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Abstract

Background: The regulatory effect of inherited or de novo genetic variants occurring in promoters as well as in
transcribed or even coding gene regions is gaining greater recognition as a contributing factor to disease processes
in addition to mutations affecting protein functionality. Thousands of such regulatory mutations are already recorded in
HGMD, OMIM, ClinVar and other databases containing published disease causing and associated mutations. It is therefore
important to properly annotate genetic variants occurring in experimentally verified and predicted transcription factor
binding sites (TFBS) that could thus influence the factor binding event. Selection of the promoter sequence used is an
important factor in the analysis as it directly influences the composition of the sequence available for transcription factor

binding analysis.

Results: In this study we first establish genomic regions likely to be involved in regulation of gene expression. TRANSFAC
uses a method of virtual transcription start sites (vTSS) calculation to define the best supported promoter for a gene.
We have performed a comparison of the virtually calculated promoters between the best supported and secondary

promoters in hg19 and hg38 reference genomes to test and validate the approach. Next we create and utilize a workflow
for systematic analysis of casual disease associated variants in TFBS using Genome Trax and TRANSFAC databases. A total
of 841 and 736 experimentally verified TFBSs within best supported promoters were mapped over HGMD and ClinVar
mutation sites respectively. Tens of thousands of predicted ChIP-Seq derived TFBSs were mapped over mutations as well.

We have further analyzed some of these mutations for potential gain or loss in transcription factor binding.

Conclusions: We have confirmed the validity of TRANSFAC's approach to define the best supported promoters and
established a workflow of their use in annotation of regulatory genetic variants.
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Background

The paradigm that meaningful alterations in DNA se-
quence have to be in the coding regions of genes and
must lead to significant changes in protein structure and
functionality [1] has been long denounced with discov-
ery of ever growing cohort of examples of striking effect
of genetic variants in promoters or of synonymous
changes in translated areas of exons [2—4]. Appropriate
annotation of such regulatory variants represents one of
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the biggest challenges in analysis of Next Generation
Sequencing (NGS) data. In general, annotation relies on
databases consolidating published reports of disease
causing germline (HGMD [5], OMIM [6], ClinVar [7])
and somatic (COSMIC [8], TCGA [9]) mutations or
pharmacogenomic variants (PharmGKB [10], PGMD
[11]) which include multiple regulatory mutations.

In this context, experimentally verified transcription
factor binding sites (TFBSs), which overlap with variants
in non-coding regions are of particular importance.
TRANSFAC [12], the most complete manually curated
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database in the field of gene regulation, includes infor-
mation on tens of thousands of TFBSs currently
reported in peer-reviewed literature. Unfortunately,
currently available data is far from being comprehen-
sive. While for a handful of well-studied genes such as
TP53 or BRCA1, which attract significant attention of
scientific community, fifty or more TFBSs may have
been reported, less studied genes usually have very few
experimentally verified TEBS or even none at all. Thus
using only reported binding sites as means to predict or
explain the relevance of a genetic variant in NGS anno-
tation will produce incomplete or even misleading
results, which may need to be complemented by predic-
tions. Needless to say that most of the traditional pre-
dicting algorithms routinely used to estimate impact of
mutations as SIFT [13], Polyphen [14] etc., cannot be
used in such cases since they are based on estimation
of changes in protein structure or conservation of
protein sequence.

TRANSFAC implements Match algorithm [15] for
prediction of potential TFBSs through comparison of an
input DNA sequence with a library of Positional Weight
Matrices (PWMs) as consensus derived from experimen-
tally verified TFBSs. While predictions made by Match
are often remarkably accurate, the algorithm is based
solely on DNA sequence and is insensitive to location of
predicted sites relative to promoters or Transcription
Start Sites (TSSs). Thus selection of the promoter
sequence used is an important factor in the analysis as it
directly influences the composition of the sequence
available for transcription factor binding. Traditionally
promoters are defined as intervals relative to TSSs,
however number and position of reported TSSs varies
from gene to gene. TSSs are derived from experimental
mRNA sequences and can be very close to each other or
thousands on nucleotides apart. Using Match analysis to
estimate regulatory effect of genetic variants near all
experimentally verified TSSs would be the most compre-
hensive approach, however number of known transcripts
for typical gene can exceed 100 with tendency to grow
over time and their TSSs may span over tens of thou-
sands base pairs. Many variants, particularly in cases of
whole genome or whole exome sequences will map over
these regions, leading to unacceptable level of false posi-
tive hits and masking variants actually affecting gene
regulation. For effective filtering of NGS data it is thus
necessary to determine which regions are most likely to
play regulatory role in majority of cases.

In this study we first establish genomic regions
likely to be involved in regulation of gene expression.
TRANSFAC uses a method of virtual TSS calculation
to define the best supported promoter for a gene. We
perform a comparison of the virtual promoters between
the best supported and secondary promoters in hgl9, as
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well as in hg38 reference genomes to test and validate the
approach. Next we create and utilize a workflow for
systematic analysis of casual disease associated variants in
TFEBS using Genome Trax [16] and TRANSFAC data-
bases. A total of 841 and 736 experimentally verified
TFBSs within best supported promoters were mapped
over HGMD and ClinVar mutation sites respectively.
Tens of thousands of predicted ChIP-Seq derived
TFBSs were mapped over mutations as well. We have
further analyzed some of these mutations for potential
gain or loss in transcription factor binding.

Results and discussion

Classification of promoters

When analyzing promoter properties such as the pattern
of distribution of transcription factor binding sites and
other features we considered three distinct groups of
promoters: single promoters, best supported promoters,
and secondary promoters. Single promoters are des-
ignated as such because their vISS was the only one
identified for the associated gene. As described in the
Methods section, best supported promoters are those
promoters whose vISS is the best scoring for a gene
with multiple vI'SSs while secondary promoters are all
other promoters that are not either a single promoter
or a best supported promoter.

Human FGFR1 as an example case

Working with TRANSFAC version 2014.4, which is
based upon EnsEMBL [17] version 76 using reference
genome hg38, we classified each human promoter.
Taking FGFR1, a fibroblast growth factor receptor and
protein tyrosine kinase that plays a role in cell prolifera-
tion and skeletal development, as an example, two vISSs
were identified (Table 1).

The vISS at position 38468271 was identified as the
best supported based on the clustering score of 95. The
remaining vI'SSs defines a secondary promoter.

Looking at the graphical display of the best supported
promoter (Fig. 1a) we can see by the gray bar under-
neath the zoomed in nucleotide sequence flanking the
vISS, determined by phastcons score, that this region
of the genome is well conserved when compared to
the mouse genome. We can also see that numerous
mapped features including ChIP fragments and pre-
dicted transcription factor binding sites within DNase
I hypersensitivity sites are present at the vI'SS shown
by the blue and purple bars above the sequence, and

Table 1 vTSSs of FGFR1

Chromosome  Position Clustering score  Percent  Best supported
8 38468271 95 463 %  Yes
8 38457480 25 122% No
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Fig. 1 Screenshot of a part of promoter report showing best supported (a) and secondary (b) promoters of FGFR1 generated via TRANSFAC
Professional online interface. Overlapped features include ChIP-on-chip/-seq fragments (identifies DNA fragments shown in vivo to be bound

by a transcription factor, based on ChIP-seq or related experiments), Histone modifications (identifies DNA fragments shown in vivo to be bound
by histones with a particular modification, based on ChIP-seq or related experiments), DNase hypersensitivity sites derived from ENCODE, TSSs
(identifies transcription start sites from Ensembl), TRANSFAC experimental and predicted sites and more. Most of these features can be filtered
by cell type used in the experiment, transcription factor, position etc

become even more concentrated just upstream of the
vI'SS shown by the blue peak in the zoomed out full
promoter view shown directly above the legend.

In contrast, looking at the sequence that flanks the 1g.000 ya e
vISS of the secondary promoter located at position

Genes

38457480, we see a similar level of conservation but et
no mapped features surrounding or lying immediately
upstream of the vISS (Fig. 1b). S
19%
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While these examples provide a detailed view of two 2,000 5% oo
individual promoters, for a broader view of promoter 1
distribution across the genome we looked at the 0 .-
number of promoters identified for each human gene. 1 2 3 4 5 6 7 8 9 10 11 12

We found that the number of promoters per protein-
encoding gene ranged from 1 to 12, with 46 % having

a single promoter and 81 % having three promoters Fig. 2 Distribgtion of number of‘promoters. of p(rotein—encoding.
. genes determined by VTSS algorithm described in Methods section
or fewer (Fig. 2). L

Promoters per gene
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As a way of assessing the quality of the single, best
supported and secondary promoters we looked at the
distribution of overlapping transcription factor binding
sites. Two types of transcription factor binding sites
were considered — TRANSFAC experimentally verified
binding sites and TRANSFAC predicted binding sites
within ChIP-Seq and DNase I hypersensitivity fragments.
The experimentally verified binding sites are literature-
curated transcription factor binding sites that have been
individually studied and validated. Predicted binding
sites are experimental binding sites which have been
refined by prediction. ChIP-seq fragments are typically
hundreds of nucleotides long. It is known which factor
binds them, but not exactly where in the sequence the
factor binds. The most conserved, relevant TRANSFAC
PWMs for the factors are used for the analysis with the
minFP matrix cut-off to minimize false positives, and
the best scoring sites are calculated with the Match
algorithm executed with an option to return one best hit
in the whole sequence. By limiting the site prediction to
a predefined transcription factor and a short ChIP-seq
fragment, there is low risk of identifying false-positive
binding sites in this process. The majority of the
ChIP-Seq data are derived from ENCODE. This data
is somewhat biased due to over-representation of a
few commonly used cell lines.

Hypersensitivity to DNase correlates with the presence
of regulatory elements in the neighborhood of genes.
DNase sensitive fragments are typically hundreds of
nucleotides long. It is not known which factors bind
them, or where. 142 ENCODE data sets [18] based
on different cell lines were collected and potential
transcription factor binding sites on the DNase frag-
ment sequences were identified by running the Match
algorithm using a non-redundant set of 148 high
quality matrices from vertebrates with the minFP
matrix cut-off to minimize false positives and an
option to return the one best hit for the matrix in
the whole sequence, to generate maximally one high
scoring site, for each sequence and matrix.

Distribution of experimental binding sites clearly
clusters around the vISS for single and best sup-
ported promoters, whereas distribution around sec-
ondary promoters looks to be less structured and
approaching a random distribution of sites (Fig. 3a).
Predicted binding sites show a similar pattern of dis-
tribution (Fig. 3b) with somewhat higher background
density. The peak around the vISS is less pronounced
for the predicted sites, due to a higher background
of false positive or non-functional site predictions.
The background noise is evenly distributed in the
graph due to the high number of PWMs involved as
well as to the smoothing effect of the density
function.
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Comparison of promoters calculated for hg38 versus
hg19 reference genome

Interested in the relative stability of promoter assign-
ments when a different reference genome is used as
input, we compared the distribution of promoters be-
tween TRANSFAC version 2014.4, which is based upon
EnsEMBL version 76 using reference genome hg38,
and TRANSFAC version 2014.3, which is based upon
EnsEMBL version 75 using reference genome hgl9.

We first looked at the number of genes for which the
count of promoters changed between the hg19 and hg38
reference genomes. Of the 36,462 protein- and RNA-
encoding genes identified in the hgl9 genome, 32,064 or
88 % showed no change in the number of promoters.
That number increases to 33,737 or 93 % when a change
of +/- 1 promoter is allowed (Fig. 4).

Two thousand two hundred twenty-eight genes
(6 %) are excluded from the statistics due to the
EnsEMBL ID having changed, mostly due to depre-
cated IDs or gene clusters.

In addition to looking at how the absolute count of
promoters changed across the set of genes we also
looked at how the promoters themselves changed by
comparing the positions of the vI'SSs between the hgl19
and hg38 reference genomes for all promoters as well
as the best supported promoters. From a total of
71,118 promoters identified in the hgl9 reference
genome 77-82 % remain unchanged, a range that
increased to 83-86 % when a shift of 10 or more
fewer nucleotides was allowed (Table 2).

The remaining 6 % of all promoters and 8 % of
best supported promoters either shifted more or
dropped out due to the EnsEMBL ID having changed,
mostly due to deprecated IDs or gene clusters. We
believe that the larger shift that is observed for best
supported promoters relative to all promoters may be
due to a shift in relative scores that resulted in
switching of the best supported promoter, but further
investigation will be required to test this hypothesis.

Profiling regulatory variations in transcription
factor-binding sites associated with disease

We have selected three representative disease associ-
ated mutations out of 841 overlapping with TBEFSs
(see Methods) and estimated potential change in TF
binding caused by these mutations. These cases were
selected due to multiple reported mutations within af-
fected TFBS and published experimental confirmation
of their effect on gene regulation.

Four reported point mutations causing Charcot-Marie-
Tooth disease [19] are located within Sox10 binding
site in GJB1 promoter are shown in Table 3. Sox10 is
known to strongly activate expression of GJB1 in vitro
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Fig. 4 Change in promoter count between hg19 and hg38
genome builds

by direct binding to its promoter [20]. Some, but not
all of these mutations were reported to affect this
binding [21, 22].

To study the effect of these changes on TF binding,
the sequence region of GJB1 promoter which is specific
for Sox10 binding (chrX:70443016-70443033) was
extracted from TRANSFAC and various combinations
of TFBS sequences were created with variations as
shown in Fig. 5a. These sequences were used as Match
analysis input to investigate the loss/gain of Sox10
binding depending on the variations in the sequence,
as well as to detect other TFBS potentially affected by
these mutations. As shown in Fig. 5b, mutations at
positions 14 and 15 are predicted to abolish Sox10
binding as has already been reported [20]. Interest-
ingly, mutation at position 2 abolished predicted
LEF-1 binding site and created new site for HSF1
binding (Fig. 5b, c).

Second example is multiple mutations within HNF-4
binding site in the promoter of F7 gene (Table 4). These
mutations are reported to cause Factor VII deficiency,
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Table 2 Change in positions of VISSs between genome builds
hg19 and hg38

All % All Best supported % Best
promoters  promoters promoters supported
promoters
Unchanged 58,077 82 % 35,343 77 %
Shifted 3,179 4 % 2,693 6 %
1-10 nt
Shifted 4,184 6 % 3,465 7 %
11-100 nt
Shifted 1,455 2 % 952 2 %
101-1,000 nt
Total 71,118 45,608

affecting HNF-4 regulation of F7 expression [22]. An
SNV G > C at the position 8 of the binding site (at co-
ordinate 113760091) not only abolishes HNF-4 binding
as other mutations, but also introduces sites for Smad4
and SRY transcription factors as shown in Fig. 6.

Another example is mutations in HIF1-alpha bind-
ing region in ENG promoter associated with heredi-
tary hemorrhagic telangiectasia [23]. Match analysis
suggests that binding is lost by G > T mutation at pos-
ition 17 in the sequence while mutation at position
16 also abolishes p53 binding site (Fig. 7).

Basing on these examples one can extrapolate that
results of Match analysis of disease causing muta-
tions affecting regulation of gene expression in many
cases are consistent with experimental data where
available. Thus using Match predictions in analysis
of variants located within regions of best supported
promoters with highest frequency of TFBS and for
which experimental data is limited could be very
valuable both for diagnostics and for research of dis-
ease mechanisms.

Conclusion

TRANSFAC’s approach to promoter selection, which
is based on virtual TSS calculation and relative
evidence levels, produces a set of promoters that are
classified as single, best supported and secondary pro-
moters. A specific comparison of the best supported

Table 3 Mutations in Sox10 binding site in GJB1 promoter
causing Charcot-Marie-Tooth disease

Chromosome Sox10 Sox10 Variant Variation
site start site end coordinate

X 70443016 70443033 70443018 C>G

X 70443016 70443033 70443029 T>G

X 70443016 70443033 70443029 T>C

X 70443016 70443033 70443031 G>C
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and secondary promoter for human FGFR1 demon-
strates a level of sequence conservation and clustering
of characterized transcription factor binding sites
near the vISS for the best supported promoter that
would be expected of a bona fide promoter, while
clustering was less apparent for the weaker second-
ary promoter. When extended to the entire set of
human promoters the clear clustering of charac-
terized transcription factor binding sites held up,
whereas the distribution around secondary promoters
was confirmed to be less structured and suggestive
of a random distribution.

One of major limitations of this approach is the fact
that alternative promoters and isoforms may be
specific of particular tissue, cell cycle phase or envir-
onmental conditions. Unfortunately, the majority of
the available ChIP-seq data are from a relatively small
range of generally used cell lines (an exception is
CTCF which is involved in chromatin modification),
thus the used ChIP-seq data do not represent all
diversity of in vivo gene regulation. For the DNase
hypersensitivity sites the data are derived from a
larger set of different cell lines and tissues, but may
still not cover all of them. The experimental environ-
ments for the individual sites are usually more varied,
however still may have a bias, as certain cell lines
are used more frequently in the laboratory practice
than others.

We understand that our approach for defining and
validating the best supported promoters does not take
tissue-specific use of alternative promoters into ac-
count. Thus, for individual genes the promoter actually
used in a particular tissue may deviate from the “best
supported” promoter. However our data indicate that
in general the “best supported” promoters are sup-
ported by different lines of evidence and that they
allow to increase efficiency of NGS data filtering as
well as significance of results of comparative pro-
moter studies based on gene-specific microarray ex-
periments (FMatch result, data not shown). In cases
where transcript-specific information is available, as
RNA-seq, we propose to use the TSSs of the actual
transcripts as reference points for analysis.

Prediction algorithms, such as Match analysis, of
disease causing and disease associated mutations
could be introduced in routine of NGS annotation
process, particularly if the detected variants are lo-
cated in best supported promoters and within a range
of VISS that contains majority of experimentally veri-
fied TFBS. Such approach could compensate for
limited experimental findings suitable for direct an-
notation of regulatory effects, and complement the
array of prediction tools used for estimation of effect
of mutations on protein functionality.
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Fig. 5 Match analysis of Sox10 binding site mutations causing Charcot-Marie-Tooth disease. a Sox10 binding sequence with analyzed disease
causing variations highlighted in different colors. b Match output with TFBS, mutation sites are circled. ¢ PWMs predicted to bind within the
analyzed sequence

Methods

Selection of genomic sequences

Genomic sequence assemblies created by the inter-
national sequencing consortia are extracted from the
EnsEMBL database. Promoter sequences are extracted

Table 4 Mutations in HNF-4 binding site in F7 promoter causing
Factor VIl deficiency

Chromosome HNF-4 HNF-4 Variant Variation
site start site end coordinate
13 113760083 113760109 113760091 G>C
13 113760083 113760109 113760094 C>T
13 113760083 113760109 113760095  T>G
13 113760083 113760109 113760096 T>G
13 113760083 113760109 113760097  T>G
13 113760083 113760109 113760099  C>T
13 113760083 113760109 113760101 C>T

through the process of virtual transcription start site
calculation for all EnsEMBL genes of type protein- or
miRNA-encoding. Genes on mitochondria are excluded,
due to their special modes of transcription.

Calculation of Virtual Transcription Start Sites (vTSSs)
The calculation of ‘virtual TSSs’ as reference points for
promoter extraction is based on a collection of TSSs
for a given gene. TSSs are taken as the first nucleotide
of the most 5' exon of an EnsEMBL mRNA model. As
multiple mRNA models may exist for a given gene, and
those models may have very different start sites, col-
lected TSSs for a given gene are often widespread
throughout the sequence instead of located in tight
clusters of only a few dozen nucleotides in length.

In order to define a reasonable number of vTSSs
for a given gene from this data collection, an algo-
rithm was designed which applies a set of rules to
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Fig. 6 Match analysis of HNF4 binding region of F7 promoter with and without representative mutation causing Factor VIl deficiency
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the data collection in order to find ‘clusters’ of TSSs.
A window of 3000 nucleotides in length is slid along
the sequence fragment defined by the set of TSSs for
a given gene. A ‘clustering score’ is calculated by
summing up weighted contributions from each TSS in
the window. Each TSS derived from an EnsEMBL
mRNA model starts with a score of 5. The scores are
then weighted by multiplying by a distance score: the
central position is multiplied by 1, the outer positions
are multiplied by 0, and all positions in between by a
value taken from a cosine function, according to the
distance from the center of the window. The peaks
of the resulting clustering score are regarded as po-
tential vISSs.

Promoter selection and extraction

The set of potential vISSs for a given gene is analyzed
further to determine which will be used for promoter
selection and extraction. For genes meeting the mini-
mum cut-off for cumulative vISS score, all vI'SSs with a
score that represents 8 % or more of the total are
selected to define a promoter. The VvISS with the

greatest percentage score is selected and defines what
TRANSFAC describes as the best supported promoter.
All other vTSSs, if present, are selected and define
what TRANSFAC describes as secondary promoters.

Promoter sequences are determined using the gen-
omic coordinate of the vISS as the starting point.
The bounding genomic coordinates that lie 10,000
nucleotides upstream of the vISS and 1,000 nucleo-
tides downstream of the vISS are calculated and
used to extract the intervening sequence. The calcu-
lation of vTSSs and the subsequent data extraction
are fully automated processes.

Exceptions

For some genes only a handful of evidence points are
available, thus resulting in multiple virtual TSSs, each
consisting of only a few evidence points. For all genes
with a sum of vISS scores less than the minimum cut-
off, the most 5' vISS is selected as the sole vISS for
the gene. For cases where there are two equally prom-
inent peaks, the most 5' of the two vTSSs is selected to
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Fig. 7 Analysis of HIF1-alpha binding site in ENG gene promoter affected by reported disease causing mutations associated with hereditary
hemorrhagic telangiectasia (a-d) and PWMs predicted to bind within the analyzed sequence (e)
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define the best supported promoter and all others are
selected to define secondary promoters.

Profiling disease-associated variations in TFBSs within
best supported promoters

We have analyzed disease causing and disease associated
mutations overlapping with experimentally verified TFBS
located within intervals of —-500 to +100 bp relative to
vISSs of 19,398 best supported promoters of human
protein coding genes using Genome Trax annotation
database. A total of 841 HGMD and 736 ClinVar muta-
tions occurring in TFBS have been detected. Using
Match analysis we have then evaluated the impact of
some of these mutations on gain or loss of transcription
factor binding affinity. For the analysis we have used
TRANSFAC Professional 2014.3 data and non-redundant
set of 148 high quality PMWs from vertebrates (pro-
vided with TRANSFAC) with the minSUM matrix
cut-off.
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