences were aligned using Clustal W, with a gap pen-
alty of 10, an extend gap penalty of 0.2 and a delay of
divergence of 30%. Bootstrap values for 1,000 replicates
were given. The baculovirus phylogenetic tree is shown in
Figure 6. From the tree, AnpeNPV appeared as a Group I
NPV and most closely related to HycuNPV, OpMNPV,
CfMNPV, CfDEFNPV, EppoNPV, and to a lesser extent to
BmNPV, RoNPV and AcMNPV. lkeda et al.(2006) sug-
gested that the close relationship among HycuNPV, CfM-
NPV and OpMNPV may be due to a geographical overlap

http://www.biomedcentral.com/1471-2164/8/248

among their hosts[39]. Also, the relationship between
AnpeNPV and the other NPVs, especially HycuNPV, may
be due to the same reason. Hyphantria cunea was firstly
introduced into Dandong, Liaoning province of China in
1979, which is the main distribution area for Antheraea
pernyi and has attacked many kinds of trees including oak
tree [40]. The AnpeNPV virus strain used in this study
originated from Liaoning province. Antheraea pernyi also
has a narrow distribution in Japan where HycuNPV had
been isolated since 1960[41].

Conclusion

In summary, we found that AnpeNPV is a member of
Group I NPV and is most closely related to HycuNPV
OpMNPV, EppoNPV, CEIMNPV, CfDEFNPV and to a lesser
extent to BmNPV, RoNPV and AcMNPV based on the
results of multi-alignment, phylogenetic analysis and
gene parity plots. Analysis of the genome organization of
AnpeNPV and other Group I NPVs demonstrated that
there are one gene rearrange region in AnpeNPV with
CfDEFNPV, and two gene rearrange regions in AnpeNPV
with BmNPV, RoNPV and AcMNPV. Despite its close rela-
tion to OpMNPV, CfMNPV, HycuNPV, EppoNPV and
CfDEFNPYV, the AnpeNPV genome has several distinct fea-
tures including the presence of 4 genes unique to
AnpeNPV(Anpe31, Anpe71, Anpel40 and Anpel42) and
2 genes previously identified as new genes unique to
CfDEFNPV and HycuNPV, respectively(Anpe3/Hycu148
and Anpe143/Cfdef142), and that, unlike other baculovi-
ruses there are fewer hrs (only 3 in AnpeNPV), more direct
repeats (24 in AnpeNPV intergenic spacer regions, 9 in
AnpeNPV intragenic spacer regions) and a GT-repeat pre-
viously found only in OpMNPV. At the same time, analy-
sis of the genes around the hrs of AnpeNPV supported the
argument that an ancestral baculovirus acquired genes
from ancestral insect hosts that were inserted into the
regions around the hrs. There are still 29 conserved genes
present in all baculoviruses and 33 genes present in all
lepidopteran baculoviruses. Besides genes present in all
baculoviruses and lepidopteran baculoviruses, 12 ORFs in
AnpeNPV were identified in all lepidopteran NPVs. Of the
12 ORFs, 6 were found exclusively in all lepidopteran
NPVs (Anpe26/ac34, Anpe54/ac55, Anpe56/ChaB,
Anpe96/p87, Anpel00/ac108, Anpel22/calyx), therefore
the number of genes common to all lepidopteran NPVs is
74, however these 74 genes are not the same as those iden-
tified before. In addition, 12 ORFs are now exclusive to
and present in all Group I NPVs(Anpe5/ac5,, Anpe9/ptp-
1, Anpel5/odv-e26, Anpe33/ac30, Anpe42/gta, Anpe67/
ac72, Anpe68/ac73, AnpelO6/acl114, Anpell4/acl24,
Anpel19/gp64, Anpel23/ac132, Anpel4l/ie-2). Only
two bro genes (Anpe89/bro-b and Anpel08/bro-a) and two
inhibitors of apoptosis (Anpe36/iap-1 and Anpe66/iap-2)
were found in AnpeNPV. So far, two ctls,ctll and ctl2, are
found only in the genomes of AnpeNPV, HycuNPV, OpM-
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Gene parity plot analysis of AnpeNPV with HycuNPV, EppoNPV, AcMNPV, RoNPV, BmNPV, CfDEFNPV, MacoNPV A and
XcGV. The axes represent the relative position of each ORF along the genome in kb. The dots represent ORFs. (a) The organ-
ization of the genome collinear to that of AnpeNPV. (b) The organization of the genome partially collinear to that of AnpeNPV.
There were two cluster regions in which gene order was the reverse direction and arrows indicated the clusters. (c) The
organization of the genome partially collinear to that of AnpeNPV. There was one cluster in which gene order was in inverse

direction and arrows indicated the cluster. (d)There was not a collinear relationship between AnpeNPV and MacoNPV A,
XcGV.
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Baculovirus phylogeny based on complete genome sequence data. The phylogenetic tree was based on analysis of the com-
bined sequences of 29 conserved genes found in all sequenced baculovirus genomes. Bootstrap values for 1,000 replicates are
given. Sequences include those for AnpeNPV, AcMNPV, OpMNPV, BmNPV, LAMNPV, SeMNPV, XcGYV, PixyGV, HaSNPV G4,
HaNPV, SpIltMNPYV, CpGV, CuniNPV, EppoMNPV, HycuNPV, HzSNPV, HearNPV, HasNPV, MacoNPV A, MacoNPV B,
PhopGV, RoMNPV, AdhoNPV, CfDEFNPV, CfMNPV, CrleGY, AdorGV, NeseNPV, AgseNPV and NeleNPV. The phylogeny
indicated that AnpeNPV was included in Group | NPVs and most closely related to HycuNPV, OpMNPV, EppoNPV, CfMNPV

and CfDEFNPV.

NPV and LAMNPV. These differences identified between
AnpeNPV and other baculovirus genomes might provide
insight into their evolution, host specificity and patho-
genicity. The sequence and analysis of AnpeNPV complete
genome can provide a continuing resource to better fol-
low the evolution and phylogeny of baculovirus.

Methods

Virus isolation, construction of genomic DNA libraries
The AnpeNPV virus (Liaoning strain) was isolated from
the natural infected tussah silkworm from a rearing yard
in Liaoning province, China by the Liaoning Sericultural
Research Institute. To generate a large number of polyhe-
dra, healthy fifth instar tussah silkworms were inoculated
in the laboratory and the haemolymph was collected from

the sick tussah silkworms, then washed with ddH,O and
centrifuged several rounds to get pure AnpeNPV polyhe-
dra. The genomic DNA of AnpeNPV was purified accord-
ing to following protocol: about 5 x 108 polyhedra was
dissolved in solution (0.1 M Na,CO;, 0.15 M Nadl,
pH10.4) on ice for 10 minutes, SDS was then added to the
final concentration 0.5%, and the solution was kept on
the ice for another 10 minutes. The genomic DNA was
extracted by the addition of an equal volume phenol
(pH8.0) two times and chloroform one time. The DNA
was precipitated with 2-volumes ethanol, washed with
70% ethanol, and dissolved in 0.1 x TE buffer (pH8.0)
[42]. The random viral genomic DNA library was con-
structed as follows: The viral DNA was partially digested
by Sau3A 1, a restrict endonuclease with a 4-bp recogni-
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tion site, and the fragments ranging from 2.0 to 5.0 kbp
were recovered from an agarose gel. The cohesive ends
were filled in partially by incubating with dATP and dGTP
in the presence of Klenow fragment of DNA polymerase I.
The plasmid vector pUC19 was fully digested by Sal I, and
subsequently filled in by adding dTTP, dCTP and the Kle-
now fragment. The vector and genomic fragments were
mixed and ligated. The ligation products were trans-
formed into E. coli competent cells TG1 and then cultured
on LB plates with X-gal/IPTG and Amp (100 pg/ml) [43].
White colonies were selected and cultured. A one-step
screening of recombinant plasmids was conducted by
assessing the size of insertion [44]. The recombinant plas-
mids were sequenced with plasmid specific primers and
'primer nesting' from both strands by using BigDye Termi-
nator v3.1 (ABI) on Genetic analyzer 3130XL(ABI).

Assembly and sequence analysis

Restriction fragments from recombinant plasmids were
sequenced and assembled into contigs using
ContigExpress9.1.0 and SeqMan5.0 from the DNASTAR
software package. PCR was used to generate gap-spanning
fragments and low quality data regions after preliminary
assembly. Open reading frames (ORFs) were identified
using ORF finder [45]. The criterion for defining an ORF
was a size of at least 50 amino acids and minimal overlap.
All BLAST searches were done through the national center
for biotechnology information (NCBI) website using
BLAST2.2.14 [46] and local BLAST using PowerBlast1.2.0.
Multiple alignments and percentage identities were per-
formed using the Clustal W and MegAlign from the
DNASTAR software package. Genome homology plots
were generated using GeneQuest5.0 from the DNASTAR
software package. Drs were identified by Tandem Repeats
Finder (TRF) software with default settings. hrs containing
palindromes were identified by searching the genome
using hr consensus sequences reported previously [47].
Phylogenetic trees were constructed using Clustal W pro-
tein alignment based on the 29 core baculovirus genes.
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Category of the AnpeNPV genes. The data provided list all of the
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able genes in AnpeNPV genome.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-248-S5.doc]

Additional file 6
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from insect hosts. The data provided show the results of the multiple align-
ment of baculovirus genes located around hrs to the homologues from
insect hosts.
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Additional file 7

Alignment of AnpeNPV direct repeat sequences. The data provided show
the alignment of 24 perfect or imperfect direct repeat sequences identified
by Tandem Repeats Finder (TRF) software in the intergenic spacer regions
of AnpeNPV genome.
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alignment of the 9 tandem repeat sequences in ORFs of AnpeNPV
genome.
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Additional file 9

Percent Similarity of 29 conserved baculovirus ORFs in all sequenced bac-
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