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Abstract

Background: The mouse vomeronasal organ (VNO) processes chemosensory information,
including pheromone signals that influence reproductive behaviors. The sensory neurons of the
VNO express two types of chemosensory receptors, VIR and V2R. There are ~165 VIR genes in
the mouse genome that have been classified into ~12 divergent subfamilies. Each sensory neuron
of the apical compartment of the VNO transcribes only one of the repertoire of VIR genes. A
model for mutually exclusive VIR transcription in these cells has been proposed in which each VIR
gene might compete stochastically for a single transcriptional complex. This model predicts that the
large repertoire of divergent VIR genes in the mouse genome contains common regulatory
elements. In this study, we have characterized VIR promoter regions by comparative genomics and
by mapping transcription start sites.

Results: We find that transcription is initiated from ~| kb promoter regions that are well
conserved within VIR subfamilies. While cross-subfamily homology is not evident by traditional
methods, we developed a heuristic motif-searching tool, LogoAlign, and applied this tool to identify
motifs shared within the promoters of all VIR genes. Our motif-searching tool exhibits rapid
convergence to a relatively small number of non-redundant solutions (97% convergence). We also
find that the best motifs contain significantly more information than those identified in controls, and
that these motifs are more likely to be found in the immediate vicinity of transcription start sites
than elsewhere in gene blocks. The best motifs occur near transcription start sites of ~90% of all
VIR genes and across all of the divergent subfamilies. Therefore, these motifs are candidate binding
sites for transcription factors involved in VIR co-regulation.

Conclusion: Our analyses show that VIR subfamilies have broad and well conserved promoter
regions from which transcription is initiated. Results from a new motif-finding algorithm, LogoAlign,
designed for this context and more generally for searching large, hierarchical datasets, suggest the
existence of common information-rich regulatory motifs that are shared across otherwise
divergent VIR subfamilies.
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Background

Most mammals detect odorant chemicals using two sen-
sory systems. The main olfactory epithelium of the nose
consists of olfactory sensory neurons that express odorant
receptor (OR) proteins [1]. OR proteins bind inspired
odorants and generate action potentials that signal odor-
ant information to the olfactory bulb [2]. Most mammals
also possess a second chemosensory organ, the vomero-
nasal organ (VNO), whose chemosensory functions have
been closely associated with reproductive processes [3].
The sensory neurons of the VNO express two types of
receptors, VIR and V2R (VRs) [4-8]. These sensory neu-
rons project to the "accessory olfactory bulb" located pos-
terior to the main olfactory bulb [3].

The OR, V1R, and V2R proteins are members of the G-
coupled-receptor (GPCR) superfamily. The mouse
genome encodes ~1600 OR genes [9,10], ~165 V1R genes
[11-13], and ~60 V2R genes [14]. The OR and V1R genes
have a compact gene structure comprising a single coding
exon (~1 kb) and 1-2 short exons in their untranslated
regions (UTRs). Putative transcription start sites have been
typically mapped to positions < 10 kb upstream of coding
exons [15]. These compact genes are predominantly
organized in clusters at > 40 chromosomal loci in mouse
[9,13]. These clusters are rarely, if ever, interrupted by
non-OR/non-V1R genes.

Each sensory neuron in the mouse olfactory epithelium
and VNO expresses only one allele of one gene from the
large repertoire of ORs and V1Rs in the genome [16,17].
Mutually exclusive receptor expression permits the func-
tional specialization of individual sensory neurons in
both systems; i.e., individual sensory neurons in both the
main nose/VNO are specialized for the odorant-binding
functions of the receptor allele expressed in that cell.
Despite the fact that OR and VIR proteins do not share
sequence homology, transduce signals via different G pro-
teins and are expressed in non-overlapping cell types [6],
this shared feature of mutually exclusive expression has
fueled speculation that these systems may utilize a similar
regulatory strategy.

Mutually exclusive expression is accomplished in other
systems by several diverse mechanisms. Typically, differ-
ential gene expression is governed by cis enhancers that
bind transcription factor combinations, which in a deter-
ministic way, dictate whether a gene is expressed or not at
a given developmental time or place. Applying this model
to mutually exclusive OR transcription, such a mechanism
predicts that each OR promoter has a unique cis regulatory
code, and that each sensory neuron would express a spe-
cific combination of transcription factors sufficient to acti-
vate only one OR promoter. The fact that duplicate OR
transgenes, with identical cis regulatory sequences, are not
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co-expressed in the same cells indicates that mutual exclu-
sive OR transcription is not regulated by a strict determin-
istic model [18]. A second category of mechanisms
includes non-deterministic or stochastic processes; e.g.,
competition for a single-copy regulatory complex in the
nucleus. One biological precedent for a stochastic com-
petitive mechanism is the mutually exclusive expression
of trypanosome variable surface glycoprotein genes by a sin-
gle-copy "pol body" regulatory complex [19]. This model
proposes that a unique assembly of transcription factors
in the nucleus is able to stably associate with only one
gene at a time. The recent observation that active OR genes
(but not inactive OR genes) interact with a unique locus
in the nucleus [20], termed the "H region", that was pre-
viously characterized as having strong enhancement activ-
ity [18], is consistent with this model. Additional study of
the "H region" will be required in order to elucidate its
precise role in the establishment of mutually exclusive OR
transcription.

Stochastic competition models predict that the competing
genes share common cis regulatory sequences, which
interact with common transcription factors that are part of
the regulatory complex. A recent study of the regulatory
region of one mouse OR gene revealed that a small trans-
gene containing merely ~400 bp upstream genome
sequence is sufficient to drive mutual exclusive expression
of this transgene [21]. This, and other similar mini-trans-
gene studies suggest that in general, putative "universal"
cis regulatory elements are likely to reside close to tran-
scription start sites. While no V1R mini-transgene experi-
ments have yet been reported, previous comparative
genomic analysis of one V1R gene cluster suggests the
presence of well-conserved promoter regions that simi-
larly lie within 1 kb from transcription start sites [15].

In this study, we developed a bioinformatic strategy to
search for common putative regulatory motifs that might
function in co-regulating V1R genes. We based our bioin-
formatic strategy on two assumptions. First, the VIR phy-
logenetic structure must be accommodated so that results
are not biased by larger and more recently diverged sub-
families. Second, since transcription factor binding sites
are typically degenerate, an information-based (as
opposed to string-based) search methodology will be
most successful at finding universally shared regulatory
motifs. Many traditional motif-searching methods, such
as Meme [22], are not designed to accommodate phyloge-
netic structure, and therefore in this context, tend to
report motifs that arise from conservation within sub-
families we already knew about. One recently developed
methodology designed to accommodate phylogenetic
structure, Phylogenetic Footprinting [23], depends on a reli-
able input tree on which to evaluate whether a resulting
motif is unexpected with respect to the known phyloge-
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netic relationships established in the tree. The best use of
this program, however, is in situations where the phylog-
eny is well established (e.g., where the input sequences are
orthologs so that a well established species tree can be
used). The VIR gene tree, in contrast, is poorly resolved
due to the high divergence between subfamilies and fre-
quent gene conversion events between paralogs [24]. As
described below, our strategy included the development
of a new motif-searching approach that, like Phylogenetic
Footprinting, overcomes biases due to phylogenetic struc-
ture (i.e., due to different subfamily sizes and diver-
gences), but unlike Phylogenetic Footprinting, is catered to
the context of our problem in that it does not depend on
input alignments/trees and utilizes information-based
(not string-based) methods.

Our strategy to identify putative regulatory motifs
involved in V1R co-regulation consisted of four steps:

1) We used comparative sequence analysis and 5' RACE to
identify putative VIR promoter regions (~1 kb in size)
that are well conserved within (but not across) sub-
families;

2) We aligned promoter sequences within subfamilies
and represented the homology of each subfamily with a
single Sequence Logo [25], thereby permitting a second
order processing of these logos in which each subfamily is
represented equally;

3) We developed a new algorithm, LogoAlign, which seeks
an alignment of the above input logos that maximizes
total information within small, motif-sized (e.g., 12 bp)
windows, and therefore designed to report motifs well
represented across subfamilies;

4) We analyzed resulting motifs on several statistical
grounds, including their total information as compared to
controls, and their positioning near transcription start
sites as compared to random positions in gene blocks.

Results and Discussion

A divergent set of VIR subfamilies have arisen by local gene
duplication

The mouse VIR gene repertoire consists of ~165 intact
coding regions that partition into 12 major subfamilies
(A-L) [12]. Most of these V1Rs (125) reside within large
clusters at nine chromosomal locations [13] (see Addi-
tional File 1). Three of these V1R clusters consist of more
than one subfamily: the A and B subfamilies are co-clus-
tered on mouse chromosome 6, the J and K subfamilies
are co-clustered on chromosome 7, and the H and I sub-
families are co-clustered on chromosome 13. Three VIR
subfamilies are found at more than one locus: the C sub-
family is found at two locations on mouse chromosome
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6, the D subfamily is found at two locations on mouse
chromosome 7, and the E subfamily is clustered on both
chromosome 7 and 17.

V1R subfamilies have expanded by local gene block dupli-
cation [15]. Most of these local duplications occurred
recently enough that the extent of the duplicated block is
evident by sequence homology (Fig. 1A). Typically, dupli-
cated blocks are about 10 kb in size; most of the dupli-
cated sequence is upstream of the coding regions. We
previously mapped the sequences of four transcriptional
units from the A and B subfamilies onto their genomic
blocks [15]. Each of these V1Rs had a gene structure con-
sisting of a ~1-kb coding exon located < 2 kb from the 3'
end of the duplicated block, and one or two short untrans-
lated exons located upstream of the coding region. The
putative transcription start sites (5' end of the transcrip-
tional units) typically map < 2 kb from the 5' end of the
duplicated blocks. Thus, the V1R gene block duplications
seem to have efficiently captured putative promoter
regions, UTRs, and coding regions, with little surrounding
sequence. This observation hints that the sequence infor-
mation sufficient to regulate individual V1R genes may be
very proximal to transcription start sites.

Each subfamily has conserved putative promoter regions

We previously identified putative promoter homology at
the mouse chromosome-6 locus containing a cluster of
V1Rs from the A and B subfamilies [15]. In this case, the
putative promoter homology is shared between A and B
genes. This observation raises a question as to whether
this homology is universal (i.e., shared among all V1Rs),
or, whether each locus might have its own promoter
homology. In fact, neither seems to be the case. First, no
sequence similarity is evident between A/B promoters and
the gene blocks of any other subfamily. Second, not all co-
clustered subfamilies exhibit shared promoter homology,
as was the case for the co-clustered A and B genes: the co-
clustered ] and K subfamilies do exhibit cross-subfamily
non-coding homology, however, neither the co-clustered
H and I subfamilies or the co-clustered E and F sub-
families exhibit cross-subfamily non-coding homology.
In general, we instead find that upstream non-coding
homology is evident only within subfamilies, irrespective
of genomic location. Thus, subfamilies distributed to
multiple loci (e.g., C and D subfamilies) do exhibit non-
coding homology among members at both loci (the only
exception being the two clusters of E genes, which do not
share obvious non-coding homology). Therefore, broad
putative promoter homology is not universally shared,
nor locus-specific, rather, it appears to be shared predom-
inantly within subfamilies. For subsequent analyses, we
refer to "promoter subfamilies" to indicate the ten sets of
genes that share upstream, non-coding homology (AB, C,
D, E1, E2, F, G, H, I, JK, where AB is the set of A and B
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Promoter subfamily homology in VIR gene blocks. A. PipMaker plots [26] of VIR gene blocks showing a representative
example from each promoter subfamily (subfamily is denoted in the gene name; for example, V/rb8 is a representative from the
B subfamily). Each gene block shown was extracted from percent-identity-plots (PIPs) of self alignments of VIR loci (50—-100%
identity on vertical axis). Thus, the blocks shown exhibit homology at each position in the block to other VIR genes of the
same promoter subfamily (i.e., at a particular position, multiple plots that cross that position indicate that multiple VIRs in the
promoter subfamily are homologous at that position). Homology to the upstream (orange), coding (red), and downstream (yel-
low) regions is indicated by shading. B. Gene block conservation scores are shown for the same representative set of VIR
blocks shown in A. For each position in a gene block, the conservation score is a value between 0 and | (see Methods for def-
inition of conservation scores). Coding regions (red), conservation peaks (green), and other regions of the block (blue) are
shaded. Dark yellow background shading represents mean block conservation in non-repeat upstream block sequences; the
light yellow band represents 0.5 standard deviations above the mean conservation score value. Grey stripes denote RepeatMas-
ked positions. In both panels, homology to transcription start sites (TSS's) for each block is highlighted purple; for the VIrj2
block, an empirically determined TSS (pink), as well as homology to the TSS for VIrkl (purple), are shown. Homologous TSS
positions are derived from alignments of promoter subfamilies (see Methods). Each horizontal tick mark represents | kb.
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genes, JK is the set of ] and K genes, E1 is the set of E genes
on chromosome 7, and E2 is the set of E genes on chro-
mosome 17).

As a first step in identifying putative regulatory motifs
shared among V1R subfamilies, we decided to restrict our
search to just the putative promoter regions (and thus
reduce noise by not searching entire gene blocks). As
noted previously for the AB promoter subfamily [15],
putative promoters in this case were evident as upstream
subregions of gene blocks that exhibited increased homol-
ogy. Like the AB promoter subfamily, upstream islands of
non-coding, putative promoter homology are evident in
other promoter subfamilies; a striking example is shown
in the PipMaker [26] plot of the V1rf2 gene in Figure 1A,
in which a ~500-bp island of non-coding homology is evi-
dent ~3 kb upstream of the coding region. However, for
most promoter subfamilies, the gene blocks have dupli-
cated too recently to be able to detect block subsequences
that are under more stringent selection. For example, the
PipMaker plot of the V1rc21 gene in Figure 1A, shows
homology among C promoter subfamily members that
spans the entire ~11 kb block (with breaks in homology
due only to recent repeat insertions).

In order to evaluate these less obvious cases, we made a
second assumption about putative VIR regulatory
sequences: in addition to exhibiting higher sequence
identity, these regions are likely to be homologous among
all promoter subfamily members. PipMaker plots, like
those shown in Figure 1A, contain both types of informa-
tion, since the vertical axis in a plot represents percent
pairwise sequence identity, and the number of plots cross-
ing any position in the block represents the number of
subfamily members with homology at that position. We
transformed these two dimensions of "conservation" into
a single "conservation score" at each position of each gene
block. The conservation score is the average percent iden-
tity at each position based on all the PipMaker plots that
cross that position (i.e., one plot being a pairwise compar-
ison with one other subfamily member; see Methods);
however, for each "missing gene" (i.e., for each subfamily
member that does not have a PipMaker plot cross at that
position) we include a 0% identity in this average calcula-
tion. In this way, the conservation score is severely penal-
ized in regions where not all subfamily members exhibit
homology.

Using this approach, we identify two subregions of VIR
blocks that are most well conserved within promoter sub-
families (representative examples are shown in Fig. 1B; see
Additional file 2 for a complete set). A prominent homol-
ogy peak is generally observed across the coding regions
and immediately upstream of the coding region. The non-
coding portion immediately upstream of the coding
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region presumably includes the coding exon acceptor site,
as well as translation regulatory signals. A second promi-
nent homology peak is generally observed near the 5' end
of the block, well upstream of the coding region and
upstream of intervening low-homology non-coding
sequence. These upstream peaks (~500-1000 bp in
length) could represent promoter regions and selection of
sequences containing transcriptional information.

The putative transcription start sites identified previously
by 5' RACE PCR for four genes from the AB promoter sub-
family map within the upstream peaks in their respective
gene blocks (Fig. 1B). These four start sites are located
near the middle of their respective ~kilobase-size pro-
moter homology, but do not map exactly to homologous
positions. Similarly, two previously characterized cDNAs
of the D subfamily [7] initiate transcription from near the
middle of their respective peaks, but not from precisely
the same relative positions. Therefore, if we assume that
these cDNAs accurately reveal transcription start sites
(e.g., they are not derived from truncated RNA templates)
and are representative cases for V1Rs in general, it would
appear that V1R promoters exhibit variable relative initia-
tion positions within these much larger regions of pro-
moter homology.

We were next interested to know whether putative tran-
scription start sites for other promoter subfamilies like-
wise mapped to their respective upstream peak regions.
Using mouse VNO-derived cDNA, we generated 5' RACE
PCR products using gene-specific primers on at least one
member of each VIR subfamily (Fig. 2). As was the case
for the AB and D promoter subfamilies, transcription start
sites in all cases map to upstream peaks in their respective
gene blocks (Fig. 1B). We identified multiple RACE prod-
ucts for three V1Rs. In these cases, the putative TSS maps
to within 49 bp, 41 bp, and 23 bp, respectively, with iden-
tical exon-intron gene structures. This slight variation in
the length of RACE products might be due to degradation
of RNA templates or alternative start sites within promot-
ers. Nevertheless, with this limited sample, we find no evi-
dence for alternative splicing or alternative promoters.
Therefore, our comparative sequence analysis of 125 VIR
genes, as well as 5' RACE results for 15 of these VIRs,
points to a single, well-conserved promoter region
upstream of each gene. Further analysis of these putative
promoter regions is likely to reveal promising candidate
sequence elements that contribute to V1R transcriptional
regulation.

We next analyzed sequence conservation within these
putative promoter regions by examining nucleotide sub-
stitution rates within these regions as compared to coding
and other non-coding regions. We confined our search to
pairs of genes within subfamilies that exhibit non-coding
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Figure 2

5' Race to determine transcription start sites for repre-
sentative VIRs from each promoter subfamily. VIR gene
structures as determined by 5" RACE PCR for members of each
subfamily are illustrated. Coding exons (grey-filled boxes), non-
coding exons (black boxes), and upstream introns (grey lines) are
denoted. The chromosomal positions represented for each VIR
gene are indicated (+/- indicates orientation). Transcription start
sites are at the left-most position (grey arrow). The gene struc-
tures for the AB and D promoter subfamilies were determined
previously [7]; all other gene structures shown were determined
herein (see Methods).
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block substitution rates between 15-25% so that all gene
pairs considered would have approximately the same
elapsed time since common ancestry. This substitution
level range also permits comparisons between mouse-rat
orthologous pairs, since mouse-rat orthologs are expected
to exhibit 15-25% neutral substitution since the mouse-
rat split [24]. We find that coding sequences exhibit aver-
age substitution levels that are ~63% that of surrounding
non-coding block sequences (i.e., for every substitution
observed in the block, ~0.63 substitutions are observed in
the coding region) (Fig 3). We find that promoter regions
("peaks") tend to fall into two discrete classes. Most pro-
moter sequences exhibit substitution levels that are ~80-
90% that of the surrounding non-coding block sequences
(i.e., for every substitution observed in the block, ~0.8-
0.9 substitutions are observed in these promoter
sequences). However, a subset of promoters (e.g., in the A
and G subfamilies) exhibit much lower substitution levels
that are comparable to levels observed in their coding
regions. Interestingly, the pairs of A and G paralogous pro-
moters that exhibit these lower substitution rates, do not
exhibit lower substitution rates in orthologous compari-
sons (Fig. 3). This observation raises the possibility that
gene conversions, which can only occur between paralogs
and not orthologs, have contributed to homogenization
of A and G promoters in mouse. Gene conversions might
be favored in order to maintain sets of broad promoter
sequences that would then compete approximately
equally well for universal transcription factors. It is also
noteworthy that each of the promoter regions ("peaks")
exceeds 500 bp in size with few obvious breaks in homol-
ogy. Such large and unbroken regions of homology seem
unlikely to be the consequence of strict conservation of
transcription factor binding sites, yet seem to be feasible
target sizes for gene conversion events.

Identification of cross-subfamily motifs using information-
based techniques

To this point, we have identified upstream, non-coding
sequences that exhibit elevated conservation scores and
transcription start sites. These putative promoter regions
are hereafter referred to as "peaks" (see Additional file 3
for sequences), whereas the remaining non-coding
regions of a gene block are referred to as "blocks". We next
searched for "motifs" shared among peaks of the ten pro-
moter subfamilies. "Motifs" are defined in terms of nucle-
otide frequencies and a motif's quality is measured in
terms of information content. The most common way to
depict a motif is by a Sequence Logo [25], in which the base
frequencies at each position in the motif are summarized
graphically by the height of each letter. The units of a logo
plot are bits of information. A motif is more information-
rich (i.e., contains more cumulative bits of information)
when the base frequencies across the motif deviate more
from expectation (i.e., randomness). In this regard, a par-
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Figure 3

Coding/peak versus block substitution for VIR para-
logs/orthologs. Nucleotide substitution rates within pro-
moters of mouse paralogs (red) and mouse-rat orthologs
(blue) relative to substitution rates within non-coding/non-
promoter portions of gene blocks is compared to relative
substitution rates within paralogous coding regions (green)
for various subfamilies. Rat peaks were identified by using
BLAST [40] to identify orthology to mouse peaks. Standard
deviations in various pairwise comparisons are shown.
Orthologous comparisons within the H and | subfamilies are
not possible because there are no intact H and | subfamily
members in rat.

Orth. Prom.
M Par. Prom.
M Par. CDS.

ticular position in a set of aligned sequences need not be
absolutely conserved to be information-rich. Indeed,
according to information theory, a position in an aligned
group of sequences that always is one of two bases can
contain more information than a position that exhibits a
clear majority of sequences with a single base, if in fact,
the remaining sequences do not exhibit bias [25]. Thus,
information profiling is a more refined method than per-
cent identity for assessing the likelihood of a given base
position containing part of a functional code. This is espe-
cially likely to be the case for transcription factor binding
sites, since these sites are often degenerate and not abso-
lutely conserved.

Some established motif-searching methods, such as Meme
[22], are not suitable for this particular problem because
they have no knowledge of the hierarchy of the dataset.
Specifically, this dataset has two hierarchical levels due to
very recent relationships between genes within sub-
families, yet very distant relationships between sub-
families. Thus, without knowledge of this hierarchy,
algorithms like Meme report within-subfamily sequence
identities we already knew about, as opposed to less con-
served cross-subfamily homology of interest. Another
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motif-searching strategy, Phylogenetic Footprinting [23]
solves this problem by utilizing an input tree that specifies
the hierarchy of the dataset. However, this method is
inappropriate in the context where input sequences are
not homologous, too distantly related to produce a relia-
ble phylogenetic tree, or where the phylogeny is uncertain
due to concerted evolution. Since it is not possible to pro-
duce a well resolved input V1R tree, and because we
wished to design our algorithm for the analysis of unre-
lated input sequences (e.g., co-regulated genes that are not
related/alignable) and also to use information-based (ver-
sus string-based) searching, we developed a solution
catered to our particular problem.

Our solution is to abstract away from individual
sequences by first generating a representative Sequence
Logo for each promoter subfamily, each logo (~500-1000
nt) being derived from an alignment of the individual
peak sequences of a single promoter subfamily. This logo
reflects all of the information contained within the indi-
vidual peaks, yet permits a second order analysis to iden-
tify motifs shared between these representative logos,
thus, across promoter subfamilies, without any one pro-
moter subfamily being weighted more heavily (e.g.,
because of its size). The set of ten logos resulting from an
alignment of the peak sequences for each of the ten pro-
moter subfamilies, is provided in Additional file 4.

In order to next find motifs shared among these ten logos
(thus, across subfamilies), we designed an algorithm, Log-
0Align, that performs a heuristic search for logo similarity
within short, motif-sized windows (see Fig. 4). Briefly,
this algorithm begins by randomly selecting a motif-sized
window (we used 12 bp) in each of the ten input logos,
combines the windows into a new motif-sized logo, and
then calculates the total information contained in this
new motif-sized logo. The algorithm then selects one of
the ten input logos, and searches all 12-bp windows in
that logo and identifies the 12-bp window in that logo
that produces a new motif-sized logo with the maximum
of total information when aligned with the other nine sta-
tionary windows. LogoAlign cycles through each of the
other nine logos (in a random order) in a similar manner,
each time identifying the 12-bp window in the logo being
processed that maximizes total information in the align-
ment. The algorithm continues until window positions do
not move for one complete cycle. The result of one com-
plete trial is therefore a "local maximum" of information
(i.e., a maximum achieved by a heuristic path) for an
aligned set of 12-bp windows; this local maximum is
referred to as a "motif" (a new 12-bp logo or frequency
matrix derived from the alignment of the final resting
position of the ten windows). Multiple trials, each with a
set of random starting positions and cycling order, identi-
fied a distribution of information-rich motifs (Fig. 5).
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Schematic of LogoAlign "hill-climbing" methodology. A. Each of the ten promoter subfamilies is aligned in order to pro-
duce one input Logo per promoter subfamily. B. A random starting position of motif-sized (12-bp) windows is established for
each of the input Logos, and total information is calculated based on the alignment of these windows. C. Beginning with a ran-
domly selected Logo, the window is moved to every possible position in the Logo, and for each position, the total information is
calculated based on the alignment of this window to all of the other stationary windows. The window is moved to the position
at which the total information is maximized (red). D. In a randomly determined order, each Logo undergoes exactly the same
window-sliding procedure as described in C above, and each time, the window is set to the position where information is max-
imized. One cycle is completed after every Logo has undergone one window-sliding procedure. E. Multiple cycles are executed,
each time using the final resting positions from the previous cycle as starting positions for the new cycle, and each time using a
random order of cycling through the ten Logos, until a complete cycle is completed during which none of the windows are
moved. The resulting motif (a local maximum of total information) is kept as the result of one trial (2000 trials were conducted

in this study).

As described in the Introduction, LogoAlign was developed
specifically for this particular application because it does
not depend on being able to align all taxa (i.e., an input
phylogeny is not required) while still being able to con-
sider phylogenetic heirarchy in the dataset. We note that
two other motif-searching algorithms have been recently
developed in consideration of these same issues. The algo-
rithm Phylocon [27], like LogoAlign, performs an informa-
tion-based motif search on Sequence Logos created from
multiple alignments. However, Phylocon uses an algo-
rithm that we believe is suboptimal in our context for two
reasons. First, Phylocon makes use of local, un-gapped,
sub-optimal, multiple alignments, rather than gapped,

global, multiple alignments. Using local alignments can
be preferable if the sequences being aligned are not closely
enough related to produce high-quality global align-
ments. However, the subfamilies in our dataset have
broad contiguous regions of exceptionally high homol-
ogy, with which we can produce high-quality global mul-
tiple alignments. Global alignments can provide an
additional layer of information, since the existence of
gaps can indicate that an otherwise well-conserved region
is not likely to bind a universally-utilized transcription
factor (our aim) if the motif is interrupted in a subset of
sequences. Second, PhyloCon searches the solution space
using a deterministic greedy algorithm than will always
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Distributions of cumulative information in LogoAlign
results. A. The cumulative information (gap penalized) for
the 936 non-redundant motifs identified by LogoAlign (1) is
compared to 65,000 alignments of randomly chosen 12-bp
windows from each input Logo with a maximum of 20% gaps
per position per input Logo (2) and 20,000 biased samples in
which the most information-rich 12-bp window from one
randomly chosen input Logo is aligned to randomly chosen
gap-free 12-bp windows from the other nine input Logos (3).
The LogoAlign results range from 13.6 standard deviations to
22.6 standard deviations above the mean of the unbiased dis-
tribution. B. The distribution of results produced by LogoAl-
ign (black) is compared to results from a search of random
sequences (gray) with similar base composition and phyloge-
netic structure (see Methods). All sequences used to pro-
duce these distributions were trimmed (i.e., end-gaps were
removed) in order to prevent over-accumulation of gaps
within the scrambled control set. The result is bimodal (one-
tailed t-test; p-value << 0.0001), and the best motifs found
within VIR promoters are significantly more information-rich
than those identified in the control (Z-score = ~8.0; p-value =
10-15).
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progress to the same local maximum, but may never find
the best global solution. Since LogoAlign does not progress
deterministically, it has an increased probability of identi-
fying the best global solution with multiple iterations. A
second, even newer program, PhyloGibbs [28] is also simi-
lar to LogoAlign and Phylocon in terms of its suitability for
hierarchical datasets with incomplete phylogenies. This
program uses a "simulated annealing" algorithm [29],
and unlike Phylocon, is non-deterministic and can utilize
global (or local) alignments. Thus, while PhyloGibbs dif-
fers from LogoAlign in specifics of its design, it generally
approaches the motif-searching problem in a very similar
way and may therefore be equally well-suited for our con-
text. We are currently testing the relative sensitivities and
computational efficiencies of several motif-searching
strategies in various contexts as part of a broader assess-
ment of LogoAlign (Stewart and Lane, in preparation).

Statistical validation of candidate motifs

We assessed resulting motifs based on three criteria. First,
we expect that multiple iterations of LogoAlign using ran-
domly determined starting points should converge on a
common set of information-rich motifs, as opposed to
finding a different answer each iteration. Second, we
expect that biologically meaningful motifs should contain
more information than motifs identified in searches on
random control sequences. Third, we expect that tran-
scriptionally relevant motifs should more likely be posi-
tioned near transcription start sites than elsewhere in gene
blocks, and/or exhibit common positioning relative to
each other from gene to gene.

Motif Convergence

We conducted 2000 trials of LogoAlign, each iteration with
a different starting point (i.e., initial window positions)
and path (i.e., order of processing from one input logo to
another). The resulting 2000 motifs could immediately be
collapsed into 936 non-identical motifs (53% conver-
gence); for example, the best motif was found 70 times.
We next partitioned the 936 non-identical motifs into 64
clusters of similar motifs, allowing us to ignore weaker
versions of essentially identical higher-scoring motifs.
Therefore, from 2000 iterations, we observed > 97% con-
vergence to merely 64 non-redundant solutions, suggest-
ing that we might have sufficiently sampled the sequence
space to find a global maximum.

Significant Information Content

We conducted three control experiments to assess the sig-
nificance of the total information of V1R promoter motifs
identified by LogoAlign (Fig 5). The first control estab-
lishes the noise level for randomly aligned sequences; the
maximum total information in this case is ~3 bits,
whereas the minimum information context in the 2000
iterations of LogoAlign has more than double this informa-
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tion content. Not surprisingly then, LogoAlign always
progresses towards a more information-rich solution. The
second control establishes the relative contribution of
individual subfamilies. In this control, we establish that a
biased distribution in which the most information-rich
window from one logo is aligned with randomly selected
windows from the other nine logos produces motifs only
slightly above noise and significantly less than the infor-
mation content in the experimental results.

The most important control is to ask how LogoAlign per-
forms on random sequences. To conduct this control, we
shuffled V1R sequences not only in such a way to preserve
base composition, but also to preserve the number, size,
and diversity of subfamilies (see Methods). Thus, our con-
trol was a set of sequences with exactly the same proper-
ties as the experimental set, only with putative motifs
scrambled. We find that the distribution of information in
the control set versus the experimental set is bimodal (I-
tailed t-test, p-value << .0001), indicating that motifs iden-
tified in VIR promoters are more information-rich than
those identified in random sequences. Note that while the
majority of motifs identified in VIR promoters contain
more information than the maximum information-rich
motifs identified in the control, we presume based on the
overlap of these distributions that the least information-
rich VIR promoter motifs identified in this study are prob-
ably not biologically significant (i.e., contain an amount
of information expected to occur by chance in random
sequences). However, the best motifs (> 10 bits) contain
significantly more information than those found in the
control (p-value = ~10-1%), and ~81% of identified VIR
promoter motifs contain information that is > 3 standard
deviations above the mean for the control (p-value <
0.001) (Fig. 5B).

Non-random positioning

We next analyzed motif occurrences within VIR gene
blocks using Sequence Walking techniques [30]. The
rationale for this test is that some sequence motifs (e.g.,
AT-rich motifs), even if information-rich among V1Rs,
might occur frequently in background sequence (e.g.,
V1Rs reside in AT-rich isochores with an average of ~62%
AT-base composition). Therefore, some statistical meas-
ure is appropriate to ascertain that identified motifs are
enriched specifically within V1R promoters, as opposed to
random widespread occurrence elsewhere in the gene
blocks. For this analysis, we focused on the five best
motifs (Fig. 6). Generally, we find that these motifs tend
to be located in better conserved parts of peaks, and the
motifs found within peaks tend to be better conserved
than motifs found elsewhere in gene blocks (not shown),
suggesting that occurrence in promoter regions, but not in
non-peak portions of blocks, are under the most stringent
selective pressure. We find that these motifs occur within
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500 bp of putative transcription start sites with signifi-
cantly greater frequency than within random 500 bp win-
dows of their gene blocks (Fig. 7). Note that this latter
analysis assumes that putative transcription start sites in
conserved VIR promoter subfamilies are located at
homologous positions to empirically-determined start
sites determined by RACE (see Methods). As discussed
previously, while this is probably not precisely the case,
the 500-bp window used in this analysis seems suffi-
ciently large to accommodate the expected variability in
relative start positions. If all VIR transcription start sites
were more precisely known, we expect we would observe
an even greater relative enrichment of motif occurrences
near TSSs, since this knowledge would presumably permit
the use of a smaller window size in the analysis.

We next focussed on only those 15 V1R genes in which
transcription start sites were empirically determined by
RACE in order to investigate more subtle patterning of our
five most information-rich motifs identified in the study.
The most compelling observation is that the highest-scor-
ing occurrence of motif 3 overlaps the 5' exon-intron junc-
tion for 7 of 15 VIRs where gene structures were
determined by RACE, suggesting that this motif contains
splice donor information for these upstream exons. In one
case (VIR H13.22697) of the 15 RACE products analyzed,
motif 1 is located precisely at the empirical transcription
start site; however, for the other V1Rs, the best version of
this motif is found as far as 413 bp upstream and 731 bp
downstream of empirical transcription start sites (median
distance is 90 bp upstream of the TSS), and therefore it
seems unlikely that this motif generally contains tran-
scription initiation information. If motif 3 (putative donor
splice site) is excluded, the best occurrence of the other
four motifs is found just upstream of empirically-deter-
mined transcription start sites in 33/48 cases (~69%),
within the 5' exons in 7/48 cases (~15%), and within the
upstream intron (downstream of both the TSS and 5'
exon) in 8/48 cases (~17%); therefore, it seems likely that
these motifs generally contain transcriptional informa-
tion, as opposed to, for example, exon or splicing infor-
mation.

We also explored the possibility that pairs of motifs might
require critical spacing with respect to each other. We do
find examples of motif pairs that exhibit surprisingly sim-
ilar spacing across the promoters of multiple subfamilies.
For example, the spacing between motif 2 and motif 4 is
consistent within 5 bp for 39 different V1Rs across five
subfamilies. However, we do not observe conserved rela-
tive spacing that encompasses all, or even nearly all V1Rs,
suggesting that stringent spacing among motifs tested is
not required, as might be predicted for binding sites of
transcription factors cooperating/interacting in a regula-
tory complex.
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Sequence Logos for the top five motifs found by LogoAlign. Sequence Logos for the five motifs with total information >
10 bits (gap penalized; see Methods) are shown. The motif (underlined) is shown in context with the surrounding alignment of
the input Logos to illustrate the motif signal within background noise.

Finally, we compared our five most information-rich
motifs to a library of known transcription factor binding
sites (Matrix Family Library Verson 6.3) [31]. The best
occurrences of motifs 1 and 3 within VIR promoters fre-
quently contain an "AAGTT" that matches the core bind-
ing site for the MYT1 zinc finger transcription factor;
however, only ~a third of these motifs are recognized by
the Genomatix algorithm [31] as a sufficient match to the
MYT1 site. In general, while we find that our motifs bare
resemblance to a number of transcription factor binding
sites represented in the database, we do not identify a
compelling example in which the conserved core of a
binding site is also a conserved core within any of our five

best motifs. Nevertheless, since few transcription factors
have been investigated by ChIP-on-chip experiments to
fully explore the range of actual binding sites in the
genome, and indeed, in cases where transcription factor
binding in the genome has been characterized in this
comprehensive way, it appears bound sites can deviate
significantly from consensus sequences [32], we only very
tentatively suggest that our five motifs do not resemble
known transcription factor targets.

Conclusion
In summary, we have used a combination of existing and
new bioinformatic tools to discover that every V1R sub-
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Frequency of occurrence of motifs near transcription
start sites (TSS's). For each of the five motifs, we com-
pared the frequency of the motif in randomly-selected 9 gene
samples (I gene from each promoter subfamily) occurring
within 250 bp of putative TSS's (black) versus random 500-bp
windows in gene blocks (grey). A total of one thousand 9-
gene samples were taken to produce the distribution (see
Methods). The frequency of random occurrence in gene
blocks for Motif | is higher (and less resolved from the test
set) because Motifl is especially AT-rich, and thus is
expected to occur more frequently by chance in gene blocks,
which are also AT-rich. The five motifs are present near
TSS's in an average of 7.1 genes per 9-gene cross-subfamily
sample; background frequency of the five motifs within gene
blocks average 2.8 genes per 9-gene cross-subfamily sample.

family has a broad and well conserved promoter region
that contains empirical transcription start sites. We specu-
late that the high level of conservation over such a large
sequence territory might have resulted from gene conver-
sions that would tend to broadly homogenize these
sequences. Homogenization in turn, could permit all
V1Rs of a particular subfamily to compete equally well for
common transcription factors or complexes. We have
developed a new information-based motif-searching strat-
egy that permits sequence comparisons between different
subfamilies (and eliminates bias due to subfamily over-
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representation), but is not dependent on the alignment of
sequences across subfamilies, in order to identify candi-
date transcription factor binding motifs that are repre-
sented in all VIR promoters and present across all V1R
subfamilies. The best motifs contain > 10 bits of cumula-
tive information, which is significantly more information
than those identified in random sequences. Three of these
motifs have relatively high GC content (46%, 47%, and
44% in motifs 2, 3, and 5, respectively, as compared to
38% GC content in background sequences at these loci),
and the best motif is identified near transcription start
sites in 94% of all V1R promoter regions (108/115 V1Rs
in which promoter peaks and transcription start site
homology was identified; see Boxshade [33] alignment of
motif occurrences in Additional file 5). These observa-
tions suggest that these motifs are excellent candidate
binding sites for V1R co-regulatory factors, a hypothesis
we are now testing experimentally.

Our algorithm, LogoAlign, has potential for use in a
broader context of gene co-regulation. Two widely used
approaches, exemplified by Meme and Phylogenetic Foot-
printing, are appropriate in distinct contexts. Meme (and
similar approaches) is best used when analyzing
sequences of comparable distances (e.g., unrelated
sequences), but is not suitable when there is varying
degrees of homology within the sequence set, because it
does not correct for phylogenetic relatedness. Phylogenetic
Footprinting is best used when analyzing sequences with
varying degrees of homology (it is designed to correct for
phylogenetic relatedness), but is not suitable when some
of the sequences are unrelated, because it depends on an
input tree that establishes phylogenetic relationships for
all input sequences. Our algorithm, LogoAlign, as well oth-
ers such as PhyloCon and PhyloGibbs, applies to a niche
where there exists both varying degrees of homology and
sets of unrelated sequences for which no phylogeny can
be established. An example of this particular context
would be in the evaluation of regulons elucidated by
microarray studies, where both related and unrelated tar-
get genes may be part of a downstream battery of genes
under the control of a particular transcription factor. We
are currently conducting a broader comparative evalua-
tion of the LogoAlign, Phylocon, PhyloGibbs, and other
related motif-searching strategies using synthetic controls
in order to more rigorously assess relative sensitivities and
context-dependent efficiencies of these various algorith-
mic approaches.

Methods

Genome sequences

All genome sequences were taken from the UCSC
Genome Browser [34]. Mouse V1R genome sequences are
taken from the March, 2005 assembly and rat sequences
are from the June, 2003 assembly. The 125 mouse V1R
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intact coding sequences from 12 subfamilies (designated
A through L) within the 9 major genome clusters used in
this study were identified previously [12]. The complete
list of V1Rs, subfamily designations, and chromosomal
locations is shown in Additional File 1.

5' RACE PCR and estimation of transcription start sites for
all VIR genes

RNA was isolated from vomeronasal tissue dissected from
two-month old mice using Trizol (Invitrogen). RACE-
ready cDNA was prepared using the BD SMART RACE
¢DNA Amplification Kit (BD Biosciences). VIR primers
were designed against sequences that are well conserved
within subfamilies, in order to increase the likelihood of
obtaining RACE products for multiple V1Rs in a single
PCR reaction. The following (GSP1) primers were used to
target genes from VIR subfamilies (in some cases, a sec-
ond nested primer, GSP2, was necessary):

C-subfamily GSP1
GTCTGTGGG-3'

5'-GTCAGTTGACAGGAGATCAG-

D-subfamily GSP1 5'-AGGAGAATGAAGGTATT-

GGCCACAGC-3'
E subfamily GSP1 5'-CTGATGGTGATGGCCTGGAA-
GACACTCAA-3'

F subfamily GSP1 5'-CACAGTAGAGTTAAGAAGTTGGCT-
ACAAGC-3'

F subfamily GSP2 5'-CTITAGTCTGCACCTCATGTAG-
TAAAGGC-3'

G subfamily GSP1 5'-CAAGTGCTCTATGATCAGGTCTTT-
GGGCGC-3!

H subfamily GSP1
TAAAAGCCAAGTG-3'

5'-GAAGGATTAGGATGTTTG-
I subfamily GSP1 5'-GTGTTTACAAAAGCCAAGTGGAT-
GAGAAT-3'

I subfamily GSP2 5'-CCCATGATGAAAGTATATAAAT-
GTCTCACAAATAGC-3'

J subfamily GSP1 5'-GTTGACATATTAACTATTGTCAGGT-
GCAT-3'

] subfamily GSP2 5'-GGTGCATAAAAACTGAATCTAT-
CAAC-3'

K subfamily GSP1 5'-CATTGACAAGCATTAGATGTGT-
GAAGATC-3'
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L subfamily GSP1 5'-GTCATTGTCTGAGGGATTCCTTT-
GCAGAG-3'

L subfamily GSP2 5'-CTATAGGCCITGTCCTGAC-
CCCAGTGAGC-3'

5' RACE products were successfully obtained and
sequenced forthe C, E, F, G, H, I, J, and K subfamily mem-
bers (but not D and L). To infer transcription start sites for
representatives of the D subfamily, we used previously
mapped RNAs for the VIrdl and V1rd9 genes [7]. Repre-
sentative RACE products are shown in Figure 2. RACE
products not shown in Figure 2 include cDNA sequences
that do not exactly match a genome sequence (e.g., we
identified a C subfamily member with 96% identity to
V1rC32), or represents an unannotated VIR gene (e.g., we
identified a three-exon E subfamily cDNA that maps to
chr17:18290161-18295277; we identified a four-exon G
subfamily ¢DNA that maps to chr7:10215569-
10220549). In these cases not shown, the putative TSS
maps to within respective homology peaks (see below), as
is the case for all RACE products shown in Figure 2. In
most cases, only a single clone was isolated for each V1R,
however, multiple independent clones were identified for
VIRKk1 (2 clones), the unannotated H-subfamily V1R at
chr13:22694287-22698376 (3 clones), and the unanno-
tated E-subfamily V1R at chr17:18290161-18295277 (3
clones).

Inferring Transcription Start Sites (TSSs) for all VIR genes
As described above, we mapped 5' RACE-determined TSSs
for at least one member of each subfamily. We extrapo-
lated TSSs from V1Rs whose TSS was empirically deter-
mined by RACE to homologous positions within well-
conserved promoters of other VIRs of the same subfamily.
The error in predicting actual TSS positioning using this
method might possibly be substantial (> ~100 bp), since
we observe that even well-conserved VIR promoter
regions can initiate transcription from different relative
start positions (see "Each subfamily has conserved puta-
tive promoter regions" discussion in text). Therefore, our
analyses of relative positioning of motif occurrences is
conducted at low resolution (i.e., using 500-bp windows,
see below) in order to accommodate this expected error in
TSS extrapolation

Defining gene blocks and homology "peaks"

We used the PipMaker tool [26] to detect pairwise
sequence homology within subfamilies, as opposed to a
multiple sequence alignment program, in order to maxi-
mize sensitivity and to detect the largest extent of block of
homology between genes. For each position in each gene
block, we parsed the PipMaker plots to derive a promoter
subfamily "conservation" score of that position with a
value between 0 and 1. These scores represent the average
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percent identity of the position to corresponding posi-
tions in the blocks for all other members of the promoter
subfamily; if the position did not align with the block of
a promoter subfamily member, a 0% identity (strong pen-
alty) was used for that particular position in the average.
Thus, a high "conservation" score indicates both a high
percent sequence identity with other promoter subfamily
members at that position as well as a tendency for this
homology to be present in all other promoter subfamily
members.

An arbitrary method was empirically derived in order to
generate systematic peak definitions that agreed well with
obvious peaks as identified by eye. First, we calculated a
moving average of conservation values across 500-bp win-
dows and identified a global maximum value (peak
center) in the block. Next, peak shoulders were defined as
the first position, both upstream and downstream of the
peak center, that satisfy the following three criteria: 1) the
conservation score at the position is below threshold, 2)
the 500-bp moving average around the position is below
threshold, and 3) 50% or more of the conservation scores
within 50 bp of the position are below threshold; the
threshold in all three criteria is defined as the value 0.5
standard deviations above the mean conservation score
for the entire non-repeat block homology upstream of the
coding region. A complete set of V1R gene blocks showing
peak definitions are provided in Additional file 2. For
almost all genes, peaks were homologous and alignable
from gene to gene within promoter subfamilies; for ten
genes, no peaks were identified or peaks were identified
that were not homologous to other peak sequences in the
promoter subfamily, and these sequences were excluded
from initial motif searches. Peak sequences (typically
~500-1000 bp in length) from each promoter subfamily
were aligned using ClustalW [35] with default parameters.

The LogoAlign algorithm

The alignments of "peak" sequences from each promoter
subfamily were used to derive one Sequence Logo [25] per
promoter subfamily. We used these Logos as inputs to a
new algorithm, LogoAlign, that finds an alignment of the
input Logos that maximizes cumulative information over
short, motif-sized windows. The algorithm proceeds in
the following manner. First, a random window position is
selected for each input Logo and the cumulative informa-
tion of the aligned windows is calculated for this initial
alignment. To compute the cumulative information, the
base frequencies at each position in the motif-sized win-
dows are averaged to derive a new set of base frequencies,
and then the information at each position is computed
using this new frequency matrix. The cumulative informa-
tion of the alignment is calculated as the sum of the infor-
mation values at each position in the motif-sized
windows. Next, starting with one of the Logos, its window
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is moved to each possible position and the cumulative
information is recomputed with respect to this window
and the stationary windows in the other Logos (effectively,
the Logo is shifted to all possible positions relative to the
other stationary Logos, and the cumulative information is
calculated for each position). The highest scoring window
is assigned as the new window position for that Logo. The
moving window procedure is repeated in turn for each of
the other Logos, each time assigning a new window posi-
tion that maximizes cumulative information in the win-
dow alignments. One cycle of the algorithm is completed
once each input Logo has undergone the window sliding
procedure. The algorithm then begins a new cycle (with a
different, randomly determined order through the ten
input Logos). This cycling continues indefinitely until an
entire cycle is completed in which none of the window
positions move. The final window positions on the Logos
give a local maximum of cumulative information that is
retained as a motif. This "hill-climbing" approach, sum-
marized in Figure 4, is similar to the one used in the
Malign algorithm [36].

To search for our candidate motifs, we ran 2000 trials of
the LogoAlign algorithm with random initial seed align-
ments. In our study, the dataset reported was generated
using a 12-bp window, having previously explored a range
of window sizes between 8-16 bp and empirically estab-
lishing that a 12-bp window was sufficient to capture the
best motifs. The 2000 iterations resulted in 936 non-iden-
tical motifs. To further summarize this set as a smaller set
of representative motifs, we employed a greedy clustering
algorithm based on defining a Manhattan distance
between base frequencies for pairs of motifs (similar to
"Quality Threshold" clustering methods; [37]). We empiri-
cally defined a clustering radius so that the algorithm
tended to group Logos that had the same most-frequent
bases at aligned positions (i.e., the "same" motifs, as evi-
dent by eye). Clustering resulted in the 936 non-identical
motifs being partitioned into 64 clusters.

The LogoAlign motif searching algorithm we used was only
one of several motif elicitation techniques we developed
and utilized on the V1R peak sequences. One alternative
approach was a variant of LogoAlign that used a greedy
search algorithm similar to the methodology in Consensus
[38], as opposed to the hill-climbing technique described
above. Furthermore, we ran LogoAlign with different
parameters, such as using relative entropy (that takes
background base composition into consideration) instead
of information. Neither of these variations to LogoAlign
significantly altered our results.

Evaluating candidate motifs for information content
We evaluated total information content of resulting
motifs as compared to three controls. First, to estimate
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background noise level for total information of motif size
12 basepairs, we generated 65,000 alignments of win-
dows randomly selected from the input Logos (permitting
a maximum of 20% gap frequency per position in the
input Logos; 20% gap tolerance allows for one gap in the
Logos for the smallest promoter subfamilies that contain
only five peaks) (Fig. 5A). Second, to estimate the contri-
bution to total information from any one subfamily, we
produced a biased set of 20,000 Logo alignments in which
each sample contained the window of highest cumulative
information for one randomly selected input Logo aligned
with gap-free random windows from the other nine Logos
(Fig. 5A). Third, we ran LogoAlign on a set of random
sequences in order to investigate the level of information
in motif occurrences that arise from chance (Fig. 5B). For
this control, we generated the random sequences by
scrambling V1R peak alignments (with end-gaps
trimmed) in order to preserve base composition. Our
method of scrambling involved systematically shuffling
every gapped peak-sequence within a subfamily in exactly
the same way, so that even though all motifs would be dis-
rupted, the phylogenetic relationships within subfamilies
were maintained. Therefore, the randomized control
sequences used for this test consisted of the same gene
numbers, subfamily sizes, percent identities, and base
composition as the experimental set.

Evaluating candidate motifs for positional bias

We investigated the biological significance of the five
most information-rich motifs by asking three questions
pertaining to the occurrences of these motifs within gene
blocks: 1) Are motifs more likely to occur near transcrip-
tion start sites as compared to elsewhere in gene blocks?;
2) Are motif occurrences generally well conserved por-
tions of gene blocks?; 3) Are motif occurrences similarly
positioned from gene to gene with respect to each other or
to transcription start sites? To address each of these ques-
tions, we first analyzed motif occurrences by applying a
sequence walking method [30] to scan each V1R gene block
for sequences that closely matched the best motifs. We
arbitrarily defined an occurrence of a motif as a sequence
with at least 9 bits of individual information [39]. To deter-
mine the frequency of motif occurrences near transcrip-
tion start sites (TSS's), we took 100 samples each
containing nine genes, with one gene randomly selected
from each of nine promoter subfamilies (the E2 promoter
subfamily was excluded because E2 TSS's have yet to be
identified), and counted the number of genes in the 9-
gene sample that had a motif occurrence within 250 bp of
the TSS in either direction (500-bp vicinity). This sam-
pling approach permits an analysis of the likelihood that
a motif is proximal to TSS's without introducing bias aris-
ing from large, well-conserved subfamilies that might lead
to an over-estimation of this probability. To determine
the frequency of occurrences in the control sets, we took

http://www.biomedcentral.com/1471-2164/8/253

10000 samples each containing nine genes, one randomly
selected from each promoter subfamily, and counted the
number of genes in the 9-gene sample that had a motif
occurrence within a randomly selected 500-bp window
within their gene blocks (i.e., non-coding, non-promoter
regions). Results from this analysis are shown in Figure 7.
To investigate a correlation between motif occurrences
and conservation within gene blocks, we calculated aver-
age conservation scores (and standard deviations) within
blocks/peaks, and calculated Z-scores for motif occur-
rences within blocks/peaks. To investigate whether motif
occurrences exhibit similar relative spacing (+/- 5-bp tol-
erance) from gene to gene, we tabulated all pairs of motif
occurrences (and motif occurrences relative to TSS's) for
every possible relative positioning (between -500 to +500

bp).
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