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Abstract

Background: An important step towards personalizing cancer treatment is to integrate heterogeneous evidences
to catalog mutational hotspots that are biologically and therapeutically relevant and thus represent where targeted
therapy would likely be beneficial. However, existing methods do not sufficiently delineate varying functionality of
individual mutations within the same genes.

Results: We observed a large discordancy of mutation rates across different mutation subtypes and tumor types,
and nominated 702 hotspot mutations in 549 genes in the Catalog of Somatic Mutations in Cancer (COSMIC) by
considering context specific mutation characteristics such as genes, cancer types, mutation rates, mutation subtypes
and sequence contexts. We observed that hotspot mutations were highly prevalent in Non CpG-island C/G transition
and transversion sequence contexts in 10 tumor types, and specific insertion hotspot mutations were enriched in breast
cancer and deletion hotspot mutations in colorectal cancer. We found that the hotspot mutations nominated by our
approach were significantly more conserved than non-hotspot mutations in the corresponding cancer genes. We also
examined the biological significance and pharmacogenomics properties of these hotspot mutations using data in the
Cancer Genome Atlas (TCGA) and the Cancer Cell-Line Encyclopedia (CCLE), and found that 53 hotspot mutations are
independently associated with diverse functional evidences in 1) mRNA and protein expression, 2) pathway activity, or 3)
drug sensitivity and 82 were highly enriched in specific tumor types. We highlighted the distinct functional indications of
hotspot mutations under different contexts and nominated novel hotspot mutations such as MAP3K4 A1199 deletion,
NR1H2 Q175 insertion, and GATA3 P409 insertion as potential biomarkers or drug targets.

Conclusion: We identified a set of hotspot mutations across 17 tumor types by considering the background mutation
rate variations among genes, tumor subtypes, mutation subtypes, and sequence contexts. We illustrated the common
and distinct mutational signatures of hotspot mutations among different tumor types and investigated their variable
functional relevance under different contexts, which could potentially serve as a resource for explicitly selecting targets
for diagnosis, drug development, and patient management.
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Background
One of the critical challenges of oncogenomics and
pharmacogenomics is to distinguish genomic alterations
that confer tumorigenesis (i.e. drivers), from those that
provide no selective advantage to tumor growth but
occur stochastically in cancer development. Although it
becomes clear that genomic profiles obtained from clinical
sequencing data can inform clinical decision making, the
implementation of cancer genomic medicine is critically
constrained by a lack of understanding of the impact of in-
dividual somatic mutations on tumor pathophysiology and
response to cancer therapy under different disease contexts.
There were several methods that focused on predicting

driver genes. A gene is nominated as a driver if it con-
tains significantly more mutations than expected from a
null background model [1, 2]. A variety of practical algo-
rithms have been developed in the context of large-scale
cancer genome sequencing, differing mainly by how they
model background mutations. For example, MuSiC [3]
considers the difference in mutation types but assumes a
homogenous background mutation rate across all genes.
MutSigCV [4] modeled heterogeneous background muta-
tion rate as a function of gene, replication timing, se-
quence context, cancer type and epigenetic elements.
OncodriveCLUST [5] estimates background model from
coding-silent mutations and tests protein domains con-
taining clusters of missense mutations that are likely to
alter protein structure. E-Driver [6] uses protein 3D struc-
tural features to predict driver genes containing clusters of
missense mutations in protein-protein interaction (PPI)
interfaces. However, increasingly more studies indicate
that a mutation may have substantially different functions
at different amino acid positions in the same gene [7, 8]
and may be associated with different clinical utilities in
different disease and biological contexts [9, 10]. Addition-
ally, those studies mostly ignored the potentially func-
tional mutations in infrequently mutated genes, and in
under-investigated mutation types such as insertions and
deletions.
To date, the studies on hotspot mutations have been

limited in individual cancer types [11, 12] or have assumed
identical functions of mutations in the same genes [5, 6].
The number of clinically actionable mutations has been
very limited (currently 285 in MyCancerGenome.org and
269 in PersonalizedCancerTherapy.org), and it is critical
to systematically analyze hotspot mutations by performing
genome-wide and population-based analysis across differ-
ent tumor types and assessing functionality using RNA
expression, protein activity and drug response data. As
clinical sequencing becomes a central platform for achiev-
ing personalized therapy, obtaining accurate biological
and therapeutic interpretation of a large number of muta-
tions in a tumor type specific manner will greatly enhance
the efficacy of genomics in clinical applications.

Toward the mutational signatures under different se-
quence contexts, previous studies [13, 14] have indicated
sequence context mutation rate diversities across differ-
ent cancer types and reported that C/G transitions such
as C > T and C/G transversions such as C > A occupy a
high proportion at single nucleotide variant level. Those
investigations were mostly motivated from the perspec-
tive of understanding the mutational signatures that use
all the observed mutations. It is interesting to investigate
when focusing on potentially functional mutations such
as hotspot mutations, whether the mutational signatures
would be different after genomic positive selection and
be enriched under different sequence contexts as com-
pared to what was observed using all mutations. In
addition, previous studies mostly focused on investigat-
ing single nucleotide variants but frequently ignore the
small insertions and deletions [13], which represent a
significant part of functional mutations.
In this study, we defined a hotspot mutation as a muta-

tion that occurs in a set of tumor samples significantly
more frequently than expected from a background fre-
quency characterized by genes, cancer types, mutation
types and sequence contexts. We investigated the muta-
tional signatures of hotspot mutations and illustrated the
common and distinct sequence contexts under which the
hotspot mutations were enriched across different tumor
types. We also investigated and revealed substantial func-
tional variations of hotspot mutations under different con-
texts and nominated a set of novel hotspot mutations,
which could potentially serve as a resource for precisely
selecting targets for diagnosis, drug development, and
patient management.

Methods
COSMIC somatic mutation data
We downloaded the COSMIC somatic mutation dataset
version 71 for our study. This set (12,250 samples) includes
many sources of curated mutation data. We excluded sam-
ples that underwent targeted-sequencing [15], and selected
only those that were subjected to either whole genome or
whole exome sequencing (Additional file 1: Table S1). In
this manner, we ensured that all the exons of investigated
genes were uniformly examined in the selected samples.

Cancer gene candidates
We collected from literature a set of candidate cancer
genes, which included 546 genes reported in cancer gene
census [16], 435 genes in Pancan12 [17], 221 genes
reported in Lawrence et al. [18]. For OncodriveCLUST
[5] and e-Driver [6], we applied their algorithms to
predict tumor type-specific driver genes using COSMIC
v71 mutation data. We used q-value < 0.01 and q-value
< 0.05 to determine driver genes in OncodriveCLUST
and in e-Driver, respectively.
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Definition of hotspot mutations
Our algorithm identifies hotspots based on amino acid
(AA) positions (Fig. 1a). Five major mutation types were
included in our modeling: missense, nonsense, coding-
silent, insertion and deletion. For missense, nonsense and
coding-silent mutations, six types of sequence context were
considered: A/T transition (ATts), A/T transversion (ATtv),
CpG G/C transition (CpG_CGts), non-CpG G/C transition
(NoCpG_CGts), CpG G/C transversion (CpG_CGtv),
non-CpG G/C transversion (NoCpG_CGtv), as previ-
ously introduced [3]. Altogether, 20 mutation subtypes
were considered (Additional file 2: Table S2). For each
mutation subtype in each gene, we counted the number
of subtype-specific mutations across all the samples.

For each gene, we calculated the mean subtype-specific
mutation rate as the total number of subtype-specific muta-
tions in the coding regions (E) divided (normalized) by the
protein length. We calculated a p-value based on the num-
ber of observed subtype-specific mutations (O) in a given
AA, assuming the number of mutations in each mutation
subtype follows a Poisson distribution. After obtaining a p-
value for each mutation subtype, we computed an inte-
grated p-value for each AA based on Fisher’s method [19]

x ¼ −2
Xk

i¼1
log pois Oi; ; Eið Þð Þ;

where i represents a mutation subtype, and pois the
Poisson distribution; x follows a chi-square distribution

Fig. 1 Statistics of the mutation distribution in different tumor types in COSMIC and an overview of HotDriver. a Providing a mutational profile from a
specific tumor type, the variants were classified into 20 mutation subtypes, then the mutation subtype-specific mutations rates were computed for each
investigated genes and the significant level of each amino acid position on the corresponding genes was calculated. After that, the significant level of
each amino acid position was calculated by combining p values from different mutation subtypes using Fisher’s method, and an adjusted p value was
computed for each amino acid position. b The mutation rate of 20 mutation subtypes in 17 main tumor types of COSMIC v71 whole genome and whole
exome sequencing data
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with 2 k degrees of freedom, where k is the number of
mutation subtypes tested. We further applied false dis-
covery rate correction [20] and reported hotspot muta-
tions in AA positions with adjusted p-value < 0.001 in
COSMIC.

TCGA pan-cancer data
We downloaded TCGA pan-cancer level-3 somatic muta-
tion, copy number alteration and RNA expression data from
Synapse (https://www.synapse.org/#!Synapse:syn300013), and
RPPA data from TCPA (http://app1.bioinformatics.mdan-
derson.org/tcpa/_design/basic/index.html) [21]. More than
4400 tumor samples were assayed by whole exome sequen-
cing, total RNA sequencing [22], or reverse phase protein
array (RPPA) technologies. The number of tumor samples
available for each cancer type is listed in Additional file 3:
Table S3. We called deletions where the normalized esti-
mated copy value is less than −1 and amplifications where
the value is greater than 1. We used the normalized TCGA
level-3 RNA expression data in our study. To allow for log
transformation, the RPKM values of 0 were set to the mini-
mum nonzero RPKM in the given samples. We applied
log2 transformation to all mRNA RPKM expression values,
as described by Jacobsen et al. [23]. We analyzed 181 pro-
teins in total using RPPA, which contains 181 high-quality
antibodies targeting 128 total proteins and 53 post-
translationally modified proteins. We used the normalized
level-3 RPPA data (level-4 data for Breast invasive carcin-
oma) in our study [21].
To test association between mutations and RNA expres-

sions, we used samples that had available both somatic
mutations and RNA expression data. To test association
between mutations and protein expressions, we used sam-
ples that had available both somatic mutation and RPPA
data (see Additional file 3: Table S3).

Cancer Cell Line Encyclopedia (CCLE) mutation and drug
sensitivity data
The CCLE [24] contains drug activity data of 24 different
compounds in 504 cell lines and somatic mutation data of
906 cell lines. In our analysis, we included cell lines with
both drug sensitivity and mutation data. Drug sensitivity
data were adjusted by a logistical-sigmoidal function and
described by 4 different variables: the maximal effect level
(Amax), the drug concentration at half-maximal activity
of the compound (EC50), the concentration at which the
drug response reached an absolute inhibition of 50 %
(IC50), and the activity area, which is the area above the
dose–response curve [24]. In our analysis, we used the ac-
tivity area, which captures both efficacy and potency of
drug activity according to the CCLE, to measure drug
responses.

Tumor-type prevalence of hotspot mutations
To measure the prevalence of a hotspot mutation in
tumor type A, we calculated the number of A samples
that contain a target mutation B, the number of A sam-
ples that do not contain B, the number of non-A sam-
ples that contain B, and the number of non-A samples
that do not contain B, respectively (Additional file 4:
Table S4). Then we used Fisher’s exact test to compute
the significance and applied FDR correction. A hotspot
is called highly prevalent in a specific tumor type if its
adjusted p-value < 0.01.

Conservation score comparison
We downloaded the chromosomal base-wise Genomic
Evolutionary Rate Profiling (GERP) scores computed by
GERP++ [25]. In our study, we extracted the resistant
substitution (RS) scores from the nucleotide bases that
belong to hotspot mutations and that belong to non-
hotspot mutations, and tested if the scores between
these two groups were significantly different. A higher
RS score represents stronger evolutionary conservation.

Results
Variable mutation rates among different tumor types and
mutation subtypes
As mentioned previously (Methods), we classified all the
mutations into 20 subtypes based on both mutation
types and di-nucleotide sequence contexts (Additional
file 2: Table S2). In the COSMIC mutation dataset, skin,
stomach, bladder and colon tumors have relatively high
overall mutational rates, which were consistent with a
previous report [4]. Besides, we also observed high mu-
tational rates in bone and endometrium tumors (Fig. 1b).
However, we observed highly variable mutational rates
across different mutation subtypes (Kruskal-Wallis H-test,
p = 2.22e-05). For example, in bone tumors, nonsense
non-CpG C/G transversion has a mutation rate of 0.69/
Mb while nonsense CpG C/G transition has a mutation
rate of 14.2/Mb. Similarly, the mutational rate can vary
substantially across different tumor types (Kruskal-Wallis
H-test, p = 3.49e-40). For example, missense non-CpG C/
G transition has an average rate of 6.18/Mb in skin tu-
mors, much higher than which in brain tumors (0.61/Mb).
Therefore, to identify potentially drivers that are positively
selected in cancer, it is important to account for variations
in mutation subtype and sequence context in different
tumor types, instead of examining only variant frequencies
in the population.

Identifying hotspot mutations in COSMIC
We started with all the mutations in 17 tumor types in
COSMIC v71 (Fig. 2). Only data that were obtained via ei-
ther whole exome or whole genome sequencing were used
(Methods, Additional file 1: Table S1) [15]. Estimation of
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background mutation rates may be biased by outlier hyper-
mutated samples. To avoid such bias, we calculated the
mean μ and the standard deviation σ of the number of mu-
tations in each sample, labeled the samples with numbers
of mutations greater than μ + 2σ as hyper-mutated, and ex-
cluded them from further considerations (Additional file 1:
Table S1).
Our goal was to identify hotspot mutations within genes

(Methods) and to explore their potentially biological utilities

under different biological contexts. The large number
of samples in COSMIC made it possible to reliably esti-
mate a background mutation rate for each gene in each
tumor type and mutation subtype (Methods). We iden-
tified a hotspot mutation as the set of genomic aberra-
tions that affect an amino acid (AA) position and occur
significantly more frequently than expected from the
background. In total, we identified a set of 702 putative
hotspot mutations in 549 genes in 17 tumor types
(Fig. 2, Methods).
We measured the composition of different mutational

subtypes in the hotspot mutations (Additional file 5:
Figure S1). As expected, 510 (72.65 %) were missense
and 17 (2.42 %) were nonsense, occupying a high pro-
portion of hotspot mutations. We also identified 31
insertion (4.42 %) and 78 deletion (11.11 %) hotspots,
which were largely ignored in previously studies [5, 6]
and potentially offered novel candidates for driver mu-
tation and cancer gene prediction. Besides, we exam-
ined the insertion and deletion hotspots and found that
17/31 was in-frame insertions and 17/78 was in-frame
deletions. Among the remaining frame-shift insertion
and deletions hotspots, more than 70 % have slightly
different start positions and/or sizes. For example, the
ESRP1 N512 hotspot deletion has two genomic variants
chr8:95686611A/- and chr8:95686611-95686612AA/-.
We found that the hotspot-mutation-containing-genes

(HMCGs) identified in our study overlapped significantly
(98/546 vs 451/24405, Fisher exact test, p = 1.28e-53)
with the 546 cancer genes reported in the Caner Gene
Census (CGC). Among 24,951 available genes in COSMIC,
549 genes were identified to contain at least one hotspot,
among which 98 were the CGC cancer genes. Similarly, we
found that HMCGs overlapped significantly with the sig-
nificantly mutated genes reported in TCGA PANCAN ana-
lysis (101/435 vs 448/24516, Fisher exact test, p = 6.56e-74)
and in Lawrence et al. (73/221 vs 476/24630, Fisher exact
test, p = 2.56e-65). The non-overlapping genes were de-
tected due likely to that 1) the previous studies had differ-
ent background mutation rate assumptions than our study;
2) they detected large number of tumor suppressors that
do not contain clear hotspot mutations; 3) our study was
not only able to detect hotspot mutations in known cancer
genes, but also capable of detecting hotspot mutations in
infrequently mutated genes, which may have previously un-
known biological functionality; 4) our study included muta-
tion types (indels) that previous studies did not. The extent
of overlap between HMCGs and the union of the above
mentioned cancer gene sets remained highly significant
when we chose various adjusted p value cutoffs to identify
the hotspot mutations (Additional file 6: Figure S2), which
indicated the statistical robustness of our approach.
Furthermore, we found significantly overlapped genes be-

tween our set with those predicted by other cluster-based

Functional utility exploration 
1. Differential prevalence in various tumor 

types 
2. Differential mRNA/protein expression 

and pathway activity 
3. Altered cancer cell drug sensitivity 
4. Higher conservative scores 

Hotspot mutation definition

WGS&WES data 

17 Individual Tumor types 

Hotspot mutations 
(702) 

Somatic mutations from 
COSMIC dataset (v71) 

Remove hyper-mutated samples

Fig. 2 Illustration of hotspot mutations definition and functional utility
analysis. We used COSMIC v71 data as the input. We first selected the
samples that were examined with whole genome or whole exome
sequencing, and then removed the hyper-mutated samples in each
tumor types. Hotspot mutations were identified in individual tumor
types, and the biological utility investigations were performed through
multiple aspects
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methods such as e-Driver [6] (151/552 vs 398/24499, Fisher
exact test, p = 3.42e-139) and OncodriveCLUST [5] (106/
489 vs 443/24462, Fisher exact test, p = 2.31e-74). Addition-
ally, regarding the mutational clusters, we found 213 hot-
spots overlapped with 1125 significant mutational clusters
as identified by e-Driver (213/1125 vs 489/92822, Propor-
tional test, p = 2.14e-87) and 261 hotspots overlapped with
1042 significant mutational clusters as predicted by Onco-
driveCLUST (261/1042 vs 441/89561, Proportional test,
p = 4.98e-121). Non-overlapping results were found due
mainly to: 1) e-Driver and OncodriveCLUST predicted
clusters based mainly on missense mutations in a uni-
form mutational background; 2) our study identified
not only missense hotspot mutations but also a sub-
stantial proportion of insertion (4.42 %) and deletion
(11.11 %) hotspots (Additional file 5: Figure S1); 3) our
study chose a more stringent statistical significance cut-
off to increase the confidence of identified hotspot
mutations.
The number of hotspot mutations varied to a great ex-

tent from one tumor type to another (Additional file 7:
Figure S3 and Additional file 8: Table S5). Most tumor
types had 5 to 100 hotspot mutations. However, colorec-
tal cancer had 253 hotspot mutations despite its rela-
tively small sample size (684 samples), including a high
proportion of insertion (10 %) and deletion (23 %) hot-
spot mutations (Fig. 3). In contrast, only 65 hotspot mu-
tations were found in myeloid cancer (1344 samples).
Such enrichment may reflect a higher extent of genetic
heterogeneity in the initiation and progression of colorec-
tal cancer, as has been suggested previously [26, 27] and
also that colorectal cancer is predominantly driven by mu-
tations rather than by copy number alterations [28]. In
addition, we examined the numbers of hotspot mutations
and the total numbers of mutations (mutation burden) in
each tumor type, but did not find a clear correlation
between them (Additional file 9: Figure S4).

Sequence context signature of hotspot mutations
We investigated the mutational signatures of 702 hot-
spot mutations under different sequence contexts across
different tumor types. As shown in Fig. 3, in 7 different
tumor types (stomach, ovarian, brain, breast, skin, pan-
creas and kidney cancer), NoCpG_CGts was the most
prevalent sequence context compared to other sequence
contexts under which the hotspot mutations happened
(p < 0.05), indicating a higher strength of positive selec-
tion on DNA sequences with NoCpG_CGts mutation. In
3 tumor types (head&neck, liver, and myeloid cancer),
NoCpG_CGtv appears to be the most prevalent sequence
context (p < 0.05). In several tumor types such as brain
and ovarian cancer, although NoCpG_CGtv did not act as
the predominant mutation sequence context, it repre-
sented a fairly high percentage (brain: 32 % and ovarian:
35 %). However, in some tumor types such as bladder can-
cer, the hotspot mutations are significantly enriched in
ATtv sequence context (35 %, p = 1.77e-2).
In terms of the specific sequence context that hotspot

mutations occur across different tumor types, although
insertion is not the most prevalent sequence context
within breast cancer, the percentage of insertion in
breast cancer (22 %) was significantly higher than in any
other tumor types (p = 1.14e-02), similarly, the percent-
age of deletion in colorectal cancer (27 %) was obviously
higher than in other tumor types (p = 1.84e-4), so as the
percentage of ATts (36 %, p = 5.84e-3) in colorectal and
ATtv (35 %, p = 3.73e-3) in myeloid cancer.
These observations revealed the common genomic fea-

tures such as NoCpG_CGts and NoCpG_CGtv sequence
context were positively selected across various tumor
types as well as distinct genomic features that occurred
in individual tumor types, and highlighted the signifi-
cance of investigating the hotspot mutations under dif-
ferent sequence contexts separately to better understand
their genetic complexities and functional indications.

Fig. 3 Mutational signatures of hotspot mutations in 16 tumor types. The x-axis represents the tumor types and the y-axis represent the 8 types
of sequence contexts (concatenating missense, nonsense and silent mutations). Each bar represents the percentage of specific sequence contexts
under which the hotspot mutations happen. In each tumor type, the addition of the percentages of different sequence contexts might be larger
than 1, because one or more types of mutations may happen on a single hotspot driver mutation site
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To gain novel functional insight of these mutations that
were predicted based on statistics of mutation data, we
performed a set of additional statistical tests to associate
these 702 hotspot mutations with functional evidences.

Exploring the biological utilities of hotspot mutations
using TCGA mRNA/protein expression data
The functional consequences of mutations may manifest
in two aspects: affecting the gene expression or leading
to abnormal signaling pathway activity. To address these
questions, we divided the mRNA and protein expression
values of a set of TCGA samples into multiple groups
based on the mutational status of a specific gene in these
samples: having a hotspot mutation, no hotspot mutation,
or no mutations [22]. Only mutations occurring at least
twice were included and Mann–Whitney U tests were
used to measure the difference between different groups
[23]. Among 702 hotspot mutations, we found 42 hotspot
mutations resulted in significant mRNA or protein expres-
sion alterations (Additional file 8: Table S5).
It is known that TP53 contains gain of function muta-

tions associate with increased expression of TP53 [29, 30]
through down-regulation of downstream targets such as
MDM2/MDM4, which suppress the expression of TP53.
However, it is not well investigated whether different mu-
tations in TP53 exhibit different functions across different
cancer types. Motivated by this, we examined the associ-
ation of TP53 hotspot mutations and RNA and protein
expression of TP53 in different cancer types. To focus on
the effect of mutations on TP53 expression, we excluded
samples harboring TP53 deletions (Methods). As shown
in Fig. 4a, in breast invasive carcinoma (BRCA), samples
with R175, R248 and R273 missense mutations have obvi-
ously higher mRNA or protein expression levels, compar-
ing to samples with non-hotspot mutations and with no
mutation in TP53. In ovarian serous cystadenocarcinoma
(OV), similar effects were observed for R248 and R273,
which are associated with increases in the TP53 mRNA
and protein expressions (Additional file 10: Figure S5).
However, in rectum adenocarcinoma (READ), although
R175 is associated with increases in TP53 RNA expres-
sions similar to what is observed in BRCA, R248 and
R273 missense mutations are not significantly associated
with the TP53 mRNA or protein expression, comparing to
samples with non-hotspot or no mutations in TP53
(Fig. 4a), implicating distinct functions of R248 and R273
in different disease contexts. In addition, G108 frame-shift
deletion, I195 missense and R213 nonsense mutations,
which were uniquely detected as hotspot mutations in
BRCA, OV and READ respectively, are associated with
either reduced or enhanced TP53 expression in corre-
sponding cancer types, suggesting the functional hetero-
geneity of hotspot mutations in different cancer types
(Fig. 4a and Additional file 10: Figure S5).

Instead of altering the RNA/protein level, certain muta-
tions may be functional via altering downstream protein
activity through signaling transduction. For example, activa-
tion of PIK3CA could lead to activation of downstream tar-
gets such as AKT phosphorylation [31]. A set of PIK3CA
mutations have been detected and functionally investi-
gated in various cancer types such as BRCA and colon
adenocarcinoma (COAD) [32]. We examined the asso-
ciation of individual PIK3CA mutations and AKT acti-
vation by comparing the phosphorylated AKT levels in
samples with various PIK3CA mutations to those in sam-
ples without PIK3CA mutation. Surprisingly, in BRCA,
only PIK3CA H1047 was associated with dramatically
higher AKT pT308 and pS473 levels, comparing to those
that did not have any PIK3CA mutations (Fig. 4b); in
COAD, only PIK3CA E542 were associated with signifi-
cantly higher AKT pT308 and pS473 levels, comparing
to those that did not have any PIK3CA mutations
(Fig. 4b). Notably, in both cases, PIK3CA mutations did
not affect the total AKT level (data not shown), sug-
gesting that different PIK3CA mutations in different
cancer types may selectively activate AKT via signaling
transduction, rather than expression regulation.
The availability of mRNA and protein expression data

enable an opportunity to detailed characterize the bio-
logical consequences of different mutations in one cancer
type, as well as one mutation under different cancer con-
texts, reiterating the rationale of distinguishing the func-
tion of individual mutations in different disease contexts.

Exploring the pharmacogenomics properties of hotspot
mutations
It has been shown that cancer cells respond to specific
drugs when they harbor mutations in driver genes such
as BRAF and NRAS [9]. However, it is not entirely clear
whether different mutations in a driver gene can trigger
different drug responses. Here, we assessed the effects of
individual mutations on drug responsiveness using data
from the CCLE [24]. We divided cancer cell-line samples
into different groups, depending on whether they con-
tain specific hotspot, non-hotspot, or no mutations in
investigated gene candidates. Only mutations occurring
at least twice were included and Mann–Whitney U test
was performed to measure the difference [23]. Among
702 hotspot mutations, we found 35 hotspot mutations
lead to significantly altered drug sensitivities (Additional
file 8: Table S5).
We first illustrated the effect of individual hotspot mu-

tations in BRAF, KRAS and NRAS on the sensitivity of
cancer cells treated by MEK inhibitors (PD-0325901 and
AZD6244). As expected, cells with BRAF V600E muta-
tions demonstrated significantly higher sensitivity to
MEK inhibitors than those without BRAF mutations
(data not shown). Furthermore, we found that cells with
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NRAS Q61 hotspot mutations demonstrated significantly
higher sensitivity to MEK inhibitors than those with
non-hotspot mutations and those without mutations in
NRAS (Fig. 5a). Cells with KRAS G12 hotspot mutations
demonstrated significantly higher sensitivity to MEK
inhibitors than those with non-hotspot mutations and
those without mutations in KRAS (Fig. 5a).
Epidermal growth factor (EGF) is one of the high af-

finity ligands of EGFR. EGF/EGFR system induces cell
growth, differentiation, migration, adhesion and cell
survival through various interacting signaling pathways
such as MAPK pathway [33], in which MAP3K4 is an
important component [34]. Clinically, EGFR inhibitors
such as Erlotinib were used to repress EGFR signaling
activations and suppress tumor cell growth. However,
we found that cancer cell-lines with MAP3K4 A1199
deletion hotspot mutations were more resistant to all
four examined EGFR inhibitors (Erlotinib, Lapatinib,
TKI258 and AZD0530) in comparison to cancer cell-
lines without MAP3K4 mutations (Fig. 5b). These
EGFR hotspot mutant cell-lines are also more resistant
to three inhibitors (Erlotinib, Lapatinib and TKI258) in
comparison to cell-lines containing non-hotspot muta-
tions in MAP3K4 (Fig. 5b), suggesting the unique func-
tion of MAP3K4 A1199 deletion in disrupting the
MAPK pathway function and its potential biomarker
utility.

These observations above support that hotspot muta-
tions we identified may have distinct roles in mediating
signaling pathways and are associated with different drug
sensitivities. Therefore, it is critical to obtain accurate
genomic information and interpret them in context-
specific manner in order to achieve desirable outcomes
in personalized cancer treatment.

Tumor type-specific hotspot mutations
We performed an analysis to assess whether a hotspot
mutation in our set is highly prevalent in specific tumor
types. Among all the 702 hotspots, we found that 68
were highly prevalent in one tumor type, 11 in two
tumor types, 2 (KRAS G12 and PIK3CA E542) in three
tumor types, and 1 (KRAS G13) in four tumor types
(Additional file 11: Figure S6). Among these, 34 hotspot
mutations such as CD209 R129 missense (4.0 %) in blad-
der cancer, MAGI1 Q421 insertion (0.8 %) and NR1H2
Q175 insertion (1.8 %) in breast cancer were not well in-
vestigated based on previous studies and are potentially
novel targets (Additional file 8: Table S5).
Of the 21 hotspot mutations detected in TP53 (Fig. 6a),

2 were found to be prevalent in multiple cancer types
(R248 in bladder urothelial carcinoma (BLCA), BRCA
and OV, R273 in lower grade glioma (LGG), BRCA and
OV), and 9 (G108, R158, R175, I195, R213, Y220, R249,

Fig. 4 Functional implications of hotspot mutations in RNA and protein expression. a In BRCA, tumor samples with G108 deletion hotspot mutations in
TP53 exhibit lower TP53 RNA expression than those with non-hotspot mutations and without TP53 mutations. In contrast, tumor samples with missense
hotspot mutations (R175, Y220, R248 and R273) in TP53 show higher TP53 RNA and protein expression. In READ, tumor samples with R175 missense
mutations show higher TP53 RNA and protein expression than those with non-hotspot mutations and without TP53 mutations, while R213 nonsense
mutations has the opposite effect. b In BRCA, tumor samples with H1047 missense hotspot mutations in PIK3CA show higher AKT pT308 and pS473 levels
than those with no mutations in PIK3CA, while in COAD, tumor samples with E542 missense hotspot mutations in PIK3CA show higher AKT pT308 and
pS473 levels than those with no mutations in PIK3CA. * indicates p < 0.05 and ** indicates p < 0.001 between samples with specified hotspot mutations
and samples with non-hotspot mutations in examined gene; # indicates p< 0.05 and ## indicates p< 0.001 between samples with specified hotspot
mutations and samples without mutations in examined gene
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R282, E285) in one tumor type, confirming the func-
tional diversity of TP53 hotspot mutations in different
cancer types (Fig. 4a).
We identified 30 hotspot mutations that were exclusively

detected in only one tumor type (Additional file 12: Table
S6). Included were DNMT3A R882 and NPM1 W288,
which occur in 14.9 and 25.6 % of acute myeloid leukemia
(LAML) patients, respectively and have been shown im-
portant in LAML oncogenesis [35]. Besides these expected
hotspots, we found some potentially novel hotspots. For ex-
ample, we found an in-frame insertion hotspot mutation,
NR1H2 Q175 in 1.8 % of BRCA patients, further investiga-
tion using BRCA mRNA expression data showed that
NR1H2 Q175 insertion is associated with reduced mRNA
expression of NR1H2, comparing to NR1H2 non-hotspot
mutations (Mann–Whitney U test, p = 2.60e-2, Fig. 6b).
Although having been reported to regulate cholesterol
homeostasis and tumorigenesis of liver cancer [36], the role
of NR1H2 Q175 insertion in BRCA has not been well char-
acterized. In addition, GATA3 P409, a frame-shift insertion
hotspot mutation was detected in 1.6 % of BRCA patients.
BRCA samples with GATA3 P409 insertions had higher ex-
pressions of GATA3 compared to samples without GATA3
mutations based on both the BRCA mRNA expression
(Mann–Whitney U test, p = 2.03e-2) and RRPA data
(Mann–Whitney U test, p = 5.94e-2, Fig. 6c). Because
GATA3 has been proposed as a prognostic biomarker in
breast cancer [37], the high frequency of GATA3 P409 and
elevated GATA3 expression in BRCA make it a potential
useful therapeutic target in clinics.

Conservation and protein-domain characteristics of the
hotspot mutations
In general, functional and structural important mutations
are expected to locate in highly evolutionally conserved
region and domain in the protein. To evaluate our hotspot
mutation, we used the RS scores computed by GERP++
[25], to measure the evolutionary constraints across differ-
ent chromosomal sites (Methods). We compared the RS
score difference between the sites that belong to hotspot
mutations and those belong to non-hotspot mutations.
The RS scores of 702 hotspot mutations were significantly
higher than those of non-hotspot mutations (Fig. 7a), sug-
gesting the sites that harbor hotspot mutations were more
conserved than those do not. In addition, we also exam-
ined the relative location of mutations on the protein. The
non-hotspot mutations were evenly distributed across dif-
ferent domains of the protein (lower panel), while the hot-
spot mutations showed clustering in the middle and the
terminals (Fig. 7b, upper panel), suggesting the functional
preference of mutations in different protein domains.

Discussion
We nominated 702 hotspot mutations in 549 genes from
the COSMIC database, among which 53 were associated
with statistically significant functional evidences in cur-
rently available TCGA and CCLE data (Additional file 8:
Table S5). The rest of the hotspot mutations could not
be associated with additional functional evidence, which
may due to sparseness in the data and limitations in the
current knowledge bases. For example, only 187 proteins

Fig. 5 Functional implications of hotspot mutations in drug sensitivity. a Cancer cells with NRAS Q61 or KRAS G12 missense hotspot mutations
exhibit higher sensitivity to MEK inhibitors (PD-0325901 and AZD6244) than those with non-hotspot mutations or without any mutations in NRAS
or KRAS. b Cancer cells with MAP3K4 A1199 deletion hotspot mutations exhibit lower sensitivity to different EGFR inhibitors (Erlotinib, Lapatinib,
TKI258 and AZD0530) than those with non-hotspot mutations or without any mutations in MAP3K4. * indicates p < 0.05 between samples with
specified hotspot mutations and samples with non-hotspot mutations in examined gene; # indicates p < 0.05 between samples with specified
hotspot mutations and samples without mutations in examined gene
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were available on the RPPA, the sample size was rela-
tively small and some observed patterns might change as
the sample size increases in the future. Nonetheless, our
study revealed differential biological consequences and
pharmacogenomics utilities of mutations under different
disease contexts and highlighted the significance of allo-
cating the specific function of individual mutations using
functional genomics and pharmacogenomics data. These
aspects have not been systematically explored in previous
studies. Besides investigating previous known hotspot mu-
tations in different contexts, we also nominated a set of
novel hotpot mutations such as those in MAP3K4, NR1H2

and GATA3 with corresponding functional associations,
represents good candidates for developing predictive bio-
markers and drug targets.
Investigate the mutational signature in different cancer

types has been a significant action to understand the
underlying biological processes of cancer development.
Alexandrov et al. [14] dissected all the mutations into 21
distinct mutational signatures with diverse sequence con-
texts enrichment and associated them with different phe-
notypes such as age of the patient at cancer diagnosis,
known mutagenic exposures or defects in DNA mainten-
ance. Kandoth et al. [13] investigated the 12 cancer types

Fig. 6 Prevalence of hotspot mutations in different TCGA cancer types and their functional implications. a In TP53, hotspot mutations are differentially
prevalent in different tumor types, indicating their differential functions. b In BRCA, samples with NR1H2 Q175 in-frame insertion hotspot mutations have
significantly lower NR1H2 expression compared to samples with NR1H2 non-hotspot mutations. c In BRCA, sample with GATA3 P409 insertion hotspot
mutations have obviously higher GATA3 compared to samples without GATA3 mutation. * indicates p< 0.05 between samples with specified hotspot
mutations and samples with non-hotspot mutations in examined gene; # indicates p< 0.05 between samples with specified hotspot mutations and
samples without mutations in examined gene
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in TCGA and reported that mutations were enriched in C/
G transitions such as C- > T and C/G transversions such as
C- > A in different cancer types using all the mutation data.
In our study, we focused on predicted hotspot mutations
and illustrated the mutational signatures that hotspot mu-
tations represented. We found that hotspot mutations were
enriched in NoCpG_CGts and NoCpG_CGtv sequence
context in 10 tumor types and some sequence contexts
such as ATtv in bladder cancer. In addition, we elucidated
that insertion mutations were highly enriched in breast
cancer and deletion mutations were enriched in colorectal
cancer, which was a novel founding in our study.
Another novel contribution of our current investigation

was to highlight the criticalness of distinguishing the bio-
logical roles of individual hotspot mutations within one
cancer gene under different disease contexts. Different hot-
spot mutations within one gene can exhibit diverse func-
tional indications. For example, only PIK3CA H1047 but
not any other hotspot mutations enhances the AKT
pathway activity in BRCA, while only PIK3CA E542 en-
hances the AKT pathway activity in COAD. Previous
studies observed that PIK3CA H1047R and E545K both
result in a constitutively active enzyme with oncogenic
capacity but the effect of H1047R is much stronger than
E545K [32, 38, 39]. In our analysis, We did observe en-
hanced AKT pathway activity in tumor samples contain-
ing E545K. However, the difference was not significant
due likely to 1) insufficient sample size that carrying the

PIK3CA E545K mutation or 2) highly sparse expression of
phosphor-AKT in samples without PIK3CA mutation in
TCGA samples. Similarly, one hotspot mutation can repre-
sent different functional relevance in different cancer types.
For example, TP53 R248 and R273 significantly increase its
RNA and protein expression in BRCA and OV but not in
READ. In addition, different TP53 hotspot mutations were
prevalence in various cancer types, and 30 hotspot muta-
tions exclusively occur in only one cancer type.
Along the line of identifying hotspot mutations, it was

commonly assumed that mutations close to each other are
expected to exhibit similar functions and grouping nearby
mutations as a hotspot would improve the power of iden-
tifying driver mutations. One important observation of
our study was we found that even hotspot mutations close
to each other could have distinct biological implications in
the same cancer type. For example, PIK3CA E542 was sig-
nificantly associated with enhancement of phospho-AKT
activities in COAD, while E545 did not; cell-lines with
KRAS G13 were resistant to IGF-1R inhibitor (AEW541),
while those with G12 did not (data not shown). Nearby
hotspot mutations demonstrated distinct functions under
different disease context. Simply collapsing mutations
based on proximity and assuming that nearby mutations
have the same functions may result in errors in functional
prediction.
Although available functional genomic data prohibited

us from systematic uniformly characterizing every hotspot

Fig. 7 Compare the conservation and proteomic domain localization of the hotspot and the non-hotspot mutations. a Comparison of GERP score
between the hotspot and non-hotspot mutations. b Investigation of the proteomic domain location of the hotspot (upper) and non-hotspot
(lower) mutations
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mutation we predicted, our integrative assessment based
on mRNA expression, protein activity, drug sensitivity, and
tumor specificity data in TCGA and CCLE, indicated po-
tential utility of each of our predicted hotspot mutations.
Such functional characterization can be unequivocally im-
proved in the future by using systematic pathway-aware al-
gorithms such as DriverNet [40] and PARADIGM-SHIFT
[41], and by integrating additional functional genomic
datasets such as Genomics of Drug Sensitivity in Cancer
(GDSC) [42]. In terms of identifying hotspot mutations in
the amino acid level, it is critical to have consistent annota-
tions from genomic to protein level. Zhou, et al. [43] used
COSMIC data to show that ambiguities frequently exist in
variant annotation, and annotation tool such as TransVar
[43] would be very helpful to improve the accuracy of hot-
spot mutation prediction. In addition, further dissecting
the mutation data into different cancer subtype groups
(such as MSI and non-MSI in colorectal cancer, ER+,
HER2+ and TNBC in breast cancer) would be helpful to
distinguish distinct mutation profiles and precisely investi-
gate the specific function of hotspot mutations in different
cancer subtypes. Importantly, our results demonstrated a
high degree of functional heterogeneity at the mutational
level, which has not been sufficiently apprehended or
investigated in current research and clinical practice. Des-
pite all the caveats, the hotspot mutations we identified
provide a step forward in cataloging hotspot driver muta-
tions in different cancer types and biological contexts,
which is critical for realizing the promise of personalized
cancer medicine.

Conclusion
We observed a large discordancy of mutation rates across
different mutation subtypes and tumor types, and nomi-
nated 702 hotspot mutations in 549 cancer genes using
COSMIC data in a gene, tumor type, mutation subtype
and sequence context specific manner. We illustrated the
common and distinct mutational signatures of hotspot
mutations across different tumor types and employed
multi-dimensional functional evidences to demonstrate the
diverse functional relevance of hotspot mutations in differ-
ent biological and disease contexts and nominate novel
hotspot mutations such as MAP3K4 A1199 deletion,
NR1H2 R175 insertion, and GATA3 P409 insertion with
functional associations. Our results will promote our un-
derstanding of the process of genomic positive selection by
investigating the mutational signatures on hotspot muta-
tions and facilitate ongoing efforts in cancer target discov-
ery and development [44]. The source code used for our
analysis is available at https://sourceforge.net/projects/hot-
driver/.
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