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Abstract
Background: Machine learning approaches are emerging as a way to discriminate various classes of functional elements.
Previous attempts to create Regulatory Potential (RP) scores to discriminate functional DNA from nonfunctional DNA
included using Markov models trained to identify sequences from promoters and enhancers from ancestral repeats. We
proposed that knowledge gleaned from those methods could be further refined using a multiple class predictor to
separate classes of promoter elements from enhancers or nonfunctional DNA.

Results: We extended our previous work, which identified over 5,000 candidate bidirectional promoters in the human
genome, to map the orthologous promoter regions in the mouse genome. Our algorithm measured the robustness of
evidence provided by the spliced EST annotations and incorporated evidence from annotations of UCSC Known Genes
and GenBank mRNA. In preparation for de novo prediction of this promoter type, we examined characteristic features
of the dataset as a whole. For instance, bidirectional promoters score very highly among all functional elements for
Regulatory Potential Scores. This result was unexpected due to the limited sequence conservation found in these
noncoding regions. We demonstrate that bidirectional promoters can be classified apart from other genomic features
including non-bidirectional promoters, i.e. those promoters having no nearby upstream genes. Furthermore bidirectional
promoters consistently score at the level of very highly conserved functional elements in the genome- developmental
enhancers. The high scores are due to sequence-based characteristics within the promoters, not the surrounding exons.
These results indicate that high-scoring RP regions can be deconvoluted into various functional classes of genomic
elements. Using a multiple class predictor we are able to discriminate bidirectional promoters from enhancers, non-
bidirectional promoters, and non-promoter regions on the basis of RP scores and CpG islands.

Conclusions: We examine orthology at bidirectional promoters, use discriminatory machine learning approaches to
differentiate multiple types of promoters from other functional and nonfunctional features in the genome and begin the
process of deconvoluting classes of functional regions that score well with RP scores. These types of approaches precede
supervised learning techniques to discover unannotated promoter regions.

from The 2007 International Conference on Bioinformatics & Computational Biology (BIOCOMP'07)
Las Vegas, NV, USA. 25-28 June 2007

Published: 20 March 2008

BMC Genomics 2008, 9(Suppl 1):S2 doi:10.1186/1471-2164-9-S1-S2

<supplement> <title> <p>The 2007 International Conference on Bioinformatics &amp; Computational Biology (BIOCOMP'07)</p> </title> <editor>Jack Y Jang, Mary Qu Yang, Mengxia (Michelle) Zhu, Youping Deng and Hamid R Arabnia</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2164/9/S1/S2

© 2008 Yang and Elnitski; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2164/9/S1/S2
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2008, 9(Suppl 1):S2 http://www.biomedcentral.com/1471-2164/9/S1/S2
Background
The intricate details of regulated gene expression are not
well-characterized in the human genome. Currently our
understanding relies greatly on our ability to experimen-
tally identify prospective regulatory regions and to com-
putationally evaluate features of those experimental
datasets. We have found that searching for genes arranged
in a ‘head-to-head’ configuration can precisely identify a
set of candidate regulatory regions, without the intermedi-
ate step of experimental identification. The designation of
the 5′ and 3′ ends of a gene (i.e. from start-to-stop or head-
to-tail) indicates that a head-to-head arrangement places
the transcription start sites (TSSs) of two genes in close
proximity. The directionality of transcription (from 5′ to
3′) by RNA polymerase allows these adjacent genes to pro-
duce products without interfering with each other. Two
genes in a head-to-head configuration that have their 5′
ends located fairly close together, within 1000 base pairs,
are assumed to have a shared promoter region located
between the two 5′ ends. This promoter is defined as a
bidirectional promoter, because it influences expression
of the two genes simultaneously. This influence can be
concordant or discordant.

Bidirectional promoters occur frequently in the human
genome [1-3]. Despite their prevalence, their full biologi-
cal significance is not yet known. Nevertheless, evidence
of significant biological implications is emerging [4]. Fur-
ther elucidation may come from studies in other species'
genomes. The process of mapping bidirectional promot-
ers in other species is fairly simple once the algorithms are
developed. More importantly, a comprehensive set of
these regulators in multiple species allows comparative
analyses across species. Predictions made within a single
species can be validated by their appearance in another.
Bidirectional promoters represent a special class of pro-
moter sequences, specifically those having an exon on
either side of the promoter region (i.e. the first exon of
each gene regulated by the promoter). Thus, the promoter
region is ‘bounded’ by sequences with described functions
on both sides, and thereby limited to the intervening por-
tion. This arrangement solves the problem of defining the
upstream boundary of the promoter, which is a trouble-
some reality of studying promoters with no discernible
upstream endpoints. If fundamental differences are
present in the sequences underlying functional elements,
machine-learning approaches may be able to identify
them. The key to success lies in a precise description of
each of the functional categories. For instance, sequences
characterizing bidirectional promoters can be compared
to non-promoter regions found between the ‘tails’ of adja-
cent genes arranged in a tail-to-tail configuration. Addi-
tionally, further characterization may be possible by
discriminating bidirectional promoter sequences from
enhancer regions, which are often highly conserved and

can act at extreme distances from a responsive gene. The
most challenging regions to distinguish from bidirec-
tional promoters are other promoter regions, including
unidirectional promoters that have a neighboring gene
(head-to-tail arrangement) and unbounded promoters,
which have no upstream neighboring gene.

Progress in discerning classes of functional elements from
each other, without the aid of experimental data, repre-
sents a significant goal in our ability to decode the human
genome. In this manuscript, we present a detailed map-
ping of bidirectional promoters in the mouse genome,
analogous to our work in the human genome [3]. Further-
more, we compare data from human and mouse as a
means to validate our predictions, and to further charac-
terize features within bidirectional promoters. Using bidi-
rectional promoters as a model dataset, we describe
results of machine learning approaches to score func-
tional elements in genomic sequences. We conclude with
a multiple class predictor that aims to accurately discrim-
inate classes of promoters from one another, from
enhancers, and from nonfunctional regions.

Results and Discussion
Mapping bidirectional promoters in the mouse genome
In an analogous approach to our studies in the human
genome, we systematically mapped bidirectional promot-
ers in the mouse genome. These promoters were defined
by their position between two oppositely-oriented tran-
scription units, whose transcription start sites (TSSs) were
no more than 1000 bp apart. All transcripts used in the
analysis originated at one of three repositories :

• The UCSC List of Known Genes [5].

• GenBank mRNA data [6].

• Spliced EST data from the GenBank dbEST database [6].

As discussed in [3] the procedure for mapping bidirec-
tional promoters from the Known Gene annotations is
quite straightforward due to the quality of these gene
descriptions. Initially, all genes are represented as clusters
containing overlapping transcripts. Each cluster extends
from the farthest 5′ to the farthest 3′ coordinate of any
included transcript. Neighboring clusters are then exam-
ined with respect to the distance and orientation of their
5′ ends. If the 5′ ends of two genes are no more than 1000
bp apart and the genes are transcribed in opposite direc-
tions, the region between them is considered to be a bidi-
rectional promoter. Identifying bidirectional promoters
from other annotation sources in the mouse genome can
be more complex due to the diversity and fragmented
nature of the current transcripts. For instance, both the
spliced ESTs and the GenBank mRNA transcripts contain
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multiple overlapping segments of transcribed regions,
which are frequently updated as new information
becomes available. To handle the complexity of the data
in the spliced ESTs, we applied an algorithm to extract the
bidirectional promoters that passed a variety of condi-
tional tests. These included conformity to the rules of dis-
tance and orientation.

Furthermore, transcripts were classified as intergenic or
intragenic by comparison with the Known Genes as a ref-
erence track. Additional criteria requiring majority agree-
ment with the orientation of co-localized ESTs and with
the orientation of Known Genes are described in Yang and
Elnitski (2007) [3].

The mapping algorithm identified 5,647 candidate bidi-
rectional promoter regions in the mouse genome. This
number is similar to the number of candidate bidirec-
tional promoters identified in the human genome using a
similar strategy [3]. In both genomes, the number of bidi-
rectional promoters was larger than previously reported
[1,2], as a result of updated gene annotations and the use
of spliced EST data. The validity of these candidate regions
was assessed by comparison to the RIKEN CAGE dataset

[7]. The CAGE technique captures the true 5′ ends of tran-
scripts, allowing a direct comparison to our bidirectional
promoters by their coordinates in the mouse genome. Fig-
ure 1 shows bidirectional promoters that are fully vali-
dated when a CAGE transcript flanks both sides of the
promoter region. In the human genome, bidirectional
promoters from the Known Gene, mRNA, and EST data
are validated at 96%, 78%, and 81%, respectively (Figure
1, upper panel), while in the mouse genome, bidirec-
tional promoters from the Known Gene, mRNA, and EST
data are validated at 95%, 40%, and 65%, respectively
(Figure 1, lower panel). The low validation score for
mouse mRNA appears to reflect an incomplete descrip-
tion of the mouse genes in the mouse genome assembly
mm5 (May 2004).

Comparison of human and mouse bidirectional promoter 
sets
Bidirectional promoters are ancient features, exhibiting
orthology from human to Fugu rubripes[8]. To compare
the co-occurrence of bidirectional promoters in the
human and mouse genomes, we mapped human genes
regulated by bidirectional promoters to the mouse
genome and assessed whether the corresponding mouse

Validation of bidirectional promoters using the RIKEN CAGE dataset. Pie charts depict the number of bidirectional promoters with CAGE transcripts that correspond to detectable transcripts on both sides (black), only one side (gray), or no evidence (white). Note that these do not have to be transcribed in the same tissues to be included in our study. The upper panel is based on human transcripts from the human sequence assembly, hg17, while the lower panel uses CAGE data and transcripts from the mouse sequence assembly, mm5. Bidirectional promoters were mapped in Known Genes (left column), GenBank mRNA (middle column), and spliced ESTs (right column)Figure 1
Validation of bidirectional promoters using the RIKEN CAGE dataset. Pie charts depict the number of bidirectional promoters 
with CAGE transcripts that correspond to detectable transcripts on both sides (black), only one side (gray), or no evidence 
(white). Note that these do not have to be transcribed in the same tissues to be included in our study. The upper panel is 
based on human transcripts from the human sequence assembly, hg17, while the lower panel uses CAGE data and transcripts 
from the mouse sequence assembly, mm5. Bidirectional promoters were mapped in Known Genes (left column), GenBank 
mRNA (middle column), and spliced ESTs (right column).
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gene also formed a bidirectional promoter with its 5′
neighbor. Of 1637 Known Genes, as shown in Figure 2,
41% were associated with bidirectional promoters in the
mouse genome by the same gene name. An additional 4%
were added from Genbank mRNA and 7% from the
spliced ESTs. Roughly 7% of the set had a gene in the
mouse genome but shows no evidence of a bidirectional
promoter. The remaining 40% could not be mapped to
the mouse using this method. Table 1 shows the ortholo-
gous pairs of mouse genes corresponding to ten human
genes involved in cancer that have bidirectional promot-
ers. From this data we predict that 4 mouse genes will be
positioned closer together than they currently appear.
BRCA2, ERBB2, FANCA and FANCF are much farther
apart in mouse than in human. Table 2 shows the GO
terms for genes that are regulated by bidirectional pro-
moters in human, but not in mouse, implying that regu-
latory changes could change the expression of these genes
between species. It should be noted that strategies such as
ours to map orthologs by gene name provide high confi-
dence assignments, but underestimate the number of
orthologous bidirectional promoters in the human and

mouse genomes. We have further proven this point by
mapping orthologous gene pairs regulated by bidirec-
tional promoters in twelve species using rigorous genomic
alignment information [9].

Although bidirectional promoters are orthologous
between humans and mice, they exhibit sparse conserva-
tion signals in multi-species alignments. This is a slightly
surprising result, given that sequence conservation is a
reliable marker for functional elements. Nevertheless, it is
possible that alternative methods may reveal similarities
in bidirectional promoters across species.

To test for similarity in sequence characteristics that may
reveal subtle similarities between the sets of human and
mouse bidirectional promoters, we calculated a log-likeli-
hood score called Regulatory Potential (RP). The RP score
was used in ESPERR (Evolutionary and Sequence Pattern
Extraction through Reduced Representations) [10] to cap-
ture information in sequence alignments over seven verte-
brate species. This method has been shown to

Orthologous mapping of human bidirectional promoters to mouse. Promoter orthology was de-termined by identifying ortholgous genes in mouse and checking for evidence of bidirectional promoters. Genes that had a 5′ neighbor transcribed in the opposite direction are shown for promoters of Known Genes(maroon), Genbank mRNA (pink), and ESTs (red). Genes with no neighbor in mouse lack evidence for bidirectional promoters (green). Genes that could not be mapped to mouse are shown in blueFigure 2
Orthologous mapping of human bidirectional promoters to mouse. Promoter orthology was de-termined by identifying 
ortholgous genes in mouse and checking for evidence of bidirectional promoters. Genes that had a 5′ neighbor transcribed in 
the opposite direction are shown for promoters of Known Genes(maroon), Genbank mRNA (pink), and ESTs (red). Genes 
with no neighbor in mouse lack evidence for bidirectional promoters (green). Genes that could not be mapped to mouse are 
shown in blue.
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discriminate regulatory regions from nonfunctional
regions with an accuracy of 80% [10].

The RP score cumulative distribution functions plotted in
Figure 3 reveal that regulatory potential scores are similar
for bidirectional promoters defined by Known Genes,
ESTs, and mRNA in both human and mouse. The similar-
ity in profiles exhibited by all three datasets for each spe-
cies indicates that sequence characteristics are similar in
bidirectional promoter regions, both across species
(human vs. mouse) and across datasets (Known Genes,

mRNA, and ESTs). The strategy used to map these gene
pairs across species strongly identifies orthologous genes
that are characterized by name. Therefore the conclusions
should not change as more data is added.

Discriminating functional elements based on RP scores
Having established the orthology of bidirectional pro-
moters between human and mouse, we now shift our
attention to the problem of discriminating functional ele-
ments in the human genome. We again make use of RP
scores, which have proven useful for discriminating func-
tional elements from nonfunctional elements, yet their
ability to discriminate among types of functional ele-
ments remains unknown.

To test the hypothesis that sequence characteristics differ
between classes of functional elements, thereby allowing
these classes to be discriminated, we compared RP scores
for human bidirectional promoters to those for other
functional regions, including enhancers, unidirectional
promoters, unbounded promoters, non-promoters (i.e.
tail-to-tail regions), coding regions, and neutral regions.

The cumulative distribution functions of RP score for the
different functional classes are shown in Figure 4. We
observe that:

• As expected, neutral regions (represented by ancestral
repeats) separated very distinctly from functional regions
such as enhancers.

Table 2: Molecular function (P < 0.05) of human genes having a 
unique bidirectional promoter not detected in mouse

Go ID Molecular Function

GO:0004004 ATP-dependent RNA helicase activity
GO:0008186 RNA-dependent adenosinetriphosphatase
GO:0047804 ATP-dependent RNA helicase activity
GO:0004042 N-acetylglutamate synthase activity
GO:0019145 aminobutyraldehyde dehydrogenase activity
GO:0000250 oxidosqualene-lanosterol cyclase activity
GO:0008321 Ral guanyl-nucleotide exchange factor activity
GO:0031559 oxidosqualene cyclase activity
GO:0047316 glutamine-phenylpyruvate aminotransferase activity
GO:0008176 tRNA (guanine-N7-)-methyltransferase activity
GO:0008609 alkyl-DHAP synthase activity
GO:0047105 4-trimethylammoniobutyraldehyde dehydrogenase 

activity
GO:0004961 TXA(2) receptor activity
GO:0047787 delta4-3-oxosteroid 5beta-reductase activity
GO:0003991 acetylglutamate kinase activity

Table 1: Tumor suppressor genes in human and mouse

BOC gene Bidirectional partner Annotation of partner Distance between TSSs CpG island at TSSs

BARD1 (Human) DA865307 mRNA, EST 518 Across/First exon of both 
BARD1 (Mouse) AK007117 mRNA -425 Across/First exon of both
BRCA1 (Human) NBR2 KG, mRNA, EST 81 Inside NBR2 
BRCA1 (Mouse) NBR1 KG, mRNA, EST 259 No CpG
BRCA2 (Human) DR731263 EST 955 Overlaps First Exon of BRCA2 
BRCA2 (Mouse) CO801197 EST 2505 Overlaps First Exon of BRCA2
CHK2 (Human) HSC20 KG, EST 32 Overlaps First Exon of both 
CHK2 (Mouse) AW049829 KG, mRNA, EST 276 Across/First exon of both
ERBB2 (Human) Perld1 KG, mRNA, EST 60 Overlaps First Exon of both 
ERBB2 (Mouse) Perld1 KG, mRNA, EST 11,994 CpG at first exon of both
P53 (Human) AK001247 KG, mRNA, EST 491 Overlaps First Exon of P53 Partner 
P53 (Mouse) WDR79 KG, mRNA, EST 657 Across/First exon of both
FANCA (Human) Spisre2 mRNA, EST 1,533 Overlaps First Exon of both 
FANCA (Mouse) Spisre2 KG, mRNA, EST 14,137 CpG at first exon of both
FANCB (Human) MOSPD2 KG, mRNA, EST 372 Across/First exon of both 
FANCB (Mouse) AK035985 KG, mRNA, EST 257 No CpG
FANCD2 (Human) BC043599 KG, mRNA, EST 64 Across/First exon of both 
FANCD2 (Mouse) Tmem111 KG, mRNA, EST 47 Across/First exon of both
FANCF (Human) GAS2 mRNA, EST -199 Across/First exon of both 
FANCF (Mouse) AK014509 mRNA 1,966 Overlaps First Exon of FANCF partner
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• Despite the fact that bidirectional promoters do not
have a strong signal for sequence conservation, they have
slightly higher RP scores than enhancers. This is signifi-
cant because the enhancers used in this analysis are
enhancers of genes involved in essential developmental
processes, such as neurogenesis [11], which are character-
ized by strong signals of sequence conservation known as
Multi-species Conserved Sequences (MCSs) [12].

• Bidirectional promoters have high RP scores, similar to
unidirectional promoters, which are promoter regions
that are defined by two genes in a head-to-tail configura-
tion. Like bidirectional promoters, unidirectional pro-
moters are bounded on both sides by exons.

• High scores are not a feature of all promoter regions. For
example, unbounded promoters, which are promoters
having no neighboring upstream gene, tend not to have
high RP scores. We examined unbounded promoter
regions with no upstream gene within 1000, 5,000, and
10,000 bp and found moderately low RP scores for all
three classes. Furthermore, the range of these scores was
indistinguishable from non-promoter regions.

• Coding regions score nearly as well as bidirectional pro-
moters. This suggests that the types of nucleotide substitu-
tions and the “word” content of bidirectional promoters
and coding regions may be governed by the same rules,
despite that fact that coding regions are strongly con-
served and bidirectional promoters are not.

Prediction of bidirectional promoters from RP scores
On the basis of Figure 4, it is apparent that bidirectional
promoter regions tend to have higher RP scores than
either non-promoter or unbounded promoter regions.
Another way to see this is to plot the class-conditional
density functions p(x|C), where x is the RP score, and C is
a functional class; this is simply the probability density
function of RP scores, restricted to the functional class C.
Given the class-conditional density functions p(x|C1) and
p(x|C2) for classes C1 and C2, respectively, we can con-
struct a likelihood ratio classifier that maps an RP score x
to a functional class using the rule:

The performance of this classifier for different values of
the threshold μ is summarized by a Receiver Operating
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Characteristic (ROC), which is a plot of sensitivity against
(1—specificity). We constructed two such classifiers: one
to discriminate bidirectional promoters from non-pro-
moters, and the other to discriminate bidirectional pro-
moters from unbounded promoters.

Distinguishing bidirectional promoters from non-promoters
We constructed a likelihood-based classifier to distinguish
bidirectional promoters from non-promoters; this is a
two-class classification problem, in which the two classes
are:

The class-conditional probability distributions p(x|BP)
and p(x|NP) are shown in Figure 5(a) (here “BP” denotes
the class of bidirectional promoters, and “NP” denotes the
class of non-promoters). The corresponding ROC curve is
shown in Figure 6(a). A Maximum Likelihood classifica-
tion rule (obtained by setting μ = 1 in the likelihood ratio
classifier (1)) yielded a test set accuracy of 74%, a specifi-
city of 92% (relatively high), and a sensitivity of 65% (rel-

atively low), as shown in Table 3. The ROC curve reveals
that the sensitivity can be boosted above 80% by trading
off for a specificity below 80%.

Distinguishing bidirectional from unbounded promoters
We constructed a likelihood-based classifier to distinguish
bidirectional promoters from unbounded promoters
(specifically, the class of promoters with no upstream
gene within 1000 base pairs); this is a two-class classifica-
tion problem, in which the two classes are:

The class-conditional probability distributions p(x|BP)
and p(x|UBP1000) are shown in Figure 5(b) (here “BP”
denotes the class of bidirectional promoters, and
“UBP1000” denotes the class of promoters with no
upstream gene within 1000 base pairs). The correspond-
ing ROC curve is shown in Figure 6(b). A Maximum Like-
lihood classification rule (obtained by setting μ = 1 in the
likelihood ratio classifier (1)) yielded a test set accuracy of
80%, a specificity of 81% (relatively high), and a sensitiv-
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ity of 67% (relatively low), as shown in Table 3. The ROC
curve reveals that the sensitivity can be boosted above
80% by trading off for a specificity below 75%.

Multiple Class Prediction
We then tackled a more challenging problem—to con-
struct a classifier that distinguishes the following four
classes:

It turns out that bidirectional promoters and unbounded
promoters are enriched in CpG islands, while enhancers

and non-promoters are depleted in CpG islands. Further-
more, bidirectional promoters and enhancers tend to
have relatively high RP scores as compared to unbounded
promoters and non-promoters. It follows that by making
use of both features (presence of CpG islands and RP
score), we may be able to separate the four classes. We
therefore implemented a two-stage hierarchical classifier
(Figure 7). The first stage only looks at the CpG island fea-
ture: if CpG islands are present, the instance is passed to
the left child at level 2 (node N2), while if CpG islands are
not present, the instance is passed to the right child at
level 2 (node N3). There is also a classification outcome
Z1 of the first stage; if the instance was passed to the left
child, then Z1 = 1, else Z1 = 0. Ideally, instances that end
up in node N2 should be either bidirectional or
unbounded promoters, while instances that end up in
node N3 should be either enhancers or non-promoters.
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The next stage of the classifier then refines the classifica-
tion further. Node N2 uses a support vector machine to
separate bidirectional from unbounded promoters based
on two features—the presence of CpG islands and RP
score, while node N3 uses a decision tree to separate
enhancers from non-promoters based on one feature—RP
score (it turns out that these two classes cannot be distin-
guished based on the presence of CpG islands, so this fea-
ture would not be helpful). A decision tree was used at
node N3 because it gave better results that a support vec-
tor machine. There is a classification outcome Z2 associ-
ated to each node at level 2. For node N2, Z2 = 1 implies
that the instance is classified as a bidirectional promoter,
while Z2 = 0 implies that the instance is classified as an
unbounded promoter. For node N3, Z2 = 1 implies that
the instance is classified as an enhancer, while Z2 = 0
implies that the instance is classified as a non-promoter.
The overall classification is then given by the pair (Z1, Z2)
as follows:

Conclusions
Bidirectional promoters aid in the analysis of promoter
regions, as they are bounded on both sides by other func-
tional elements, and thus precisely delineate the promoter
region. Moreover, despite a lack of strong sequence con-
servation, bidirectional promoters exhibit conserved
structure across species, which will undoubtedly be help-
ful in tracing evolutionary and species-specific events.

Predictive approaches to classifying functional elements
in the human genome are frequently based on a variety of
experimental characteristics (e.g. [13,14]). Here we have
demonstrated that machine learning approaches can be
effective without experimental data; this is the first evi-
dence that different types of promoters can be discrimi-

nated from one another through machine learning
approaches.

Methods
Bidirectional promoters from the mouse genome were
mapped to annotated transcripts in mouse assemblies
mm5 and mm8 using the approach outlined in [3]. Com-
parison to CAGE data was accomplished by extracting all
promoters from the RIKEN database and comparing
genomic coordinates (from the assembly mm5). Any
coordinates within 50 bp of each other on the same strand
of DNA were considered to be a match. RP scores were col-
lected over the range of each functional element using
tools developed by David King of Penn State University
(manuscript in preparation). Scores are available for the
mouse mm8 assembly. Conserved occurrences of bidirec-
tional promoters were identified by mapping the gene
name from human to mouse and searching the Known
Gene annotations for the 5′ end of a neighboring gene
that falls within 1000 bp.

From the Known Gene track of the human genome, we
identified approximately 1006 bidirectional promoters,
525 non-promoters, 275 enhancers, and over 15,000
unbounded promoters. This data was used to train and
test both our two-class classifiers and our four-class classi-
fier.

The accuracy, sensitivity, and specificity values for the
two-class case (Table 3) were calculated using:

where Nij be the number of class Cj instances classified to
class Ci and for the purpose of calculating sensitivity and
specificity we have taken the positive class to be C1 and the
negative class to be C2.

For the four class case (Table 4), the overall accuracy and
the accuracy over a specific class are given by

Overall Accuracy =

Sensitivity =

N N
Ni j ij

i

11 22

1
2

1
2

1

+
∑ ∑

∑

= =

=

N11
22 N

N
N

i

i i

1

22

1
2

2

Specificity =
∑ =

Table 4: Performance of four-class hierarchical classifier based 
on three-fold cross-validation

Class (Z1, Z2) Accuracy (%)

Bidirectional 
promoters

(1,1) 71.31

Unbounded 
promoters

(1,0) 62.26

Enhancers (0,1) 66.13
Non-promoters (0,0) 81.41
Overall 70.56

Table 3: Performance of classifiers on test data

Classifier Accuracy (%) Sensitivity (%) Specificity (%)

Bidirectional promoter vs. Non-promoter 74.54 65.53 92.16
Bidirectional promoter vs. Unbounded promoter 80.37 67.94 81.10
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By the way the four-class hierarchical classifier is con-
structed, any promoters lacking CpG islands will be 

diverted down the left child of node N1, and thus will be 
misclassified. It follows that the performance of the algo-
rithm is acutely sensitive to the fraction of promoters with 

CpG islands in the test set. Since it is known that CpG 
islands are present in roughly 70% of promoters, we con-
structed our test set using a stratified sampling approach 
that guaranteed that 70% of promoters in the test set con-
tained CpG islands; this helped to reduce the variation in 

the performance due to sampling.
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